Poisson Process 1 Poisson Process

Total Page:16

File Type:pdf, Size:1020Kb

Poisson Process 1 Poisson Process Poisson process 1 Poisson process In probability theory, a Poisson process is a stochastic process which counts the number of events[1] and the time that these events occur in a given time interval. The time between each pair of consecutive events has an exponential distribution with parameter λ and each of these inter-arrival times is assumed to be independent of other inter-arrival times. The process is named after the French mathematician Siméon-Denis Poisson and is a good model of radioactive decay,[2] telephone calls[3] and requests for a particular document on a web server,[4] among many other phenomena. The Poisson process is a continuous-time process; the sum of a Bernoulli process can be thought of as its discrete-time counterpart. A Poisson process is a pure-birth process, the simplest example of a birth-death process. It is also a point process on the real half-line. Definition The basic form of Poisson process, often referred to simply as "the Poisson process", is a continuous-time counting process {N(t), t ≥ 0} that possesses the following properties: • N(0) = 0 • Independent increments (the numbers of occurrences counted in disjoint intervals are independent from each other) • Stationary increments (the probability distribution of the number of occurrences counted in any time interval only depends on the length of the interval) • No counted occurrences are simultaneous. Consequences of this definition include: • The probability distribution of N(t) is a Poisson distribution. • The probability distribution of the waiting time until the next occurrence is an exponential distribution. • The occurrences are distributed uniformly on any interval of time. (Note that N(t), the total number of occurrences, has a Poisson distribution over (0, t], whereas the location of an individual occurrence on t ∈ (a, b] is uniform.) Other types of Poisson process are described below. Types Homogeneous The homogeneous Poisson process is one of the most well-known Lévy processes. This process is characterized by a rate parameter λ, also known as intensity, such that the number of events in time interval (t, t + τ] follows a Poisson distribution with associated parameter λτ. This relation is given as Sample Path of a Poisson process N(t) where N(t + τ) − N(t) = k is the number of events in time interval (t, t + τ]. Just as a Poisson random variable is characterized by its scalar parameter λ, a homogeneous Poisson process is characterized by its rate parameter λ, which is the expected number of "events" or "arrivals" that occur per unit time. N(t) is a sample homogeneous Poisson process, not to be confused with a density or distribution function. Poisson process 2 Non-homogeneous In general, the rate parameter may change over time; such a process is called a non-homogeneous Poisson process or inhomogeneous Poisson process. In this case, the generalized rate function is given as λ(t). Now the expected number of events between time a and time b is Thus, the number of arrivals in the time interval (a, b], given as N(b) − N(a), follows a Poisson distribution with associated parameter λ a,b A rate function λ(t) in a non-homogeneous Poisson process can be either a deterministic function of time or an independent stochastic process, giving rise to a Cox process. A homogeneous Poisson process may be viewed as a special case when λ(t) = λ, a constant rate. Spatial An important variation on the (notionally time-based) Poisson process is the spatial Poisson process. In the case of a one-dimension space (a line) the theory differs from that of a time-based Poisson process only in the interpretation of the index variable. For higher dimension spaces, where the index variable (now x) is in some vector space V (e.g. R2 or R3), a spatial Poisson process can be defined by the requirement that the random variables defined as the counts of the number of "events" inside each of a number of non-overlapping finite sub-regions of V should each have a Poisson distribution and should be independent of each other. Space-time A further variation on the Poisson process, the space-time Poisson process, allows for separately distinguished space and time variables. Even though this can theoretically be treated as a pure spatial process by treating "time" as just another component of a vector space, it is convenient in most applications to treat space and time separately, both for modeling purposes in practical applications and because of the types of properties of such processes that it is interesting to study. In comparison to a time-based inhomogeneous Poisson process, the extension to a space-time Poisson process can introduce a spatial dependence into the rate function, such that it is defined as , where for some vector space V (e.g. R2 or R3). However a space-time Poisson process may have a rate function that is constant with respect to either or both of x and t. For any set (e.g. a spatial region) with finite measure , the number of events occurring inside this region can be modeled as a Poisson process with associated rate function λ (t) S such that Poisson process 3 Separable space-time processes In the special case that this generalized rate function is a separable function of time and space, we have: for some function . Without loss of generality, let (If this is not the case, λ(t) can be scaled appropriately.) Now, represents the spatial probability density function of these random events in the following sense. The act of sampling this spatial Poisson process is equivalent