Low-Temperature-Induced Changes in the Transcriptome Reveal a Major Role of Cgsvp Genes in Regulating Flowering of Cymbidium
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Florigen Family Chromatin Recruitment, Competition and Target Genes
bioRxiv preprint doi: https://doi.org/10.1101/2020.02.04.934026; this version posted February 4, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 Florigen family chromatin recruitment, competition and target genes 2 Yang Zhu1, Samantha Klasfeld1, Cheol Woong Jeong1,3†, Run Jin1, Koji Goto4, 3 Nobutoshi Yamaguchi1,2† and Doris Wagner1* 4 1 Department of Biology, University of Pennsylvania, 415 S. University Ave, 5 Philadelphia, PA 19104, USA 6 2 Current address: Science and Technology, Nara Institute of Science and Technology, 7 8916-5 Takayama-cho, Ikoma-shi, Nara 630-0192, Japan 8 3 Current address: LG Economic Research Institute, LG Twin tower, Seoul 07336, 9 Korea 10 4 Research Institute for Biological Sciences, Okayama Prefecture, 7549-1, Kibichuoh- 11 cho, Kaga-gun, Okayama, 716-1241, Japan 12 *Correspondence: [email protected] 13 † equal contribution 14 15 16 1 bioRxiv preprint doi: https://doi.org/10.1101/2020.02.04.934026; this version posted February 4, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 17 Abstract 18 Plants monitor seasonal cues, such as day-length, to optimize life history traits including 19 onset of reproduction and inflorescence architecture 1-3. -
A Genetic Framework for Regulation and Seasonal Adaptation of Shoot Architecture in Hybrid Aspen
A genetic framework for regulation and seasonal adaptation of shoot architecture in hybrid aspen Jay P. Mauryaa,b, Pal C. Miskolczia, Sanatkumar Mishraa, Rajesh Kumar Singha, and Rishikesh P. Bhaleraoa,1 aUmeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, SE-901 87 Umeå, Sweden; and bDepartment of Botany, Institute of Science, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India Edited by Ronald R. Sederoff, North Carolina State University, Raleigh, NC, and approved April 14, 2020 (received for review March 14, 2020) Shoot architecture is critical for optimizing plant adaptation and time–related transcription factor RAV1 has been validated in productivity. In contrast with annuals, branching in perennials branching in trees (17–19). However, information on branching native to temperate and boreal regions must be coordinated with control in perennials is fragmented, and there is a significant gap seasonal growth cycles. How branching is coordinated with in our knowledge of how branching is controlled and integrated seasonal growth is poorly understood. We identified key compo- with seasonal growth cycles in perennial trees (20). Therefore, nents of the genetic network that controls branching and its using functional genetic approaches, we elucidated the genetic regulation by seasonal cues in the model tree hybrid aspen. network that mediates control of branching and its regulation by Our results demonstrate that branching and its control by sea- seasonal cues in the model tree hybrid aspen. These studies re- sonal cues is mediated by mutually antagonistic action of aspen veal the key role played by the mutually antagonistic action of orthologs of the flowering regulators TERMINAL FLOWER 1 LAP1 and TFL1 in mediating control of branching and its re- (TFL1)andAPETALA1 (LIKE APETALA 1/LAP1). -
Identification of Multiple Salicylic Acid-Binding Proteins Using Two High Throughput Screens
UC Davis UC Davis Previously Published Works Title Identification of multiple salicylic acid-binding proteins using two high throughput screens. Permalink https://escholarship.org/uc/item/3kb0g6gm Journal Frontiers in plant science, 5(JAN) ISSN 1664-462X Authors Manohar, Murli Tian, Miaoying Moreau, Magali et al. Publication Date 2014 DOI 10.3389/fpls.2014.00777 Peer reviewed eScholarship.org Powered by the California Digital Library University of California ORIGINAL RESEARCH ARTICLE published: 12 January 2015 doi: 10.3389/fpls.2014.00777 Identification of multiple salicylic acid-binding proteins using two high throughput screens Murli Manohar 1‡, Miaoying Tian 1† ‡, Magali Moreau 1† ‡, Sang-Wook Park 1†, Hyong Woo Choi 1, Zhangjun Fei 1,2, Giulia Friso 