DETERMINING the LOWEST-COST HYDROGEN DELIVERY MODE Christopher Yang*,A and Joan Ogden A,B a Institute of Transportation Studies
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Hydrogen Storage Cost Analysis (ST100)
This presentation contains no proprietary, confidential, or otherwise restricted information. 2020 DOE Hydrogen and Fuel Cells Program Review Hydrogen Storage Cost Analysis (ST100) Cassidy Houchins (PI) Brian D. James Strategic Analysis Inc. 31 May 2020 Overview Timeline Barriers Project Start Date: 9/30/16 A: System Weight and Volume Project End Date: 9/29/21 B: System Cost % complete: ~70% (in year 4 of 5) K: System Life-Cycle Assessment Budget Partners Total Project Budget: $999,946 Pacific Northwest National Laboratory (PNNL) Total DOE Funds Spent: ~$615,000 Argonne National Lab (ANL) (through March 2020 , excluding Labs) 2 Relevance • Objective – Conduct rigorous, independent, and transparent, bottoms-up techno- economic analysis of H2 storage systems. • DFMA® Methodology – Process-based, bottoms-up cost analysis methodology which projects material and manufacturing cost of the complete system by modeling specific manufacturing steps. – Predicts the actual cost of components or systems based on a hypothesized design and set of manufacturing & assembly steps – Determines the lowest cost design and manufacturing processes through repeated application of the DFMA® methodology on multiple design/manufacturing potential pathways. • Results and Impact – DFMA® analysis can be used to predict costs based on both mature and nascent components and manufacturing processes depending on what manufacturing processes and materials are hypothesized. – Identify the cost impact of material and manufacturing advances and to identify areas of R&D interest. – Provide insight into which components are critical to reducing the costs of onboard H2 storage and to meeting DOE cost targets 3 Approach: DFMA® methodology used to track annual cost impact of technology advances What is DFMA®? • DFMA® = Design for Manufacture & Assembly = Process-based cost estimation methodology • Registered trademark of Boothroyd-Dewhurst, Inc. -
Hydrogen Station Compression, Storage, and Dispensing Technical Status and Costs
Hydrogen Station Compression, Storage, and Dispensing Technical Status and Costs Independent Review Published for the U.S. Department of Energy Hydrogen and Fuel Cells Program NREL is a national laboratory of the U.S. Department of Energy, Office of Energy NREL is a national laboratory of the U.S. Department of Energy,Efficiency & Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. Office of Energy Efficiency & Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. Technical Report NREL/BK-6A10-58564 May 2014 Contract No. DE -AC36-08GO28308 Hydrogen Station Compression, Storage, and Dispensing Technical Status and Costs G. Parks, R. Boyd, J. Cornish, and R. Remick Independent Peer Review Team NREL Technical Monitor: Neil Popovich NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency & Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. National Renewable Energy Laboratory Technical Report 15013 Denver West Parkway NREL/BK-6A10-58564 Golden, CO 80401 May 2014 303-275-3000 • www.nrel.gov Contract No. DE-AC36-08GO28308 NOTICE This report was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trade- mark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States government or any agency thereof. -
Blending Hydrogen Into Natural Gas Pipeline Networks: a Review of Key Issues
Blending Hydrogen into Natural Gas Pipeline Networks: A Review of Key Issues M. W. Melaina, O. Antonia, and M. Penev NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency & Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. Technical Report NREL/TP-5600-51995 March 2013 Contract No. DE-AC36-08GO28308 Blending Hydrogen into Natural Gas Pipeline Networks: A Review of Key Issues M. W. Melaina, O. Antonia, and M. Penev Prepared under Task No. HT12.2010 NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency & Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. National Renewable Energy Laboratory Technical Report 15013 Denver West Parkway NREL/TP-5600-51995 Golden, Colorado 80401 March 2013 303-275-3000 • www.nrel.gov Contract No. DE-AC36-08GO28308 NOTICE This report was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States government or any agency thereof. -