to sampling a Poisson process with rate function λ(t), and associating with each event a random vector sampled from the probability density function . A similar result can be shown for the general (non-separable) case. Characterisation In its most general form, the only two conditions for a counting process to be a Poisson process are: • Orderliness: which roughly means which implies that arrivals don't occur simultaneously (but this is actually a mathematically stronger statement). • Memorylessness (also called evolution without after-effects): the number of arrivals occurring in any bounded interval of time after time t is independent of the number of arrivals occurring before time t. These seemingly unrestrictive conditions actually impose a great deal of structure in the Poisson process. In particular, they imply that the time between consecutive events (called interarrival times) are independent random variables. For the homogeneous Poisson process, these inter-arrival times are exponentially distributed with parameter λ (mean 1/λ). Also, the memorylessness property entails that the number of events in any time interval is independent of the number of events in any other interval that is disjoint from it. This latter property is known as the independent increments property of the Poisson process. Properties As defined above, the stochastic process {N(t)} is a Markov process, or more specifically, a continuous-time Markov process. To illustrate the exponentially distributed inter-arrival times property, consider a homogeneous Poisson process N(t) with rate parameter λ, and let T be the time of the kth arrival, for k = 1, 2, 3, ... Clearly the number of arrivals k before some fixed time t is less than k if and only if the waiting time until the kth arrival is more than t. In symbols, the event [N(t) < k] occurs if and only if the event [T > t] occurs. Consequently the probabilities of these events are k the same: In particular, consider the waiting time until the first arrival. Clearly that time is more than t if and only if the number of arrivals before time t is 0. Combining this latter property with the above probability distribution for the number of homogeneous Poisson process events in a fixed interval gives Consequently, the waiting time until the first arrival T has an exponential distribution, and is thus memoryless. One 1 can similarly show that the other interarrival times T − T share the same distribution. Hence, they are k k−1 Poisson process 4 independent, identically distributed (i.i.d.) random variables with parameter λ > 0; and expected value 1/λ. For example, if the average rate of arrivals is 5 per minute, then the average waiting time between arrivals is 1/5 minute. Applications The classic example of phenomena well modelled by a Poisson process is deaths due to horse kick in the Prussian army, as shown by Ladislaus Bortkiewicz in 1898.[5][6] The following examples are also well-modeled by the Poisson process: • Requests for telephone calls at a switchboard. • Goals scored in a soccer match.[7] • Requests for individual documents on a web server.[8] • Particle emissions due to radioactive decay by an unstable substance. In this case the Poisson process is non-homogeneous in a predictable manner - the emission rate declines as particles are emitted. In queueing theory, the times of customer/job arrivals at queues are often assumed to be a Poisson process. Occurrence The Palm–Khintchine theorem provides a result that shows that the superposition of many low intensity non-Poisson point processes will be close to a Poisson process. Further reading • Cox, D. R.; Isham, V. I. (1980). Point Processes. Chapman & Hall. ISBN 0-412-21910-7. • Ross, S. M. (1995). Stochastic Processes. Wiley. ISBN 978-0-471-12062-9. • Snyder, D. L.; Miller, M. I. (1991). Random Point Processes in Time and Space. Springer-Verlag. ISBN 0-387-97577-2. Notes [1] The word event used here is not an instance of the concept of event as frequently used in probability theory.
Recommended publications
  • Probability Cheatsheet V2.0 Thinking Conditionally Law of Total Probability (LOTP)
    Probability Cheatsheet v2.0 Thinking Conditionally Law of Total Probability (LOTP) Let B1;B2;B3; :::Bn be a partition of the sample space (i.e., they are Compiled by William Chen (http://wzchen.com) and Joe Blitzstein, Independence disjoint and their union is the entire sample space). with contributions from Sebastian Chiu, Yuan Jiang, Yuqi Hou, and Independent Events A and B are independent if knowing whether P (A) = P (AjB )P (B ) + P (AjB )P (B ) + ··· + P (AjB )P (B ) Jessy Hwang. Material based on Joe Blitzstein's (@stat110) lectures 1 1 2 2 n n A occurred gives no information about whether B occurred. More (http://stat110.net) and Blitzstein/Hwang's Introduction to P (A) = P (A \ B1) + P (A \ B2) + ··· + P (A \ Bn) formally, A and B (which have nonzero probability) are independent if Probability textbook (http://bit.ly/introprobability). Licensed and only if one of the following equivalent statements holds: For LOTP with extra conditioning, just add in another event C! under CC BY-NC-SA 4.0. Please share comments, suggestions, and errors at http://github.com/wzchen/probability_cheatsheet. P (A \ B) = P (A)P (B) P (AjC) = P (AjB1;C)P (B1jC) + ··· + P (AjBn;C)P (BnjC) P (AjB) = P (A) P (AjC) = P (A \ B1jC) + P (A \ B2jC) + ··· + P (A \ BnjC) P (BjA) = P (B) Last Updated September 4, 2015 Special case of LOTP with B and Bc as partition: Conditional Independence A and B are conditionally independent P (A) = P (AjB)P (B) + P (AjBc)P (Bc) given C if P (A \ BjC) = P (AjC)P (BjC).