3,MuhammedAsif1†, Patricia Manosalva 1, Caroline C. von Dahl 1†, Kai Shi 1†, Shisong Ma 4, Savithramma P.Dinesh-Kumar 4, Inish O’Doherty 1†, Frank C. Schroeder 1, Klass J. van Wijk 3 and Daniel F. Klessig 1* 1 Boyce Thompson Institute for Plant Research, Cornell University, Ithaca, NY, USA 2 Plant, Soil, and Nutrition Laboratory, United States Department of Agriculture, Ithaca, NY, USA 3 Department of Plant Biology, Cornell University, Ithaca, NY, USA 4 Department of Plant Biology and Genome Center, University of California, Davis, Davis, CA, USA Edited by: Salicylic acid (SA) is an important hormone involved in many diverse plant processes, Loreto Holuigue, Pontificia including floral induction, stomatal closure, seed germination, adventitious root initiation, Universidad Católica de Chile, Chile and thermogenesis. It also plays critical functions during responses to abiotic and biotic Reviewed by: stresses. The role(s) of SA in signaling disease resistance is by far the best studied Steven H. -
Florigen Revisited: Proteins of the FT/CETS/PEBP/PKIP/Ybhb Family
bioRxiv preprint doi: https://doi.org/10.1101/2021.04.16.440192; this version posted April 16, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. This article is a US Government work. It is not subject to copyright under 17 USC 105 and is also made available for use under a CC0 license. 1 Breakthrough Report 2 3 Florigen revisited: proteins of the FT/CETS/PEBP/PKIP/YbhB family may be the enzymes 4 of small molecule metabolism 5 6 Short title: Florigen-family proteins may be enzymes 7 8 Olga Tsoy1,4 and Arcady Mushegian2,3* 9 10 11 1 Chair of Experimental Bioinformatics, TUM School of Life Sciences Weihenstephan, Technical 12 University of Munich (TUM), 3, Maximus-von-Imhof-Forum, Freising, 85354, Germany 13 14 2 Molecular and Cellular Biology Division, National Science Foundation, 2415 Eisenhower 15 Avenue, Alexandria, Virginia 22314, USA 16 17 3 Clare Hall College, University of Cambridge, Cambridge CB3 9AL, United Kingdom 18 19 4 current address: Chair of Computational Systems Biology, University of Hamburg, 20 Notkestrasse, 9, 22607, Hamburg, Germany 21 22 * corresponding author: [email protected] 23 24 25 26 27 The author responsible for distribution of materials integral to the findings presented in this 28 article in accordance with the policy described in the Instructions for Authors 29 (www.plantcell.org) is Arcady Mushegian ([email protected]). 1 bioRxiv preprint doi: https://doi.org/10.1101/2021.04.16.440192; this version posted April 16, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. -
The Complex Origins of Strigolactone Signalling in Land Plants
bioRxiv preprint doi: https://doi.org/10.1101/102715; this version posted January 25, 2017. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Article - Discoveries The complex origins of strigolactone signalling in land plants Rohan Bythell-Douglas1, Carl J. Rothfels2, Dennis W.D. Stevenson3, Sean W. Graham4, Gane Ka-Shu Wong5,6,7, David C. Nelson8, Tom Bennett9* 1Section of Structural Biology, Department of Medicine, Imperial College London, London, SW7 2Integrative Biology, 3040 Valley Life Sciences Building, Berkeley CA 94720-3140 3Molecular Systematics, The New York Botanical Garden, Bronx, NY. 4Department of Botany, 6270 University Boulevard, Vancouver, British Colombia, Canada 5Department of Medicine, University of Alberta, Edmonton, Alberta, Canada 6Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada 7BGI-Shenzhen, Beishan Industrial Zone, Yantian District, Shenzhen, China. 8Department of Botany and Plant Sciences, University of California, Riverside, CA 92521 USA 9School of Biology, University of Leeds, Leeds, LS2 9JT, UK *corresponding author: Tom Bennett, [email protected] Running title: Evolution of strigolactone signalling 1 bioRxiv preprint doi: https://doi.org/10.1101/102715; this version posted January 25, 2017. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. ABSTRACT Strigolactones (SLs) are a class of plant hormones that control many aspects of plant growth. -
Discovery of Flowering Hormone (Florigen) Receptor and Its Crystal Structure
