An Aldol Switch Discovered in Stilbene Synthases Mediates Cyclization Specificity of Type III Polyketide Synthases
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Stereoselective Transformations Starting with Chiral (Aikoxy)Methyl-Substituted Organosilicon Compounds
AWARDS 1996 (NSCS) . PREISTRAGER 1996 (NSCG) 133 CHIMIA 5/ (1997) Nr. 4lApriIJ A a 1996 ( rager•• Chimia 51 (/997) 133-139 © Neue Schweizerische Chemische Gesellschaft ISSN 0009-4293 Stereoselective Transformations Starting with Chiral (AIkoxy)methyl-Substituted Organosilicon Compounds Stefan Bienz* Stefan Bienz was born on Januar 17, 1958, in (Werner Prize 1996 of the NSCS) Lucerne (CH). He is citizen ofWolhusen (LU) and Lucerne, Switzerland. Academic Background: 1977-1983: Studies Abstract. The following short review summarizes the results we achieved with the in Chemistry at the Phi losophical Faculty II of investigation of chiral silicon groups as auxiliaries for the enantioselective synthesis. the University of Zurich, Switzerland. Gradu- (Alkoxy)methyl-substituted silicon compounds with 'Si-centered chirality', which ate research under the supervision of Prof. Dr. were prepared in optically active form by application of a bioreduction, have been M. Hesse at the Institute of Organic Chemistry towards the diploma (May 5, 1983; thesis: efficiently used as starting materials for a number of stereoselective reactions. Acylsi- 'Contribution to the Transformation of Car- lanes of this type upon treatment with organometallic reagents gave rise to 1,2-addition bocycIes to Lactams by Ring Enlargement products with high degrees of stereoselectivities. The respective a-hydroxysilanes Reaction') and 1983-1987 towards the Ph.D. could be stereospecifically desilylated to chiral secondary alcohols, or, depending on (December 18, 1987; thesis: 'Synthesis of the substitution pattern, further used as starting compounds for stereocontrolled Macrocyc\ic Natural Products by Ring En- oxidation, Cope- or Claisen-type rearrangement reactions. Chiral a-metallated vinyl- largement Reactions', distinguished for its silanes were converted to a-silyl-substituted allylic alcohols and to a-silyl-substituted excellence). -
Polyketide Biosynthesis Beyond the Type I, II and III Polyketide Synthase Paradigms Ben Shen
285 Polyketide biosynthesis beyond the type I, II and III polyketide synthase paradigms Ben Shen Recent literature on polyketide biosynthesis suggests that Three types of bacterial PKSs are known to date. First, polyketide synthases have much greater diversity in both type I PKSs are multifunctional enzymes that are orga- mechanism and structure than the current type I, II and III nized into modules, each of which harbors a set of distinct, paradigms. These examples serve as an inspiration for searching non-iteratively acting activities responsible for the cata- novel polyketide synthases to give new insights into polyketide lysis of one cycle of polyketide chain elongation, as biosynthesis and to provide new opportunities for combinatorial exemplified by the 6-deoxyerythromycin B synthase biosynthesis. (DEBS) for the biosynthesis of reduced polyketides (i.e. macrolides, polyethers and polyene) such as erythro- Addresses mycin A (1)(Figure 1a) [1]. Second, type II PKSs are Division of Pharmaceutical Sciences and Department of Chemistry, multienzyme complexes that carry a single set of iteratively University of Wisconsin, Madison, WI 53705, USA acting activities, as exemplified by the tetracenomycin e-mail: [email protected] PKS for the biosynthesis of aromatic polyketides (often polycyclic) such as tetracenomycin C (2)(Figure 1b) [2]. Current Opinion in Chemical Biology 2003, 7:285–295 Third, type III PKSs, also known as chalcone synthase- like PKSs, are homodimeric enzymes that essentially are This review comes from a themed section on iteratively acting condensing enzymes, as exemplified by Biocatalysis and biotransformation Edited by Tadhg Begley and Ming-Daw Tsai the RppA synthase for the biosynthesis of aromatic poly- ketides (often monocyclic or bicyclic), such as flavolin (3) 1367-5931/03/$ – see front matter (Figure 1c) [3]. -
Keto Acid Dehydrogenase Gene Cluster
JOURNAL OF BACTERIOLOGY, June 1995, p. 3504–3511 Vol. 177, No. 12 0021-9193/95/$04.0010 Copyright q 1995, American Society for Microbiology A Second Branched-Chain a-Keto Acid Dehydrogenase Gene Cluster (bkdFGH) from Streptomyces avermitilis: Its Relationship to Avermectin Biosynthesis and the Construction of a bkdF Mutant Suitable for the Production of Novel Antiparasitic Avermectins CLAUDIO D. DENOYA,* RONALD W. FEDECHKO, EDMUND W. HAFNER, HAMISH A. I. MCARTHUR, MARGARET R. MORGENSTERN, DEBORAH D. SKINNER, KIM STUTZMAN-ENGWALL, RICHARD G. WAX, AND WILLIAM C. WERNAU Bioprocess Research, Central Research Division, Pfizer Inc., Groton, Connecticut 06340 Received 22 February 1995/Accepted 10 April 1995 A second cluster of genes encoding the E1a,E1b, and E2 subunits of branched-chain a-keto acid dehydro- genase (BCDH), bkdFGH, has been cloned and characterized from Streptomyces avermitilis, the