    [Show full text]
  • 4. Stochas C Processes
    51 4. Stochasc processes Be able to formulate models for stochastic processes, and understand how they can be used for estimation and prediction. Be familiar with calculation techniques for memoryless stochastic processes. Understand the classification of discrete state space Markov chains, and be able to calculate the stationary distribution, and recognise limit theorems. Science is often concerned with the laws that describe how a system changes over time, such as Newton’s laws of motion. When we use probabilistic laws to describe how the system changes, the system is called a stochastic process. We used a stochastic process model in Section 1.2 to analyse Bitcoin; the probabilistic part of our model was the randomness of who generates the next Bitcoin block, be it the attacker or the rest of the peer-to-peer network. In Part II, you will come across stochastic process models in several courses: • in Computer Systems Modelling they are used to describe discrete event simulations of communications networks • in Machine Learning and Bayesian Inference they are used for computing posterior distributions • in Information Theory they are used to describe noisy communications channels, and also the data streams sent over such channels. 4.1. Markov chains Example 4.1. The Russian mathematician Andrei Markov (1856–1922) invented a new type of probabilistic model, now given his name, and his first application was to model Pushkin’s poem Eugeny Onegin. He suggested the following method for generating a stream of text C = (C ;C ;C ;::: ) where each C is an alphabetic character: 0 1 2 n As usual, we write C for the random 1 alphabet = [ ’a ’ , ’b ’ ,...] # a l l p o s s i b l e c h a r a c t e r s i n c l .
    [Show full text]
  • 5 Stochastic Processes
    5 Stochastic Processes Contents 5.1. The Bernoulli Process ...................p.3 5.2. The Poisson Process .................. p.15 1 2 Stochastic Processes Chap. 5 A stochastic process is a mathematical model of a probabilistic experiment that evolves in time and generates a sequence of numerical values. For example, a stochastic process can be used to model: (a) the sequence of daily prices of a stock; (b) the sequence of scores in a football game; (c) the sequence of failure times of a machine; (d) the sequence of hourly traffic loads at a node of a communication network; (e) the sequence of radar measurements of the position of an airplane. Each numerical value in the sequence is modeled by a random variable, so a stochastic process is simply a (finite or infinite) sequence of random variables and does not represent a major conceptual departure from our basic framework. We are still dealing with a single basic experiment that involves outcomes gov- erned by a probability law, and random variables that inherit their probabilistic † properties from that law. However, stochastic processes involve some change in emphasis over our earlier models. In particular: (a) We tend to focus on the dependencies in the sequence of values generated by the process. For example, how do future prices of a stock depend on past values? (b) We are often interested in long-term averages,involving the entire se- quence of generated values. For example, what is the fraction of time that a machine is idle? (c) We sometimes wish to characterize the likelihood or frequency of certain boundary events.