Hydrogen Storage for Mobility: a Review
materials Review Hydrogen Storage for Mobility: A Review Etienne Rivard * , Michel Trudeau and Karim Zaghib * Centre of Excellence in Transportation Electrification and Energy Storage, Hydro-Quebec, 1806, boul. Lionel-Boulet, Varennes J3X 1S1, Canada; [email protected] * Correspondence: [email protected] (E.R.); [email protected] (K.Z.) Received: 18 April 2019; Accepted: 11 June 2019; Published: 19 June 2019 Abstract: Numerous reviews on hydrogen storage have previously been published. However, most of these reviews deal either exclusively with storage materials or the global hydrogen economy. This paper presents a review of hydrogen storage systems that are relevant for mobility applications. The ideal storage medium should allow high volumetric and gravimetric energy densities, quick uptake and release of fuel, operation at room temperatures and atmospheric pressure, safe use, and balanced cost-effectiveness. All current hydrogen storage technologies have significant drawbacks, including complex thermal management systems, boil-off, poor efficiency, expensive catalysts, stability issues, slow response rates, high operating pressures, low energy densities, and risks of violent and uncontrolled spontaneous reactions. While not perfect, the current leading industry standard of compressed hydrogen offers a functional solution and demonstrates a storage option for mobility compared to other technologies. Keywords: hydrogen mobility; hydrogen storage; storage systems assessment; Kubas-type hydrogen storage; hydrogen economy 1. Introduction According to the Intergovernmental Panel on Climate Change (IPCC), it is almost certain that the unusually fast global warming is a direct result of human activity [1]. The resulting climate change is linked to significant environmental impacts that are connected to the disappearance of animal species [2,3], decreased agricultural yield [4–6], increasingly frequent extreme weather events [7,8], human migration [9–11], and conflicts [12–14]. -
Hydrogen Delivery Roadmap
Hydrogen Delivery Hydrogen Storage Technologies Technical Team Roadmap RoadmapJuly 2017 This roadmap is a document of the U.S. DRIVE Partnership. U.S. DRIVE (United States Driving Research and Innovation for Vehicle efficiency and Energy sustainability) is a voluntary, non‐binding, and nonlegal partnership among the U.S. Department of Energy; United States Council for Automotive Research (USCAR), representing Chrysler Group LLC, Ford Motor Company, and General Motors; five energy companies — BPAmerica, Chevron Corporation, Phillips 66 Company, ExxonMobil Corporation, and Shell Oil Products US; two utilities — Southern California Edison and DTE Energy; and the Electric Power Research Institute (EPRI). The Hydrogen Delivery Technical Team is one of 13 U.S. DRIVE technical teams (“tech teams”) whose mission is to accelerate the development of pre‐competitive and innovative technologies to enable a full range of efficient and clean advanced light‐duty vehicles, as well as related energy infrastructure. For more information about U.S. DRIVE, please see the U.S. DRIVE Partnership Plan, https://energy.gov/eere/vehicles/us-drive-partnership-plan-roadmaps-and-accomplishments or www.uscar.org. Hydrogen Delivery Technical Team Roadmap Table of Contents Acknowledgements .............................................................................................................................................. vi Mission ................................................................................................................................................................. -
Localized Fire Protection Assessment for Vehicle Compressed Hydrogen Containers DISCLAIMER