5 Life Science PF Activity Report 2011 #29 Discovery of Flowering Hormone (Florigen) Receptor and Its Crystal Structure lorigen, a mobile floral induction protein, initiates the flowering process of activating floral identity genes. Many details of the molecular function of florigen remain unclear. In the present study, we found that the rice florigen FHd3a directly interacts with 14-3-3 (GF14) proteins, but not with the transcription factor OsFD1. We further deter- mined the 2.4-Å crystal structure of a tripartite Hd3a-14-3-3-OsFD1 complex [1]. The determined crystal structure offers biological insights into 14-3-3 proteins and how they play a key role in mediating an indirect interaction between Hd3a and OsFD1. Our biochemical, biophysical, and physiological experiments using rice cultured cells and transgenic rice plants revealed that 14-3-3 proteins are intracellular receptors of florigen to activate floral identity genes. Florigen is produced in leaves and transmitted NMR experiments. One consensus sequence among through the phloem to the shoot apex, where it induces the bZIP transcription factors, including OsFD1, that flowering. A number of recent reports have provided reportedly bind FT and its homologs, was found to be evidence that Arabidopsis FT protein (Hd3a in rice) is a R-x-x-(S/T)-A-P-F, which resembles the 14-3-3 protein- key component of florigen [2]. In the shoot apical meri- binding motif R-S-x-(pS/pT)-x-P. The presence of this stem, FT activates floral identity genes such as AP1 sequence in OsFD1 raises the possibility that the inter- transcription and induces flowering by interacting with action between Hd3a and OsFD1 is indirect and is me- Figure 2 the bZIP transcription factor FD, although the details of diated by 14-3-3 proteins. -
Florigen Governs Shoot Regeneration
Florigen Governs Shoot Regeneration Yaarit Kutsher Agricultural Research Organization Michal Fisler Agricultural Research Organization Adi DORON-FAIGENBOIM Agricultural Research Organization Moshe Reuveni ( [email protected] ) Agricultural Research Organization Research Article Keywords: reproductive stage (owering), protocols of shoot regeneration in plants, tobacco origen mRNA Posted Date: April 30th, 2021 DOI: https://doi.org/10.21203/rs.3.rs-450479/v1 License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License Page 1/16 Abstract It is widely known that during the reproductive stage (owering), plants do not root well. Most protocols of shoot regeneration in plants utilize juvenile tissue. Adding these two realities together encouraged us to study the role of origen in shoot regeneration. Mature tobacco tissue that expresses the endogenous tobacco origen mRNA regenerates poorly, while juvenile tissue that does not express the origen regenerates shoots well. Inhibition of Nitric Oxide (NO) synthesis reduced shoot regeneration as well as promoted owering and increased tobacco origen level. In contrast, the addition of NO (by way of NO donor) to the tissue increased regeneration, delayed owering, reduced tobacco origen mRNA. Ectopic expression of origen genes in tobacco or tomato decreased regeneration capacity signicantly. Overexpression pear PcFT2 gene increased regeneration capacity. During regeneration, origen mRNA was not changed. We conclude that origen presence in mature tobacco leaves reduces roots and shoots regeneration and is the possible reason for the age-related decrease in regeneration capacity. Introduction Plant regeneration by rebuilding new organs (organogenesis) results from new organ formation through dedifferentiation of differentiated plant cells and reorganization of cell division to create new organ meristems and new vascular connection between the explant and the newly regenerating organ 1,2. -
Florigen Coming of Age After 70 Years