    [Show full text]
  • (Introduction to Probability at an Advanced Level) - All Lecture Notes
    Fall 2018 Statistics 201A (Introduction to Probability at an advanced level) - All Lecture Notes Aditya Guntuboyina August 15, 2020 Contents 0.1 Sample spaces, Events, Probability.................................5 0.2 Conditional Probability and Independence.............................6 0.3 Random Variables..........................................7 1 Random Variables, Expectation and Variance8 1.1 Expectations of Random Variables.................................9 1.2 Variance................................................ 10 2 Independence of Random Variables 11 3 Common Distributions 11 3.1 Ber(p) Distribution......................................... 11 3.2 Bin(n; p) Distribution........................................ 11 3.3 Poisson Distribution......................................... 12 4 Covariance, Correlation and Regression 14 5 Correlation and Regression 16 6 Back to Common Distributions 16 6.1 Geometric Distribution........................................ 16 6.2 Negative Binomial Distribution................................... 17 7 Continuous Distributions 17 7.1 Normal or Gaussian Distribution.................................. 17 1 7.2 Uniform Distribution......................................... 18 7.3 The Exponential Density...................................... 18 7.4 The Gamma Density......................................... 18 8 Variable Transformations 19 9 Distribution Functions and the Quantile Transform 20 10 Joint Densities 22 11 Joint Densities under Transformations 23 11.1 Detour to Convolutions......................................
    [Show full text]
  • Download English-US Transcript (PDF)
    MITOCW | MITRES6_012S18_L06-06_300k We will now work with a geometric random variable and put to use our understanding of conditional PMFs and conditional expectations. Remember that a geometric random variable corresponds to the number of independent coin tosses until the first head occurs. And here p is a parameter that describes the coin. It is the probability of heads at each coin toss. We have already seen the formula for the geometric PMF and the corresponding plot. We will now add one very important property which is usually called Memorylessness. Ultimately, this property has to do with the fact that independent coin tosses do not have any memory. Past coin tosses do not affect future coin tosses. So consider a coin-tossing experiment with independent tosses and let X be the number of tosses until the first heads. And X is a geometric with parameter p. Suppose that you show up a little after the experiment has started. And you're told that there was so far just one coin toss. And that this coin toss resulted in tails. Now you have to take over and carry out the remaining tosses until heads are observed. What should your model be about the future? Well, you will be making independent coin tosses until the first heads. So the number of such tosses will be a random variable, which is geometric with parameter p. So this duration-- as far as you are concerned-- is geometric with parameter p. Therefore, the number of remaining coin tosses starting from here-- given that the first toss was tails-- has the same geometric distribution as the original random variable X.
    [Show full text]
  • Fraud Risk Assessment Within Blockchain Transactions Pierre-Olivier Goffard
    Fraud risk assessment within blockchain transactions Pierre-Olivier Goffard To cite this version: Pierre-Olivier Goffard. Fraud risk assessment within blockchain transactions. 2019. hal-01716687v2 HAL Id: hal-01716687 https://hal.archives-ouvertes.fr/hal-01716687v2 Preprint submitted on 16 Jan 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Fraud risk assessment within blockchain transactions Pierre-O. Goard∗ Univ Lyon, Université Lyon 1, LSAF EA2429. December 10, 2018 Abstract The probability of successfully spending twice the same bitcoins is considered. A double-spending attack consists in issuing two transactions transferring the same bitcoins. The rst transaction, from the fraudster to a merchant, is included in a block of the public chain. The second transaction, from the fraudster to himself, is recorded in a block that integrates a private chain, exact copy of the public chain up to substituting the fraudster-to-merchant transaction by the fraudster-to- fraudster transaction. The double-spending hack is completed once the private chain reaches the length of the public chain, in which case it replaces it. The growth of both chains are modeled by two independent counting processes.
    [Show full text]
  • A Computational Formulation of the Behavior Systems Account of the Temporal Organization of Motivated Behavior T ⁎ Federico Sanabriaa, , Carter W
    Behavioural Processes 169 (2019) 103952 Contents lists available at ScienceDirect Behavioural Processes journal homepage: www.elsevier.com/locate/behavproc A computational formulation of the behavior systems account of the temporal organization of motivated behavior T ⁎ Federico Sanabriaa, , Carter W. Danielsa,b, Tanya Guptaa, Cristina Santosc a Arizona State University, United States b Columbia University, United States c Universidade do Minho, Portugal ARTICLE INFO ABSTRACT Keywords: The behavior systems framework suggests that motivated behavior—e.g., seeking food and mates, avoiding Algorithm predators—consists of sequences of actions organized within nested behavioral states. This framework has Behavior system bridged behavioral ecology and experimental psychology, providing key insights into critical behavioral pro- Bout cesses. In particular, the behavior systems framework entails a particular organization of behavior over time. The Markov model present paper examines whether such organization emerges from a generic Markov process, where the current Reinforcement behavioral state determines the probability distribution of subsequent behavioral states. This proposition is Temporal organization developed as a systematic examination of increasingly complex Markov models, seeking a computational for- mulation that balances adherence to the behavior systems approach, parsimony, and conformity to data. As a result of this exercise, a nonstationary partially hidden Markov model is selected as a computational formulation of the predatory subsystem. It is noted that the temporal distribution of discrete responses may further unveil the structure and parameters of the model but, without proper mathematical modeling, these discrete responses may be misleading. Opportunities for further elaboration of the proposed computational formulation are identified, including developments in its architecture, extensions to defensive and reproductive subsystems, and metho- dological refinements.