DOT HS 811 303 March 2010 Localized Fire Protection Assessment for Vehicle Compressed Hydrogen Containers DISCLAIMER This publication is distributed by the U.S. Department of Transportation, National Highway Traffic Safety Administration, in the interest of information exchange. The opinions, findings, and conclusions expressed in this publication are those of the authors and not necessarily those of the Department of Transportation or the National Highway Traffic Safety Administration. The United States Government assumes no liability for its contents or use thereof. If trade names, manufacturers’ names, or specific products are mentioned, it is because they are considered essential to the object of the publication and should not be construed as an endorsement. The United States Government does not endorse products or manufacturers. 1. Report No. 2. Government Accession No. 3. Recipient's Catalog No. DOT HS 811 303 4. Title and Subtitle 5. Report Date Localized Fire Protection Assessment for Vehicle Compressed Hydrogen Containers March 2010 6. Performing Organization Code NHTSA/NVS-321 7. Author(s) 8. Performing Organization Report No. Craig Webster – Powertech Labs, Inc. 9. Performing Organization Name and Address 10. Work Unit No. (TRAIS) 11. Contract or Grant No. 12. Sponsoring Agency Name and Address 13. Type of Report and Period Covered National Highway Traffic Safety Administration Final 1200 New Jersey Avenue SE. 14. Sponsoring Agency Code Washington, DC 20590 15. Supplementary Notes 16. Abstract Industry has identified localized flame impingement on high pressure composite storage cylinders as an area requiring research due to several catastrophic failures in recent years involving compressed natural gas (CNG) vehicles. Current standards and regulations for CNG cylinders require an engulfing bonfire test to assess the performance of the temperature activated pressure relief device (TPRD). -
H2@Railsm Workshop
SANDIA REPORT SAND2019-10191 R Printed August 2019 H2@RailSM Workshop Workshop and report sponsored by the US Department of Energy Office of Energy Efficiency and Renewable Energy Fuel Cell Technologies Office, and the US Department of Transportation Federal Railroad Administration. Prepared by Mattie Hensley, Jonathan Zimmerman Prepared by Sandia National Laboratories Albuquerque, New MexiCo 87185 and Livermore, California 94550 Issued by Sandia National Laboratories, operated for the United States Department of Energy by National Technology & Engineering Solutions of Sandia, LLC. NOTICE: This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government, nor any agency thereof, nor any of their employees, nor any of their contractors, subcontractors, or their employees, make any warranty, express or implied, or assume any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represent that its use would not infringe privately owned rights. References herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government, any agency thereof, or any of their contractors or subcontractors. The views and opinions expressed herein do not necessarily state or reflect those of the United States Government, any agency thereof, or any of their contractors. Printed in the United States of America. This report has been reproduced directly from the best available copy. Available to DOE and DOE contractors from U.S. Department of Energy Office of Scientific and Technical Information P.O. -
Fuel Cell Power Spring 2021
No 67 Spring 2021 www.fuelcellpower.wordpress.com FUEL CELL POWER The transition from combustion to clean electrochemical energy conversion HEADLINE NEWS CONTENTS Hydrogen fuel cell buses in UK cities p.2 The world’s first hydrogen fuel cell Zeroavia’s passenger plane flight p.5 double decker buses have been Intelligent Energy’s fuel cell for UAV p.6 delivered to the City of Aberdeen. Bloom Energy hydrogen strategy p.7 Wrightbus is following this up with Hydrogen from magnesium hydride paste p.11 orders from several UK cities. ITM expanding local production of zero emission hydrogen p.12 The Scottish Government is support- Alstom hydrogen fuel cell trains p.13 ing the move to zero emission Zero carbon energy for emerging transport prior to the meeting of World markets p.16 COP26 in Glasgow later this year. Nel hydrogen infrastructure p.18 Australia’s national hydrogen strategy p.20 The United Nations states that the Ballard international programmes p.22 world is nowhere close to the level FuelCell Energy Government Award p.26 of action needed to stop dangerous Ulemco’s ZERRO ambulance p.27 climate change. 2021 is a make or Adelan fuel cells in UK programme p.28 break year to deal with the global Wilhelmsen zero emission HySHIP p.29 climate emergency. Hydrogen fuel cell yacht p.30 NEWS p.10 EVENTS p.30 HYDROGEN FUEL CELL BUSES IN UK CITIES WORLD’S FIRST in tackling air pollution in the city.” Councillor Douglas Lumsden added: “It is HYDROGEN FUEL CELL fantastic to see the world’s first hydrogen- DOUBLE DECKER BUS IN powered double decker bus arrive in ABERDEEN Aberdeen. -
Hydrogen, Fuel Cells and Infrastructure Technologies Program: 2002 Annual Progress Report
Hydrogen, Fuel Cells, and Infrastructure Technologies FY 2002 Progress Report Section III. Hydrogen Storage 199 Hydrogen, Fuel Cells, and Infrastructure Technologies FY 2002 Progress Report 200 Hydrogen, Fuel Cells, and Infrastructure Technologies FY 2002 Progress Report III.A High Pressure Tanks III.A.1 Hydrogen Composite Tank Program Neel Sirosh (Primary Contact), Andy Abele, Alan Niedzwiecki QUANTUM Technologies 17872 Cartwright Road Irvine, CA 92614 (949) 399-4698, fax: (949) 399-4600, e-mail: [email protected] DOE Technology Development Manager: Lucito Cataquiz (202) 586-0729, fax: (202) 586-9811, e-mail: [email protected] Objectives • Develop, demonstrate and validate 5,000 pounds per square inch (psi) 7.5 wt % and 8.5 wt% Type IV composite hydrogen storage tanks of specified sizes • Develop and validate 5,000 psi in-tank-regulators • Build, assemble, test and supply tank assemblies for DOE Future Truck and Nevada hydrogen bus programs • Demonstrate 10,000 psi storage tanks Approach • Optimize materials, design and processes related to QUANTUM "TriShield" composite fuel storage tank technology to achieve high gravimetric efficiencies • Develop tanks for specific sizes and perform safety verification and validation tests based on NGV2- 2000, modified for high pressure hydrogen • Supply fully validated tank assemblies to DOE Accomplishments • Achieved "World Record" hydrogen storage mass efficiency of 11.3 wt% on a prototype 5,000 psi tank, with Lawrence Livermore National Laboratory and Thiokol Propulsion • Developed and demonstrated -
DECARBONISING MARITIME OPERATIONS in NORTH SEA OFFSHORE WIND O&M Innovation Roadmap Produced for the UK Government Dft and FCDO CONTENTS
DECARBONISING MARITIME OPERATIONS IN NORTH SEA OFFSHORE WIND O&M Innovation Roadmap produced for the UK Government DfT and FCDO CONTENTS 1 Executive Summary 4 2 Introduction 10 3 Methodology and Quality Assurance 14 3.1 Market scenarios 15 3.2 Industry engagement 16 4 Vessel and Wind Farm Growth Scenarios 18 4.1 Offshore Wind Deployment Growth Scenarios 19 4.2 O&M Vessel Growth Scenarios 22 5 Current Landscape of Industry 29 5.1 Overview of Industry 30 5.2 Lifecycle of Offshore Wind Farm and Associated Vessels 31 5.3 O&M Vessels 32 5.4 New Technologies on the Horizon 44 5.5 Portside Infrastructure 65 5.6 Offshore Charging Infrastructure 81 5.7 Autonomous and Remote Operated Vessels 85 5.8 AI and Data Driven Solutions and Tools for Optimised O&M Planning and Marine Coordination 88 5.9 Supply Chain Capability and Potential Benefits 90 6 Identification of Risks and Barriers to Adoption for the Decarbonisation of the Sector 95 6.1 Methodology 96 6.2 Ratings 97 6.3 Economic 98 6.4 Policy/Regulatory 102 6.5 Structural 106 6.6 Organisational 111 6.7 Behavioural 113 6.8 Summary 114 7 Route MapA 115A 7.1 Track 1 – Assessment of Technologies Methodology 117 7.2 Track 1 – Technology Assessment Results 119 7.3 Track 2 – R&D Programme 122 7.4 Track 3–Demonstrations at Scale 123 7.5 Track 4– Enabling Actions 126 7.6 Summary 135 8 Conclusions 137 Appendix 1 - Model building and review quality assurance 149 Appendix 2 - O&M Vessels Model Assumptions 151 Appendix 3 - Emission Calculations 153 Appendix 4 - Technology readiness level scale 154 Appendix 5 - Engagement ReportA 155 List of Figures 189 List of TablesA 191 1 EXECUTIVE SUMMARY 1 EXECUTIVE SUMMARY The UK’s offshore wind industry has seen rapid growth in the past ten years with more than 10.4GW of installed capacity now in UK waters and a target of 40GW by 2030. -
Energy and the Hydrogen Economy
Energy and the Hydrogen Economy Ulf Bossel Fuel Cell Consultant Morgenacherstrasse 2F CH-5452 Oberrohrdorf / Switzerland +41-56-496-7292 and Baldur Eliasson ABB Switzerland Ltd. Corporate Research CH-5405 Baden-Dättwil / Switzerland Abstract Between production and use any commercial product is subject to the following processes: packaging, transportation, storage and transfer. The same is true for hydrogen in a “Hydrogen Economy”. Hydrogen has to be packaged by compression or liquefaction, it has to be transported by surface vehicles or pipelines, it has to be stored and transferred. Generated by electrolysis or chemistry, the fuel gas has to go through theses market procedures before it can be used by the customer, even if it is produced locally at filling stations. As there are no environmental or energetic advantages in producing hydrogen from natural gas or other hydrocarbons, we do not consider this option, although hydrogen can be chemically synthesized at relative low cost. In the past, hydrogen production and hydrogen use have been addressed by many, assuming that hydrogen gas is just another gaseous energy carrier and that it can be handled much like natural gas in today’s energy economy. With this study we present an analysis of the energy required to operate a pure hydrogen economy. High-grade electricity from renewable or nuclear sources is needed not only to generate hydrogen, but also for all other essential steps of a hydrogen economy. But because of the molecular structure of hydrogen, a hydrogen infrastructure is much more energy-intensive than a natural gas economy. In this study, the energy consumed by each stage is related to the energy content (higher heating value HHV) of the delivered hydrogen itself. -
Options of Natural Gas Pipeline Reassignment for Hydrogen: Cost Assessment for a Germany Case Study
Options of Natural Gas Pipeline Reassignment for Hydrogen: Cost Assessment for a Germany Case Study Simonas CERNIAUSKAS,1(1) Antonio Jose CHAVEZ JUNCO,(1) Thomas GRUBE,(1) Martin ROBINIUS(1) and Detlef STOLTEN(1,2) (1) Institute of Techno-Economic Systems Analysis (IEK-3), Forschungszentrum Jülich GmbH, Wilhelm-Johnen-Str., D-52428, Germany (2) Chair for Fuel Cells, RWTH Aachen University, c/o Institute of Techno-Economic Systems Analysis (IEK-3), Forschungszentrum Jülich GmbH, Wilhelm-Johnen-Str., D- 52428, Germany Abstract The uncertain role of the natural gas infrastructure in the decarbonized energy system and the limitations of hydrogen blending raise the question of whether natural gas pipelines can be economically utilized for the transport of hydrogen. To investigate this question, this study derives cost functions for the selected pipeline reassignment methods. By applying geospatial hydrogen supply chain modeling, the technical and economic potential of natural gas pipeline reassignment during a hydrogen market introduction is assessed. The results of this study show a technically viable potential of more than 80% of the analyzed representative German pipeline network. By comparing the derived pipeline cost functions it could be derived that pipeline reassignment can reduce the hydrogen transmission costs by more than 60%. Finally, a countrywide analysis of pipeline availability constraints for the year 2030 shows a cost reduction of the transmission system by 30% in comparison to a newly built hydrogen pipeline system. Keywords: Hydrogen infrastructure, fuel cell vehicles, hydrogen embrittlement, geospatial analysis 1 D-52425 Jülich, +49 2461 61-9154, [email protected], http://www.fz- juelich.de/iek/iek-3 © 2020 This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/ Introduction The ongoing transition of the energy system to accommodate greenhouse gas emission reduction necessitates the reduction of fossil fuel consumption, including the use of natural gas (NG) [1].