The Plant Cell, Vol. 18, 1783–1789, August 2006, www.plantcell.org ª 2006 American Society of Plant Biologists CURRENT PERSPECTIVE ESSAY Florigen Coming of Age after 70 Years The report that FT mRNA is the long-sought florigen, or at least is universal in plants (at least in closely related species and part of it (Huang et al., 2005), has attracted much attention and different photoperiodic response types). However, despite Downloaded from https://academic.oup.com/plcell/article/18/8/1783/6115260 by guest on 03 October 2021 was ranked the number three breakthrough of 2005 by the numerous attempts to extract florigen and several reports of journal Science (Anonymous, 2005). This exciting discovery has extracts with flower-inducing activity, which all turned out to be brought to center stage one of the major outstanding questions nonreproducible, florigen remained a physiological concept in plant biology: What is the nature of florigen? In this essay, I rather than a chemical entity. As a result, the florigen hypoth- summarize the classical experiments that led to the florigen esis fell into disrepute, and a rival hypothesis, proposing that hypothesis and how molecular-genetic approaches combined flowering would be induced by a specific ratio of known with physiological methods have advanced our understanding hormones and metabolites, gained favor (Bernier, 1988; of florigen. I also discuss the possible universality of florigen and Bernier et al., 1993). some of the remaining questions regarding flowering and other photoperiod-controlled phenomena involving long-distance sig- naling in plants. MOLECULAR-GENETIC STUDIES OF FLOWERING As the physiological-biochemical approaches to flowering had FLORIGEN AS A PHYSIOLOGICAL CONCEPT begun to stagnate, along came molecular genetics with a new approach to the study of flowering. -
Lecture Outline
The transition from vegetative to reproductive growth Vegetative phase change is required to allow a shoot to be able to produce flowers English Ivy (Hedera helix) A shoot is only competent to flower once it has passed from the juvenile to Adult the adult phase, a transition sometimes marked by gross morphological Juvenile leaf Adult leaf changes Juvenile The vegetative (juvenile to adult) phase transition is controlled by the relative abundance of microRNAs 156 and 172 Acacia koa Reprinted with permission friom Huijscer, P., and Schmid, M. (2011) The control of developmental phase transitions in plants. Development 138: 4117-4129. The nature of the flowering signal was elusive for decades Conversion of meristem vegetative to floral Environmental cues “Florigen” Julius von Sachs Mikhail Chailakhyan (1832-1897) (1901-1991) a.k.a. The “Father of Plant Physiology”. He was the first Proved the existence of a florigenic compound and to propose the existence of a chemical compound demonstrated that it is a small molecule, produced in capable of inducing flowering leaves and translocated to the shoot apex via the produced in leaves of illuminated plants phloem; he named it “florigen” Credits: Romanov, 2012 Russian J Plant Phys 4:443-450; Redrawn from Ayre and Turgeon, 2004 Several physiological pathways regulate flowering These are called ‘enabling pathways’ as they regulate floral competence of the meristem Vernalization Photoperiodic Autonomous GA-dependent pathway pathway pathway Where is florigen? FLOWERING Molecular repressors LOCUS C (FLC) of flowering, also Note: This model called ‘anti-florigenic’ corresponds to signals, maintain the Arabidopsis but many of its modules have vegetative state of counterparts in other the meristem species Vegetative Florigen Flowering Adapted from Reeves, P.H., and Coupland, G. -
Florigen and Anti-Florigen: Flowering Regulation in Horticultural Crops
Breeding Science 68: 109–118 (2018) doi:10.1270/jsbbs.17084 Review Florigen and anti-florigen: flowering regulation in horticultural crops Yohei Higuchi* Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan Flowering time regulation has significant effects on the agricultural and horticultural industries. Plants respond to changing environments and produce appropriate floral inducers (florigens) or inhibitors (anti-florigens) that determine flowering time. Recent studies have demonstrated that members of two homologous proteins, FLOWERING LOCUS T (FT) and TERMINAL FLOWER 1 (TFL1), act as florigen and anti-florigen, respec- tively. Studies in diverse plant species have revealed universal but diverse roles of the FT/TFL1 gene family in many developmental processes. Recent studies in several crop species have revealed that modification of flow- ering responses, either due to mutations in the florigen/anti-florigen gene itself, or by modulation of the regu- latory pathway, is