    [Show full text]
  • EE 302 Division 1. Homework 10 Solutions. Y Y Y Y Y 0 T T T
    EE 302 Division 1. Homework 10 Solutions. A summary of Poisson and Bernoulli processes: 0 Y1 Y2 Y3 Y4 Y5 T1 T2 T3 T4 T5 Bernoulli (p) Poisson (¸) 8 µ ¶ ( < t ¡ 1 k t¡k ¸ktk¡1e¡¸t p (1 ¡ p) t ¸ k (k¡1)! t ¸ 0 time of the k-th arrival pY (t)= k ¡ 1 fYk (t)= k : 0 t<0 0 ½ t<k ½ (1 ¡ p)t¡1pt¸ 1 ¸e¡¸t t ¸ 0 inter-arrival time pTk (t)= fTk (t)= 8 µ ¶0 t<1 0 t<0 ½ < ¿ n ¿¡n (¸¿)n ¡¸¿ number of arrivals p (1 ¡ p) 0 · n · ¿ n! e 0 · n PS (n)= n PN¿ (n)= within ¿ units of time ¿ : 0 n<0 0 otherwise Problem 1. Fred is giving out samples of canned dog food. He makes calls door to door, but he leaves a sample (one can) only on those calls for which the door is answered and a dog is in res- idence. On any call the probability of the door being answered is 3/4, and the probability that any household has a dog is 2/3. Assume that the events \Door answered" and \A dog lives here" are independent and also that the outcomes of all calls are independent. (a) Determine the probability that Fred gives away his ¯rst sample on his third call. Solution. This is a Bernoulli process: each call is a Bernoulli trial, and the calls are independent. The probability of success p is: p = P(fthe door is answered g\fa dog is in residenceg) = P(fthe door is answeredg)P(fa dog is in residenceg) 3 2 1 = ¢ = : 4 3 2 Y1, the time of the ¯rst success is a geometric random variable with parameter p, therefore we have: 3¡1 P(Y1 =3)=pY1 (3)=(1¡ 1=2) (1=2) = 1=8: (b) Given that he has given away exactly four samples on his ¯rst eight calls, determine the conditional probability that Fred will give away his ¯fth sample on his eleventh call.
    [Show full text]
  • Twistedpair: Towards Practical Anonymity in the Bitcoin P2P Network
    TwistedPair: Towards Practical Anonymity in the Bitcoin P2P Network Abstract—Recent work has demonstrated significant anonymity vulnerabilities in Bitcoin’s networking stack. In particular, the current mechanism for broadcasting Bitcoin transactions allows third-party observers to link transactions to the IP addresses that originated them. This lays the groundwork for low-cost, large-scale deanonymization attacks. In this Fig. 1: Supernodes can observe flooding metadata to infer work, we present TwistedPair, a first-principles, theoretically- which node was the source of a transaction message (tx). justified defense against large-scale deanonymization attacks. TwistedPair is lightweight, scalable, and completely interoperable with the existing Bitcoin network. We evaluate TwistedPair through experiments on Bitcoin’s mainnet to demonstrate with an overview of Bitcoin’s P2P network, and explain why its interoperability with the current network, as well as low it enables deanonymization attacks. broadcast latency overhead. A. Bitcoin’s P2P Network I. INTRODUCTION Bitcoin nodes are connected over a P2P network of TCP links. This network is used to communicate transactions, the Anonymity is an important property for a financial system, blockchain, and control packets, and it plays a crucial role in especially given the often-sensitive nature of transactions [15]. maintaining the network’s consistency. Each peer is identified Unfortunately, the anonymity protections in Bitcoin and similar by its (IP address, port) combination. Whenever a node gen­ cryptocurrencies can be fragile. This is largely because Bitcoin erates a transaction, it broadcasts a record of the transaction users are identified by cryptographic pseudonyms (a user can over the P2P network; critically, transaction messages do not have multiple pseudonyms).
    [Show full text]
  • Markov Chain 1 Markov Chain
    Markov chain 1 Markov chain A Markov chain, named after Andrey Markov, is a mathematical system that undergoes transitions from one state to another, between a finite or countable number of possible states. It is a random process characterized as memoryless: the next state depends only on the current state and not on the sequence of events that preceded it. This specific kind of "memorylessness" is called the Markov property. Markov chains have many applications as statistical models of real-world processes. A simple two-state Markov chain Introduction Formally, a Markov chain is a random process with the Markov property. Often, the term "Markov chain" is used to mean a Markov process which has a discrete (finite or countable) state-space. Usually a Markov chain is defined for a discrete set of times (i.e., a discrete-time Markov chain)[1] although some authors use the same terminology where "time" can take continuous values.[2][3] The use of the term in Markov chain Monte Carlo methodology covers cases where the process is in discrete time (discrete algorithm steps) with a continuous state space. The following concentrates on the discrete-time discrete-state-space case. A discrete-time random process involves a system which is in a certain state at each step, with the state changing randomly between steps. The steps are often thought of as moments in time, but they can equally well refer to physical distance or any other discrete measurement; formally, the steps are the integers or natural numbers, and the random process is a mapping of these to states.
    [Show full text]
  • Lecture Notes 7 Random Processes • Definition • IID Processes
    Lecture Notes 7 Random Processes Definition • IID Processes • Bernoulli Process • Binomial Counting Process ◦ Interarrival Time Process ◦ Markov Processes • Markov Chains • Classification of States ◦ Steady State Probabilities ◦ Corresponding pages from B&T: 271–281, 313–340. EE 178/278A: Random Processes Page 7–1 Random Processes A random process (also called stochastic process) X(t): t is an infinite • collection of random variables, one for each value of{ time t ∈ T }(or, in some cases distance) ∈T Random processes are used to model random experiments that evolve in time: • Received sequence/waveform at the output of a communication channel ◦ Packet arrival times at a node in a communication network ◦ Thermal noise in a resistor ◦ Scores of an NBA team in consecutive games ◦ Daily price of a stock ◦ Winnings or losses of a gambler ◦ Earth movement around a fault line ◦ EE 178/278A: Random Processes Page 7–2 Questions Involving Random Processes Dependencies of the random variables of the process: • How do future received values depend on past received values? ◦ How do future prices of a stock depend on its past values? ◦ How well do past earth movements predict an earthquake? ◦ Long term averages: • What is the proportion of time a queue is empty? ◦ What is the average noise power generated by a resistor? ◦ Extreme or boundary events: • What is the probability that a link in a communication network is congested? ◦ What is the probability that the maximum power in a power distribution line ◦ is exceeded? What is the probability that a gambler will lose all his capital? ◦ EE 178/278A: Random Processes Page 7–3 Discrete vs.
    [Show full text]
  • Worksheet Chrysafis Vogiatzis
    Lecture 7 Worksheet Chrysafis Vogiatzis Every worksheet will work as follows. 1. You will be entered into a Zoom breakout session with other stu- dents in the class. 2. Read through the worksheet, discussing any questions with the other participants in your breakout session. • You can call me using the “Ask for help” button. • Keep in mind that I will be going through all rooms during the session so it might take me a while to get to you. 3. Answer each question (preferably in the order provided) to the best of your knowledge. 4. While collaboration between students in a breakout session is highly encouraged and expected, each student has to submit their own version. 5. You will have 24 hours (see Compass) to submit your work. Worksheet 1: Basic continuous probability distribution properties Let X be a continuous random variable measuring the current (in milliamperes, mA) in a wire with pdf f (x) = 0.05, for 0 ≤ x ≤ a. Answer the following questions. Problem 1: Valid pdf? What is a if f (x) is a valid pdf? 1 1 Recall that this means that f (x) ≥ 0 (which is clearly true here) and that Answer to Problem 1. R f (x)dx = 1 over all values that random variable X is allowed to take... lecture 7 worksheet 2 Problem 2: Constructing cumulative distribution functions What is the cumulative distribution function? 2 2 How is a cdf defined for continuous random variables? Answer to Problem 2. Problem 3: Calculating probabilities The wire is said to be overheating if the current is more than 10mA.
    [Show full text]