Reverse Engineering Glaucoma
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Transcriptomic Analysis of Pluripotent Stem Cells: Insights Into Health and Disease Jia-Chi Yeo1,2 and Huck-Hui Ng1,2,3,4,5,*
Yeo and Ng Genome Medicine 2011, 3:68 http://genomemedicine.com/content/3/10/68 REVIEW Transcriptomic analysis of pluripotent stem cells: insights into health and disease Jia-Chi Yeo1,2 and Huck-Hui Ng1,2,3,4,5,* Abstract types, termed ‘pluripotency’, allows researchers to study early mammalian development in an artificial setting and Embryonic stem cells (ESCs) and induced pluripotent offers opportunities for regenerative medicine, whereby stem cells (iPSCs) hold tremendous clinical potential ESCs could generate clinically relevant cell types for because of their ability to self-renew, and to tissue repair. However, this same malleability of ESCs dierentiate into all cell types of the body. This unique also renders it a challenge to obtain in vitro differentiation capacity of ESCs and iPSCs to form all cell lineages of ESCs to specific cell types at high efficacy. erefore, is termed pluripotency. While ESCs and iPSCs are harnessing the full potential of ESCs requires an in-depth pluripotent and remarkably similar in appearance, understanding of the factors and mechanisms regulating whether iPSCs truly resemble ESCs at the molecular ESC pluripotency and cell lineage decisions. level is still being debated. Further research is therefore Early studies on ESCs led to the discovery of the core needed to resolve this issue before iPSCs may be safely pluripotency factors Oct4, Sox2 and Nanog [1], and, applied in humans for cell therapy or regenerative increasingly, the use of genome-level screening assays has medicine. Nevertheless, the use of iPSCs as an in vitro revealed new insights by uncovering additional trans- human genetic disease model has been useful in cription factors, transcriptional cofactors and chromatin studying the molecular pathology of complex genetic remodeling complexes involved in the maintenance of diseases, as well as facilitating genetic or drug screens. -
Looking for New Classes of Bronchodilators
REVIEW BRONCHODILATORS The future of bronchodilation: looking for new classes of bronchodilators Mario Cazzola1, Paola Rogliani 1 and Maria Gabriella Matera2 Affiliations: 1Dept of Experimental Medicine, University of Rome Tor Vergata, Rome, Italy. 2Dept of Experimental Medicine, University of Campania “Luigi Vanvitelli”, Naples, Italy. Correspondence: Mario Cazzola, Dept of Experimental Medicine, University of Rome Tor Vergata, Via Montpellier 1, Rome, 00133, Italy. E-mail: [email protected] @ERSpublications There is a real interest among researchers and the pharmaceutical industry in developing novel bronchodilators. There are several new opportunities; however, they are mostly in a preclinical phase. They could better optimise bronchodilation. http://bit.ly/2lW1q39 Cite this article as: Cazzola M, Rogliani P, Matera MG. The future of bronchodilation: looking for new classes of bronchodilators. Eur Respir Rev 2019; 28: 190095 [https://doi.org/10.1183/16000617.0095-2019]. ABSTRACT Available bronchodilators can satisfy many of the needs of patients suffering from airway disorders, but they often do not relieve symptoms and their long-term use raises safety concerns. Therefore, there is interest in developing new classes that could help to overcome the limits that characterise the existing classes. At least nine potential new classes of bronchodilators have been identified: 1) selective phosphodiesterase inhibitors; 2) bitter-taste receptor agonists; 3) E-prostanoid receptor 4 agonists; 4) Rho kinase inhibitors; 5) calcilytics; 6) agonists of peroxisome proliferator-activated receptor-γ; 7) agonists of relaxin receptor 1; 8) soluble guanylyl cyclase activators; and 9) pepducins. They are under consideration, but they are mostly in a preclinical phase and, consequently, we still do not know which classes will actually be developed for clinical use and whether it will be proven that a possible clinical benefit outweighs the impact of any adverse effect. -
Effects of Downregulating GLIS1 Transcript On