crucial for crop domestication. The FT/TFL1 gene family could be an important potential breeding target in many crop species. Key Words: anti-florigen, chrysanthemum, florigen, FLOWERING LOCUS T (FT), photoperiod, TERMINAL FLOWER 1 (TFL1). Introduction cies (Corbesier et al. 2007, Lifschitz et al. 2006, Lin et al. 2007, Tamaki et al. 2007). In Arabidopsis, the FT protein is Many plants utilize fluctuations in day-length (photoperiod) induced under flower-inductive long day (LD) photoperiod as the most reliable indicator of seasonal progression to de- in leaves, whereas it forms a complex with a bZIP type tran- termine when to initiate flowering. This phenomenon, called scription factor FD at the shoot apical meristem (SAM) to photoperiodism, enables plants to set seeds at favorable induce floral meristem-identity genes, such as APETALA1 conditions and maximize their chance of survival. -
Florigen Governs Shoot Regeneration
bioRxiv preprint doi: https://doi.org/10.1101/2021.03.16.435564; this version posted March 17, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Florigen governs shoot regeneration. From Plant Science Institute ARO Volcani Center, PO Box 6, Bet Dagan 50250, Israel Yaarit Kutsher - [email protected] Michal Fisler - [email protected] Adi Faigenboim - [email protected] Moshe Reuveni – [email protected] - Corresponding author Plant Science Institute, ARO, Volcani Center, 68 Hamakabim Rd, PO Box 15159 Rishon LeZion 7528809, Israel, Tel. 972-3-968-3830 Abstract It is widely known that during the reproductive stage (flowering), plants do not root well. Most protocols of shoot regeneration in plants utilize juvenile tissue. Adding these two realities together encouraged us to studied the role of florigen in shoot regeneration. Mature tobacco tissue that expresses the endogenous tobacco florigen mRNA regenerates poorly, while juvenile tissue that does not express the florigen regenerates shoots well. Inhibition of Nitric Oxide (NO) synthesis reduced shoot regeneration as well as promoted flowering and increased tobacco florigen level. In contrast, the addition of NO (by way of NO donor) to the tissue increased regeneration, delayed flowering, reduced tobacco florigen mRNA. Ectopic expression of florigen genes in tobacco or tomato decreased regeneration capacity significantly. Overexpression pear PcFT2 gene increased regeneration capacity. During regeneration, florigen mRNA was not changed. -
The Flowering Hormone Florigen Accelerates Secondary Cell Wall
bioRxiv preprint doi: https://doi.org/10.1101/476028; this version posted November 27, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 1 The Flowering Hormone Florigen Accelerates Secondary Cell Wall Biogenesis to Harmonize Vascular Maturation with Reproductive Development Akiva Shalit-Kaneh*1, Tamar Eviatar–Ribak*1, Guy Horev*2, Naomi Suss1, Roni Aloni3, Yuval Eshed4, Eliezer Lifschitz 1,5 1Department of Biology, Technion IIT 2Lorey I. Lokey Center for Life Sciences & Engineering, Technion 3 School of Plant Sciences and Food Security, Tel Aviv University, Tel Aviv 69978, Israel 4Department of Plant and Environmental Sciences Weizmann Institute of Science, Rehovot, Israel *Equal contribution 5 Corresponding author [email protected] Developmental Highlights - Florigen accelerates SCWB: A prime case for a long-range regulation of a complete metabolic network by a plant hormone. - The dual acceleration of flowering and vascular maturation by Florigen provides a paradigm for a dynamic regulation of global, independent, developmental programs. - The growth termination functions of florigen and the auto-regulatory mechanism for its production and distribution provide a communication network enveloping the shoot system. - A stable florigen provides a possible mechanism for the quantitative regulation of flowering - Lateral stimulation of xylem differentiation links the phloem-travelling florigen with the annual rings in trunks. - MADS genes are common relay partners in Florigen circuits; vascular maturation in stems and reproductive transition in apical meristems. bioRxiv preprint doi: https://doi.org/10.1101/476028; this version posted November 27, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder.