Benchmark for Performance Evaluation of SHACL Implementations in Graph Databases
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Mapping Spatiotemporal Data to RDF: a SPARQL Endpoint for Brussels
International Journal of Geo-Information Article Mapping Spatiotemporal Data to RDF: A SPARQL Endpoint for Brussels Alejandro Vaisman 1, * and Kevin Chentout 2 1 Instituto Tecnológico de Buenos Aires, Buenos Aires 1424, Argentina 2 Sopra Banking Software, Avenue de Tevuren 226, B-1150 Brussels, Belgium * Correspondence: [email protected]; Tel.: +54-11-3457-4864 Received: 20 June 2019; Accepted: 7 August 2019; Published: 10 August 2019 Abstract: This paper describes how a platform for publishing and querying linked open data for the Brussels Capital region in Belgium is built. Data are provided as relational tables or XML documents and are mapped into the RDF data model using R2RML, a standard language that allows defining customized mappings from relational databases to RDF datasets. In this work, data are spatiotemporal in nature; therefore, R2RML must be adapted to allow producing spatiotemporal Linked Open Data.Data generated in this way are used to populate a SPARQL endpoint, where queries are submitted and the result can be displayed on a map. This endpoint is implemented using Strabon, a spatiotemporal RDF triple store built by extending the RDF store Sesame. The first part of the paper describes how R2RML is adapted to allow producing spatial RDF data and to support XML data sources. These techniques are then used to map data about cultural events and public transport in Brussels into RDF. Spatial data are stored in the form of stRDF triples, the format required by Strabon. In addition, the endpoint is enriched with external data obtained from the Linked Open Data Cloud, from sites like DBpedia, Geonames, and LinkedGeoData, to provide context for analysis. -
Ontotext Platform Documentation Release 3.4 Ontotext
Ontotext Platform Documentation Release 3.4 Ontotext Apr 16, 2021 CONTENTS 1 Overview 1 1.1 30,000ft ................................................ 2 1.2 Layered View ............................................ 2 1.2.1 Application Layer ...................................... 3 1.2.1.1 Ontotext Platform Workbench .......................... 3 1.2.1.2 GraphDB Workbench ............................... 4 1.2.2 Service Layer ........................................ 5 1.2.2.1 Semantic Objects (GraphQL) ........................... 5 1.2.2.2 GraphQL Federation (Apollo GraphQL Federation) ............... 5 1.2.2.3 Text Analytics Service ............................... 6 1.2.2.4 Annotation Service ................................ 7 1.2.3 Data Layer ......................................... 7 1.2.3.1 Graph Database (GraphDB) ........................... 7 1.2.3.2 Semantic Object Schema Storage (MongoDB) ................. 7 1.2.3.3 Semantic Objects for MongoDB ......................... 8 1.2.3.4 Semantic Object for Elasticsearch ........................ 8 1.2.4 Authentication and Authorization ............................. 8 1.2.4.1 FusionAuth ..................................... 8 1.2.4.2 Semantic Objects RBAC ............................. 9 1.2.5 Kubernetes ......................................... 9 1.2.5.1 Ingress and GW .................................. 9 1.2.6 Operation Layer ....................................... 10 1.2.6.1 Health Checking .................................. 10 1.2.6.2 Telegraf ....................................... 10 -
Data Platforms Map from 451 Research
1 2 3 4 5 6 Azure AgilData Cloudera Distribu2on HDInsight Metascale of Apache Kaa MapR Streams MapR Hortonworks Towards Teradata Listener Doopex Apache Spark Strao enterprise search Apache Solr Google Cloud Confluent/Apache Kaa Al2scale Qubole AWS IBM Azure DataTorrent/Apache Apex PipelineDB Dataproc BigInsights Apache Lucene Apache Samza EMR Data Lake IBM Analy2cs for Apache Spark Oracle Stream Explorer Teradata Cloud Databricks A Towards SRCH2 So\ware AG for Hadoop Oracle Big Data Cloud A E-discovery TIBCO StreamBase Cloudera Elas2csearch SQLStream Data Elas2c Found Apache S4 Apache Storm Rackspace Non-relaonal Oracle Big Data Appliance ObjectRocket for IBM InfoSphere Streams xPlenty Apache Hadoop HP IDOL Elas2csearch Google Azure Stream Analy2cs Data Ar2sans Apache Flink Azure Cloud EsgnDB/ zone Platforms Oracle Dataflow Endeca Server Search AWS Apache Apache IBM Ac2an Treasure Avio Kinesis LeanXcale Trafodion Splice Machine MammothDB Drill Presto Big SQL Vortex Data SciDB HPCC AsterixDB IBM InfoSphere Towards LucidWorks Starcounter SQLite Apache Teradata Map Data Explorer Firebird Apache Apache JethroData Pivotal HD/ Apache Cazena CitusDB SIEM Big Data Tajo Hive Impala Apache HAWQ Kudu Aster Loggly Ac2an Ingres Sumo Cloudera SAP Sybase ASE IBM PureData January 2016 Logic Search for Analy2cs/dashDB Logentries SAP Sybase SQL Anywhere Key: B TIBCO Splunk Maana Rela%onal zone B LogLogic EnterpriseDB SQream General purpose Postgres-XL Microso\ Ry\ X15 So\ware Oracle IBM SAP SQL Server Oracle Teradata Specialist analy2c PostgreSQL Exadata -
Franz's Allegrograph 7.1 Accelerates Complex Reasoning Across
Franz’s AllegroGraph 7.1 Accelerates Complex Reasoning Across Massive, Distributed Knowledge Graphs and Data Fabrics Distributed FedShard Queries Improved 10X. New SPARQL*, RDF* and SHACL Features Added. Lafayette, Calif., February 8, 2021 — Franz Inc., an early innovator in Artificial Intelligence (AI) and leading supplier of Graph Database technology for AI Knowledge Graph Solutions, today announced AllegroGraph 7.1, which provides optimizations for deeply complex queries across FedShard™ deployments – making complex reasoning up to 10X faster. AllegroGraph with FedShard offers a breakthrough solution that allows infinite data integration through a patented approach unifying all data and siloed knowledge into an Entity-Event Knowledge Graph solution for Enterprise scale analytics. AllegroGraph’s unique capabilities drive 360-degree insights and enable complex reasoning across enterprise-wide Knowledge Fabrics in Healthcare, Media, Smart Call Centers, Pharmaceuticals, Financial and much more. “The proliferation of Artificial Intelligence has resulted in the need for increasingly complex queries over more data,” said Dr. Jans Aasman, CEO of Franz Inc. “AllegroGraph 7.1 addresses two of the most daunting challenges in AI – continuous data integration and the ability to query across all the data. With this new version of AllegroGraph, organizations can create Data Fabrics underpinned by AI Knowledge Graphs that take advantage of the infinite data integration capabilities possible with our FedShard technology and the ability to query across -
Using Microsoft Power BI with Allegrograph,Knowledge Graphs Rise
Using Microsoft Power BI with AllegroGraph There are multiple methods to integrate AllegroGraph SPARQL results into Microsoft Power BI. In this document we describe two best practices to automate queries and refresh results if you have a production AllegroGraph database with new streaming data: The first method uses Python scripts to feed Power BI. The second method issues SPARQL queries directly from Power BI using POST requests. Method 1: Python Script: Assuming you know Python and have it installed locally, this is definitely the easiest way to incorporate SPARQL results into Power BI. The basic idea of the method is as follows: First, the Python script enables a connection to your desired AllegroGraph repository. Then we utilize AllegroGraph’s Python API within our script to run a SPARQL query and return it as a Pandas dataframe. When running this script within Power BI Desktop, the Python scripting service recognizes all unique dataframes created, and allows you to import the dataframe into Power BI as a table, which can then be used to create visualizations. Requirements: 1. You must have the AllegroGraph Python API installed. If you do not, installation instructions are here: https://franz.com/agraph/support/documentation/current/p ython/install.html 2. Python scripting must be enabled in Power BI Desktop. Instructions to do so are here: https://docs.microsoft.com/en-us/power-bi/connect-data/d esktop-python-scripts a) As mentioned in the article, pandas and matplotlib must be installed. This can be done with ‘pip install pandas’ and ‘pip install matplotlib’ in your terminal. -
Practical Semantic Web and Linked Data Applications
Practical Semantic Web and Linked Data Applications Common Lisp Edition Uses the Free Editions of Franz Common Lisp and AllegroGraph Mark Watson Copyright 2010 Mark Watson. All rights reserved. This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works Version 3.0 United States License. November 3, 2010 Contents Preface xi 1. Getting started . xi 2. Portable Common Lisp Code Book Examples . xii 3. Using the Common Lisp ASDF Package Manager . xii 4. Information on the Companion Edition to this Book that Covers Java and JVM Languages . xiii 5. AllegroGraph . xiii 6. Software License for Example Code in this Book . xiv 1. Introduction 1 1.1. Who is this Book Written For? . 1 1.2. Why a PDF Copy of this Book is Available Free on the Web . 3 1.3. Book Software . 3 1.4. Why Graph Data Representations are Better than the Relational Database Model for Dealing with Rapidly Changing Data Requirements . 4 1.5. What if You Use Other Programming Languages Other Than Lisp? . 4 2. AllegroGraph Embedded Lisp Quick Start 7 2.1. Starting AllegroGraph . 7 2.2. Working with RDF Data Stores . 8 2.2.1. Creating Repositories . 9 2.2.2. AllegroGraph Lisp Reader Support for RDF . 10 2.2.3. Adding Triples . 10 2.2.4. Fetching Triples by ID . 11 2.2.5. Printing Triples . 11 2.2.6. Using Cursors to Iterate Through Query Results . 13 2.2.7. Saving Triple Stores to Disk as XML, N-Triples, and N3 . 14 2.3. AllegroGraph’s Extensions to RDF . -
Open Web Ontobud: an Open Source RDF4J Frontend
Open Web Ontobud: An Open Source RDF4J Frontend Francisco José Moreira Oliveira University of Minho, Braga, Portugal [email protected] José Carlos Ramalho Department of Informatics, University of Minho, Braga, Portugal [email protected] Abstract Nowadays, we deal with increasing volumes of data. A few years ago, data was isolated, which did not allow communication or sharing between datasets. We live in a world where everything is connected, and our data mimics this. Data model focus changed from a square structure like the relational model to a model centered on the relations. Knowledge graphs are the new paradigm to represent and manage this new kind of information structure. Along with this new paradigm, a new kind of database emerged to support the new needs, graph databases! Although there is an increasing interest in this field, only a few native solutions are available. Most of these are commercial, and the ones that are open source have poor interfaces, and for that, they are a little distant from end-users. In this article, we introduce Ontobud, and discuss its design and development. A Web application that intends to improve the interface for one of the most interesting frameworks in this area: RDF4J. RDF4J is a Java framework to deal with RDF triples storage and management. Open Web Ontobud is an open source RDF4J web frontend, created to reduce the gap between end users and the RDF4J backend. We have created a web interface that enables users with a basic knowledge of OWL and SPARQL to explore ontologies and extract information from them. -
A Performance Study of RDF Stores for Linked Sensor Data
Semantic Web 1 (0) 1–5 1 IOS Press 1 1 2 2 3 3 4 A Performance Study of RDF Stores for 4 5 5 6 Linked Sensor Data 6 7 7 8 Hoan Nguyen Mau Quoc a,*, Martin Serrano b, Han Nguyen Mau c, John G. Breslin d , Danh Le Phuoc e 8 9 a Insight Centre for Data Analytics, National University of Ireland Galway, Ireland 9 10 E-mail: [email protected] 10 11 b Insight Centre for Data Analytics, National University of Ireland Galway, Ireland 11 12 E-mail: [email protected] 12 13 c Information Technology Department, Hue University, Viet Nam 13 14 E-mail: [email protected] 14 15 d Confirm Centre for Smart Manufacturing and Insight Centre for Data Analytics, National University of Ireland 15 16 Galway, Ireland 16 17 E-mail: [email protected] 17 18 e Open Distributed Systems, Technical University of Berlin, Germany 18 19 E-mail: [email protected] 19 20 20 21 21 Editors: First Editor, University or Company name, Country; Second Editor, University or Company name, Country 22 Solicited reviews: First Solicited Reviewer, University or Company name, Country; Second Solicited Reviewer, University or Company name, 22 23 Country 23 24 Open reviews: First Open Reviewer, University or Company name, Country; Second Open Reviewer, University or Company name, Country 24 25 25 26 26 27 27 28 28 29 Abstract. The ever-increasing amount of Internet of Things (IoT) data emanating from sensor and mobile devices is creating 29 30 new capabilities and unprecedented economic opportunity for individuals, organisations and states. -
Storage, Indexing, Query Processing, And
Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 23 May 2020 doi:10.20944/preprints202005.0360.v1 STORAGE,INDEXING,QUERY PROCESSING, AND BENCHMARKING IN CENTRALIZED AND DISTRIBUTED RDF ENGINES:ASURVEY Waqas Ali Department of Computer Science and Engineering, School of Electronic, Information and Electrical Engineering (SEIEE), Shanghai Jiao Tong University, Shanghai, China [email protected] Muhammad Saleem Agile Knowledge and Semantic Web (AKWS), University of Leipzig, Leipzig, Germany [email protected] Bin Yao Department of Computer Science and Engineering, School of Electronic, Information and Electrical Engineering (SEIEE), Shanghai Jiao Tong University, Shanghai, China [email protected] Axel-Cyrille Ngonga Ngomo University of Paderborn, Paderborn, Germany [email protected] ABSTRACT The recent advancements of the Semantic Web and Linked Data have changed the working of the traditional web. There is a huge adoption of the Resource Description Framework (RDF) format for saving of web-based data. This massive adoption has paved the way for the development of various centralized and distributed RDF processing engines. These engines employ different mechanisms to implement key components of the query processing engines such as data storage, indexing, language support, and query execution. All these components govern how queries are executed and can have a substantial effect on the query runtime. For example, the storage of RDF data in various ways significantly affects the data storage space required and the query runtime performance. The type of indexing approach used in RDF engines is key for fast data lookup. The type of the underlying querying language (e.g., SPARQL or SQL) used for query execution is a key optimization component of the RDF storage solutions. -
Benchmarking RDF Query Engines: the LDBC Semantic Publishing Benchmark
Benchmarking RDF Query Engines: The LDBC Semantic Publishing Benchmark V. Kotsev1, N. Minadakis2, V. Papakonstantinou2, O. Erling3, I. Fundulaki2, and A. Kiryakov1 1 Ontotext, Bulgaria 2 Institute of Computer Science-FORTH, Greece 3 OpenLink Software, Netherlands Abstract. The Linked Data paradigm which is now the prominent en- abler for sharing huge volumes of data by means of Semantic Web tech- nologies, has created novel challenges for non-relational data manage- ment technologies such as RDF and graph database systems. Bench- marking, which is an important factor in the development of research on RDF and graph data management technologies, must address these challenges. In this paper we present the Semantic Publishing Benchmark (SPB) developed in the context of the Linked Data Benchmark Council (LDBC) EU project. It is based on the scenario of the BBC media or- ganisation which makes heavy use of Linked Data Technologies such as RDF and SPARQL. In SPB a large number of aggregation agents pro- vide the heavy query workload, while at the same time a steady stream of editorial agents execute a number of update operations. In this paper we describe the benchmark’s schema, data generator, workload and re- port the results of experiments conducted using SPB for the Virtuoso and GraphDB RDF engines. Keywords: RDF, Linked Data, Benchmarking, Graph Databases 1 Introduction Non-relational data management is emerging as a critical need in the era of a new data economy where heterogeneous, schema-less, and complexly structured data from a number of domains are published in RDF. In this new environment where the Linked Data paradigm is now the prominent enabler for sharing huge volumes of data, several data management challenges are present and which RDF and graph database technologies are called to tackle. -
Gábor Melis to Keynote European Lisp Symposium
Gábor Melis to Keynote European Lisp Symposium OAKLAND, Calif. — April 14, 2014 —Franz Inc.’s Senior Engineer, Gábor Melis, will be a keynote speaker at the 7th annual European Lisp Symposium (ELS’14) this May in Paris, France. The European Lisp Symposium provides a forum for the discussion and dissemination of all aspects of design, implementationand application of any of the Lisp and Lisp- inspired dialects, including Common Lisp, Scheme, Emacs Lisp, AutoLisp, ISLISP, Dylan, Clojure, ACL2, ECMAScript, Racket, SKILL, Hop etc. Sending Beams into the Parallel Cube A pop-scientific look through the Lisp lens at machine learning, parallelism, software, and prize fighting We send probes into the topic hypercube bounded by machine learning, parallelism, software and contests, demonstrate existing and sketch future Lisp infrastructure, pin the future and foreign arrays down. We take a seemingly random walk along the different paths, watch the scenery of pairwise interactions unfold and piece a puzzle together. In the purely speculative thread, we compare models of parallel computation, keeping an eye on their applicability and lisp support. In the the Python and R envy thread, we detail why lisp could be a better vehicle for scientific programming and how high performance computing is eroding lisp’s largely unrealized competitive advantages. Switching to constructive mode, a basic data structure is proposed as a first step. In the machine learning thread, lisp’s unparalleled interactive capabilities meet contests, neural networks cross threads and all get in the way of the presentation. Video Presentation About Gábor Melis Gábor Melis is a consultant at Franz Inc. -
Evaluation of Current RDF Database Solutions
Evaluation of Current RDF Database Solutions Florian Stegmaier1, Udo Gr¨obner1, Mario D¨oller1, Harald Kosch1 and Gero Baese2 1 Chair of Distributed Information Systems University of Passau Passau, Germany [email protected] 2 Corporate Technology Siemens AG Munich, Germany [email protected] Abstract. Unstructured data (e.g., digital still images) is generated, distributed and stored worldwide at an ever increasing rate. In order to provide efficient annotation, storage and search capabilities among this data and XML based description formats, data stores and query languages have been introduced. As XML lacks on expressing semantic meanings and coherences, it has been enhanced by the Resource Descrip- tion Format (RDF) and the associated query language SPARQL. In this context, the paper evaluates currently existing RDF databases that support the SPARQL query language by the following means: gen- eral features such as details about software producer and license infor- mation, architectural comparison and efficiency comparison of the inter- pretation of SPARQL queries on a scalable test data set. 1 Introduction The production of unstructured data especially in the multimedia domain is overwhelming. For instance, recent studies3 report that 60% of today's mobile multimedia devices equipped with an image sensor, audio support and video playback have basic multimedia functionalities, almost nine out of ten in the year 2011. In this context, the annotation of unstructured data has become a necessity in order to increase retrieval efficiency during search. In the last couple of years, the Extensible Markup Language (XML) [16], due to its interoperability features, has become a de-facto standard as a basis for the use of description formats in various domains.