Journal of Reproduction and Development, Vol. 61, No 5, 2015 —Original Article— Effects of downregulating GLIS1 transcript on preimplantation development and gene expression of bovine embryos Kazuki TAKAHASHI1), Nobuyuki SAKURAI2), Natsuko EMURA1), Tsutomu HASHIZUME1, 2) and Ken SAWAI1, 2) 1)Faculty of Agriculture, Iwate University, Iwate 020-8550, Japan 2)The United Graduate School of Agricultural Sciences, Iwate University, Iwate 020-8550, Japan Abstract. Krüppel-like protein Gli-similar 1 (GLIS1) is known as a direct reprogramming factor for the generation of induced pluripotent stem cells. The objective of this study was to investigate the role of GLIS1 in the preimplantation development of bovine embryos. GLIS1 transcripts in in vitro-matured oocytes and 1-cell to 4-cell stage embryos were detected, but they were either absent or at trace levels at the 8-cell to blastocyst stages. We attempted GLIS1 downregulation of bovine early embryos by RNA interference and evaluated developmental competency and gene transcripts, which are involved in zygotic gene activation (ZGA) in GLIS1-downregulated embryos. Injection of specific siRNA resulted in a distinct decrease inGLIS1 transcript in bovine embryos at the 4-cell stage. Although the bovine embryos injected with GLIS1-siRNA could develop to the 16-cell stage, these embryos had difficulty in developing beyond the 32-cell stage. Gene transcripts of PDHA1 and HSPA8, which are transcribed after ZGA, showed lower level in GLIS1 downregulated embryos. It is possible that GLIS1- downregulated embryos fail to initiate ZGA. Our results indicated that GLIS1 is an important factor for the preimplantation development of bovine embryos. Key words: Bovine embryo, Early development, Gene expression, GLIS1, RNA interference (J. -
Risk Factors Leading to Trabeculectomy Surgery Of
Shirai et al. BMC Ophthalmology (2021) 21:153 https://doi.org/10.1186/s12886-021-01897-4 RESEARCH ARTICLE Open Access Risk factors leading to trabeculectomy surgery of glaucoma patient using Japanese nationwide administrative claims data: a retrospective non-interventional cohort study Chikako Shirai1, Satoru Tsuda1, Kunio Tarasawa2, Kiyohide Fushimi3, Kenji Fujimori2* and Toru Nakazawa1* Abstract Background: Early recognition and management of baseline risk factors may play an important role in reducing glaucoma surgery burdens. However, no studies have investigated them using real-world data in Japan or other countries. This study aimed to clarify the risk factors leading to trabeculectomy surgery, which is the most common procedure of glaucoma surgery, of glaucoma patient using the Japanese nationwide administrative claims data associated with the diagnosis procedure combination (DPC) system. Methods: It was a retrospective, non-interventional cohort study. Data were collected from patients who were admitted to DPC participating hospitals, nationwide acute care hospitals and were diagnosed with glaucoma between 2012 to 2018. The primary outcome was the risk factors associated with trabeculectomy surgery. The association between baseline characteristics and trabeculectomy surgery was identified using multivariable logistic regression analysis by comparing patients with and without trabeculectomy surgery. Meanwhile, the secondary outcomes included the rate of comorbidities, the rate of concomitant drug use and the treatment patterns of -
Diverse, Biologically Relevant, and Targetable Gene Rearrangements in Triple-Negative Breast Cancer and Other Malignancies Timothy M
Published OnlineFirst May 26, 2016; DOI: 10.1158/0008-5472.CAN-16-0058 Cancer Therapeutics, Targets, and Chemical Biology Research Diverse, Biologically Relevant, and Targetable Gene Rearrangements in Triple-Negative Breast Cancer and Other Malignancies Timothy M. Shaver1,2, Brian D. Lehmann1,2, J. Scott Beeler1,2, Chung-I Li3, Zhu Li1,2, Hailing Jin1,2, Thomas P. Stricker4, Yu Shyr5,6, and Jennifer A. Pietenpol1,2 Abstract Triple-negative breast cancer (TNBC) and other molecularly discovered a clinical occurrence and cell line model of the target- heterogeneous malignancies present a significant clinical chal- able FGFR3–TACC3 fusion in TNBC. Expanding our analysis to lenge due to a lack of high-frequency "driver" alterations amena- other malignancies, we identified a diverse array of novel and ble to therapeutic intervention. These cancers often exhibit geno- known hybrid transcripts, including rearrangements between mic instability, resulting in chromosomal rearrangements that noncoding regions and clinically relevant genes such as ALK, affect the structure and expression of protein-coding genes. How- CSF1R, and CD274/PD-L1. The over 1,000 genetic alterations ever, identification of these rearrangements remains technically we identified highlight the importance of considering noncod- challenging. Using a newly developed approach that quantita- ing gene rearrangement partners, and the targetable gene tively predicts gene rearrangements in tumor-derived genetic fusions identified in TNBC demonstrate the need to advance material, we identified -
Achievements and Limits of Current Medical Therapy of Glaucoma
Bettin P, Khaw PT (eds): Glaucoma Surgery. 2nd, revised and extended edition. Dev Ophthalmol. Basel, Karger, 2017, vol 59, pp 1–14 ( DOI: 10.1159/000458482 ) Achievements and Limits of Current Medical Therapy of Glaucoma Pelagia Kalouda · Christina Keskini · Eleftherios Anastasopoulos · Fotis Topouzis Laboratory of Research and Clinical Applications in Ophthalmology, Aristotle University of Thessaloniki, AHEPA Hospital, Thessaloniki , Greece Abstract ery systems are being investigated to open new horizons Prescribing medical therapy for the treatment of glauco- in glaucoma management. Although the general rule is ma can be a complex process since many parameters to initiate glaucoma management with medical treat- should be taken into consideration regarding its achieve- ment, the limits of medical therapy should be considered ments and limits. Today, a variety of options, including to identify those patients in need of surgical manage- multiple drug classes and multiple agents within classes, ment. © 2017 S. Karger AG, Basel are available to the clinician, but caution should be given to their side effects and contraindications. Glaucoma pa- tients with preexisting ocular surface disease should be State of the Art treated with caution, and preferably with preservative- free formulations, as there is an increased risk for symp- Glaucoma is a medical term describing a group of tom deterioration. The development and use of progressive optic neuropathies characterized by fixed-combination therapies has reduced the preserva- the degeneration of retinal ganglion cells and of tive-related side effects that threaten patient adherence the retinal nerve fiber layer, resulting in changes and has minimized the washout effect of multiple instil- in the optic nerve head. -
EFFECTS of POSTTRANSLATIONAL MODIFICATION of TRANSCRIPTION FACTOR GLI-SIMILAR 3 by SUMOYLATION on INSULIN TRANSCRIPTION in PANCREATIC Β CELLS Tyler M
Murray State's Digital Commons Murray State Theses and Dissertations Graduate School 2017 EFFECTS OF POSTTRANSLATIONAL MODIFICATION OF TRANSCRIPTION FACTOR GLI-SIMILAR 3 BY SUMOYLATION ON INSULIN TRANSCRIPTION IN PANCREATIC β CELLS Tyler M. Hoard Murray State University Follow this and additional works at: https://digitalcommons.murraystate.edu/etd Part of the Cell Biology Commons, and the Molecular Genetics Commons Recommended Citation Hoard, Tyler M., "EFFECTS OF POSTTRANSLATIONAL MODIFICATION OF TRANSCRIPTION FACTOR GLI-SIMILAR 3 BY SUMOYLATION ON INSULIN TRANSCRIPTION IN PANCREATIC β CELLS" (2017). Murray State Theses and Dissertations. 56. https://digitalcommons.murraystate.edu/etd/56 This Thesis is brought to you for free and open access by the Graduate School at Murray State's Digital Commons. It has been accepted for inclusion in Murray State Theses and Dissertations by an authorized administrator of Murray State's Digital Commons. For more information, please contact [email protected]. EFFECTS OF SUMOYLATION OF TRANSCRIPTION FACTOR GLI-SIMILAR 3 ON INSULIN TRANSCRIPTION IN PANCREATIC β CELLS A Thesis Presented to The Faculty of the Department of Biological Sciences Murray State University Murray, Kentucky In Partial Fulfillment of the Requirements for the Degree of Master of Science in Biology By Tyler Matthew Hoard December 2017 iii Acknowledgements There are so many people to whom I am thankful for the roles that they have played in the completion of this project. I would first like to thank my thesis advisor, Dr. Gary ZeRuth. His guidance, patience, troubleshooting suggestions, and devotion to carrying out impactful research have contributed significantly to preparing me for a future in biomedical research. -
(Ripasudil Hydrochloride Hydrate), a Rho Kinase Inhibitor, Has Been Approved in Singapore
PRESS RELEASE March 11, 2020 Dear all Kowa Company, Ltd. K-115 (Ripasudil Hydrochloride Hydrate), a Rho Kinase Inhibitor, has been approved in Singapore Kowa Company, Ltd. (Headquarters: Nagoya, Japan, President & CEO: Yoshihiro Miwa, hereafter referred to as "Kowa") announced that "Ripasudil Hydrochloride Hydrate" (hereafter refer to as “Ripasudil”), a Rho kinase inhibitor, for the indications of Open-Angle Glaucoma and Ocular Hypertension has been approved by HSA (Health Sciences Authority) in Singapore. Ripasudil has been developed as a global product, and was launched in December 2014 in Japan (Brand name: GLANATEC® ophthalmic solution 0.4%) as the world's first glaucoma drug with Rho kinase inhibitory activity. Ripasudil is the first Rho kinase inhibitor filed and approved by HSA. Kowa plans to establish a direct sales system to support the marketing of Ripasudil. Following this approval in Singapore, Kowa continues efforts to gain approval for Ripasudil in counties all over the world. Kowa focuses on sensory organ diseases as one of its key therapeutic areas, especially ocular disorders. Kowa is developing Ripasudil for corneal endothelial diseases, as well as a fixed- dose combination (Ripasudil Hydrochloride Hydrate / Brimonidine Tartrate) in patients with glaucoma or ocular hypertension. In addition, Kowa markets intraocular lenses for cataracts, and seeks to address other unmet medical needs. GLANATEC® Ophthalmic Solution 0.4% GLANATEC® Ophthalmic Solution 0.4% includes Ripasudil as an active ingredient, and lowers intraocular pressure by promoting discharge of aqueous humor through a main outflow via trabecular meshwork-Schlemm’s canal as a result of Rho kinase inhibitory activity. In clinical studies enrolling patients with primary open-angle glaucoma and ocular hypertension in Japan, GLANATEC® Ophthalmic Solution 0.4% has been demonstrated to be effective in lowering intraocular pressure in both cases of mono-therapy and conjunctival therapy along with conventional treatment-glaucoma and ocular hypertension drugs. -
Intraocular Pressure-Lowering Effect of Ripasudil Hydrochloride Hydrate
ISSN: 2378-346X Kawara et al. Int J Ophthalmol Clin Res 2018, 5:083 DOI: 10.23937/2378-346X/1410083 Volume 5 | Issue 1 International Journal of Open Access Ophthalmology and Clinical Research RESEARCH ARTICLE Intraocular Pressure-Lowering Effect of Ripasudil Hydrochloride Hy- drate and Reasons for Discontinuation of Use in Clinical Practice Kana Kawara, Akiyasu Kanamori, Sotaro Mori, Yukako Inoue, Takuji Kurimoto, Sentaro Kusuhara, Yuko Yamada and Makoto Nakamura* Check for Division of Ophthalmology, Department of Surgery, Kobe University Graduate School of Medicine, Japan updates *Corresponding author: Makoto Nakamura, Division of Ophthalmology, Department of Surgery, Kobe University Graduate School of Medicine, 7-5-2 Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan, E-mail: [email protected] that are commonly used include prostaglandin ana- Abstract log, which enhances uveoscleral outflow, adrenergic Background: To evaluate the intraocular pressure (IOP)-low- β-blocker and carbonic anhydrase inhibitor (CAI), which ering effect of ripasudil hydrochloride hydrate and the reasons for the discontinuation of its use in glaucomatous eyes with at reduce aqueous humor production, or adrenergic α2 least 2 ocular hypotensive medications. stimulant, which performs both mechanisms. The clin- Design: Retrospective case series. ical application of drugs that modify the conventional outflow pathway through trabecular meshwork and the Methods: We reviewed the medical records of 116 consec- utive patients with primary open angle, secondary, or de- Schlemm canal has been limited, except for pilocarpine velopmental glaucoma. The pre- and post-application IOP for pupillary block release, because of its insufficient up to 6 months after the initiation of ripasudil application IOP-lowering ability. -
Fixed Combination Eye Drop of Ripasudil Hydrochloride Hydrate, A
PRESS RELEASE February 19, 2020 Dear all Kowa Company, Ltd. Fixed Combination Eye Drop of Ripasudil Hydrochloride Hydrate, a Rho Kinase Inhibitor, and Brimonidine Tartrate Started Phase 3 Clinical Studies in Japan [Developmental code: K-232] Kowa Company, Ltd. (Headquarters: Nagoya, Japan, President & CEO: Yoshihiro Miwa, hereafter referred to as “Kowa”) announced that Phase 3 clinical studies of fixed combination eye drop “Ripasudil Hydrochloride Hydrate” (hereafter referred to as “Ripasudil”), a Rho kinase inhibitor, and Brimonidine tartrate (Developmental code: K-232) have started in Japan. Kowa is developing Ripasudil as a global product. Ripasudil was launched in December 2014 in Japan (Brand name: GLANATEC® ophthalmic solution 0.4%) as the world's first glaucoma drug with Rho kinase inhibitory activity. In addition, Kowa is developing a Phase 2 clinical studies in the U.S. of Ripasudil for corneal endothelial diseases (developmental code: K-321). K-232 is expected to improve adherence as the first fixed combination eye drop containing Ripasudil for the treatment of glaucoma and ocular hypertension. ■ GLANATEC® Ophthalmic Solution 0.4% GLANATEC® Ophthalmic Solution 0.4% includes Ripasudil, as an active ingredient, and lowers intraocular pressure by promoting discharge of aqueous humor through a main outflow via trabecular meshwork-Schlemm’s canal as a result of Rho kinase inhibitory activity. In clinical studies enrolling patients with primary open-angle glaucoma and ocular hypertension in Japan, GLANATEC® Ophthalmic Solution 0.4% has been demonstrated to be effective in lowering intraocular pressure as both mono-therapy and adjunctive therapy along with conventional glaucoma and ocular hypertension drugs. Public Relations 3-4-14, Nihonbashi Honcho, Chuo-ku, Department (Tokyo) Tokyo (Japanese inquiries only) TEL:+81-3-3279-7392 Headquaters (Nagoya) Nishiki 3-6-29, Nagoya City . -
Induction of Α Cell-Restricted Gc in Dedifferentiating Β Cells Contributes to Stress-Induced Β-Cell Dysfunction
Induction of α cell-restricted Gc in dedifferentiating β cells contributes to stress-induced β-cell dysfunction Taiyi Kuo, … , Mitchell A. Lazar, Domenico Accili JCI Insight. 2019. https://doi.org/10.1172/jci.insight.128351. Research In-Press Preview Endocrinology Metabolism Diabetic β cell failure is associated with β cell dedifferentiation. To identify effector genes of dedifferentiation, we integrated analyses of histone methylation as a surrogate of gene activation status and RNA expression in β cells sorted from mice with multiparity-induced diabetes. Interestingly, only a narrow subset of genes demonstrated concordant changes to histone methylation and RNA levels in dedifferentiating β cells. Notable among them was the α cell signature gene Gc, encoding a vitamin D-binding protein. While diabetes was associated with Gc induction, Gc-deficient islets did not induce β cell dedifferentiation markers and maintained normal ex vivo insulin secretion in the face of metabolic challenge. Moreover, Gc-deficient mice exhibited a more robust insulin secretory response than normal controls during hyperglycemic clamps. The data are consistent with a functional role of Gc activation in β cell dysfunction, and indicate that multiparity-induced diabetes is associated with altered β cell fate. Find the latest version: https://jci.me/128351/pdf Kuo et al, Chromatin in dedifferentiated β-cells Induction of α cell-restricted Gc in dedifferentiating β cells contributes to stress-induced β-cell dysfunction Taiyi Kuo1, Manashree Damle2, Bryan J. González1,3, -
Temporal Epigenomic Profiling Identifies AHR As a Dynamic Super-Enhancer Controlled Regulator of Mesenchymal Multipotency
bioRxiv preprint doi: https://doi.org/10.1101/183988; this version posted November 17, 2017. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. Gerard et al.: Time-series epigenomic profiles of mesenchymal differentiation 1 Temporal epigenomic profiling identifies AHR as a 2 dynamic super-enhancer controlled regulator of 3 mesenchymal multipotency 4 Deborah Gérard1, Florian Schmidt2,3, Aurélien Ginolhac1, Martine Schmitz1, 5 Rashi Halder4, Peter Ebert3, Marcel H. Schulz2,3, Thomas Sauter1 and Lasse 6 Sinkkonen1* 7 1Life Sciences Research Unit, University of Luxembourg, L-4367 Belvaux, 8 Luxembourg 9 2Excellence Cluster for Multimodal Computing and Interaction, Saarland Informatics 10 Campus, Germany 11 3Computational Biology & Applied Algorithmics, Max Planck Institute for 12 Informatics, Saarland Informatics Campus, Germany 13 4Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur- 14 Alzette, L-4362, Luxembourg 15 16 [email protected]; [email protected]; [email protected]; 17 [email protected]; [email protected]; [email protected]; 18 [email protected]; [email protected]; [email protected] 19 20 *Corresponding author: Dr. Lasse Sinkkonen 21 Life Sciences Research Unit, University of Luxembourg 22 6, Avenue du Swing, L-4367 Belvaux, Luxembourg 23 Tel.: +352-4666446839 24 E-mail: [email protected] 25 1 bioRxiv preprint doi: https://doi.org/10.1101/183988; this version posted November 17, 2017.