soil microor- ganism which produces anthelmintic avermectins. Open reading frame 1 (ORF1) (bkdF, encoding E1a), would encode a polypeptide of 44,394 Da (406 amino acids). The putative start codon of the incompletely sequenced ORF2 (bkdG, encoding E1b) is located 83 bp downstream from the end of ORF1. The deduced amino acid sequence of bkdF resembled the corresponding E1a subunit of several prokaryotic and eukaryotic BCDH complexes. An S. avermitilis bkd mutant constructed by deletion of a genomic region comprising the 5* end of bkdF is also described. The mutant exhibited a typical Bkd2 phenotype: it lacked E1 BCDH activity and had lost the ability to grow on solid minimal medium containing isoleucine, leucine, and valine as sole carbon sources. Since BCDH provides an a-branched-chain fatty acid starter unit, either S(1)-a-methylbutyryl coenzyme A or isobutyryl coenzyme A, which is essential to initiate the synthesis of the avermectin polyketide backbone in S. -
Metabolic Engineering for Unusual Lipid Production in Yarrowia Lipolytica
microorganisms Review Metabolic Engineering for Unusual Lipid Production in Yarrowia lipolytica Young-Kyoung Park * and Jean-Marc Nicaud Micalis Institute, AgroParisTech, INRAE, Université Paris-Saclay, 78352 Jouy-en-Josas, France; [email protected] * Correspondence: [email protected]; Tel.: +33-(0)1-74-07-16-92 Received: 14 November 2020; Accepted: 2 December 2020; Published: 6 December 2020 Abstract: Using microorganisms as lipid-production factories holds promise as an alternative method for generating petroleum-based chemicals. The non-conventional yeast Yarrowia lipolytica is an excellent microbial chassis; for example, it can accumulate high levels of lipids and use a broad range of substrates. Furthermore, it is a species for which an array of efficient genetic engineering tools is available. To date, extensive work has been done to metabolically engineer Y. lipolytica to produce usual and unusual lipids. Unusual lipids are scarce in nature but have several useful applications. As a result, they are increasingly becoming the targets of metabolic engineering. Unusual lipids have distinct structures; they can be generated by engineering endogenous lipid synthesis or by introducing heterologous enzymes to alter the functional groups of fatty acids. In this review, we describe current metabolic engineering strategies for improving lipid production and highlight recent researches on unusual lipid production in Y. lipolytica. Keywords: Yarrowia lipolytica; oleochemicals; lipids; unusual lipids; metabolic engineering 1. Introduction Microbial lipids are promising alternative fuel sources given growing concerns about climate change and environmental pollution [1–4]. They offer multiple advantages over plant oils and animal fats. For example, the production of microbial lipids does not result in resource competition with food production systems; is largely independent of environmental conditions; can be based on diverse substrates; and allows product composition to be customized based on the desired application [3,4]. -
Synthesis and Biosynthesis of Polyketide Natural Products
Syracuse University SURFACE Chemistry - Dissertations College of Arts and Sciences 12-2011 Synthesis and Biosynthesis of Polyketide Natural Products Atahualpa Pinto Syracuse University Follow this and additional works at: https://surface.syr.edu/che_etd Part of the Chemistry Commons Recommended Citation Pinto, Atahualpa, "Synthesis and Biosynthesis of Polyketide Natural Products" (2011). Chemistry - Dissertations. 181. https://surface.syr.edu/che_etd/181 This Dissertation is brought to you for free and open access by the College of Arts and Sciences at SURFACE. It has been accepted for inclusion in Chemistry - Dissertations by an authorized administrator of SURFACE. For more information, please contact [email protected]. Abstract Traditionally separate disciplines of a large and broad chemical spectrum, synthetic organic chemistry and biochemistry have found in the last two decades a fertile common ground in the area pertaining to the biosynthesis of natural products. Both disciplines remain indispensable in providing unique solutions on numerous questions populating the field. Our contributions to this interdisciplinary pursuit have been confined to the biosynthesis of polyketides, a therapeutically and structurally diverse class of natural products, where we employed both synthetic chemistry and biochemical techniques to validate complex metabolic processes. One such example pertained to the uncertainty surrounding the regiochemistry of dehydration and cyclization in the biosynthetic pathway of the marine polyketide spiculoic acid A. The molecule's key intramolecular cyclization was proposed to occur through a linear chain containing an abnormally dehydrated polyene system. We synthesized a putative advanced polyketide intermediate and tested its viability to undergo a mild chemical transformation to spiculoic acid A. In addition, we applied a synthetic and biochemical approach to elucidate the biosynthetic details of thioesterase-catalyzed macrocyclizations in polyketide natural products. -
Bio-Based Production of Fuels and Industrial Chemicals by Repurposing Antibiotic-Producing Type I Modular Polyketide Synthases: Opportunities and Challenges
The Journal of Antibiotics (2017) 70, 378–385 & 2017 Japan Antibiotics Research Association All rights reserved 0021-8820/17 www.nature.com/ja REVIEW ARTICLE Bio-based production of fuels and industrial chemicals by repurposing antibiotic-producing type I modular polyketide synthases: opportunities and challenges Satoshi Yuzawa1, Jay D Keasling1,2,3,4,5,6 and Leonard Katz2 Complex polyketides comprise a large number of natural products that have broad application in medicine and agriculture. They are produced in bacteria and fungi from large enzyme complexes named type I modular polyketide synthases (PKSs) that are composed of multifunctional polypeptides containing discrete enzymatic domains organized into modules. The modular nature of PKSs has enabled a multitude of efforts to engineer the PKS genes to produce novel polyketides of predicted structure. We have repurposed PKSs to produce a number of short-chain mono- and di-carboxylic acids and ketones that could have applications as fuels or industrial chemicals. The Journal of Antibiotics (2017) 70, 378–385; doi:10.1038/ja.2016.136; published online 16 November 2016 INTRODUCTION complex polyketide is programmed by its cognate PKS, by the number Complex polyketides represent a family of natural products that and composition of modules. possess a wide variety of pharmacological or biological activities. Since the concept of modular polyketide biosynthesis was initially Numerous polyketides and their semisynthetic derivatives have been report by Katz and colleagues2 more than 25 years -
Investigation and Engineering of Polyketide Biosynthetic Pathways
Utah State University DigitalCommons@USU All Graduate Theses and Dissertations Graduate Studies 12-2017 Investigation and Engineering of Polyketide Biosynthetic Pathways Lei Sun Utah State University Follow this and additional works at: https://digitalcommons.usu.edu/etd Part of the Biological Engineering Commons Recommended Citation Sun, Lei, "Investigation and Engineering of Polyketide Biosynthetic Pathways" (2017). All Graduate Theses and Dissertations. 6903. https://digitalcommons.usu.edu/etd/6903 This Dissertation is brought to you for free and open access by the Graduate Studies at DigitalCommons@USU. It has been accepted for inclusion in All Graduate Theses and Dissertations by an authorized administrator of DigitalCommons@USU. For more information, please contact [email protected]. INVESTIGATION AND ENGINEERING OF POLYKETIDE BIOSYNTHETIC PATHWAYS by Lei Sun A dissertation submitted in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSPHY in Biological Engineering Approved: ______________________ ____________________ Jixun Zhan, Ph.D. David W. Britt, Ph.D. Major Professor Committee Member ______________________ ____________________ Dong Chen, Ph.D. Jon Takemoto, Ph.D. Committee Member Committee Member ______________________ ____________________ Elizabeth Vargis, Ph.D. Mark R. McLellan, Ph.D. Committee Member Vice President for Research and Dean of the School of Graduate Studies UTAH STATE UNIVERSITY Logan, Utah 2017 ii Copyright© Lei Sun 2017 All Rights Reserved iii ABSTRACT Investigation and engineering of polyketide biosynthetic pathways by Lei Sun, Doctor of Philosophy Utah State University, 2017 Major Professor: Jixun Zhan Department: Biological Engineering Polyketides are a large family of natural products widely found in bacteria, fungi and plants, which include many clinically important drugs such as tetracycline, chromomycin, spirolaxine, endocrocin and emodin. -
An Iterative Type I Polyketide Synthase Initiates the Biosynthesis of the Antimycoplasma Agent Micacocidin
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Chemistry & Biology Article An Iterative Type I Polyketide Synthase Initiates the Biosynthesis of the Antimycoplasma Agent Micacocidin Hirokazu Kage,1 Martin F. Kreutzer,1 Barbara Wackler,2 Dirk Hoffmeister,2 and Markus Nett1,* 1Junior Research Group ‘‘Secondary Metabolism of Predatory Bacteria’’, Leibniz Institute for Natural Product Research and Infection Biology, Hans-Kno¨ ll-Institute, Beutenbergstrasse 11a, 07745 Jena, Germany 2Department of Pharmaceutical Biology at the Hans-Kno¨ ll-Institute, Friedrich Schiller Universita¨ t Jena, 07745 Jena, Germany *Correspondence: [email protected] http://dx.doi.org/10.1016/j.chembiol.2013.04.010 SUMMARY under macrolide therapy have been described (Averbuch et al., 2011; Cardinale et al., 2011; Itagaki et al., 2013). Micacocidin is a thiazoline-containing natural pro- Micacocidin is a new antibiotic that exerts strong inhibitory duct from the bacterium Ralstonia solanacearum effects in the nanomolar range against several Mycoplasma that shows significant activity against Mycoplasma species, including M. pneumoniae (Kobayashi et al., 1998). pneumoniae. The presence of a pentylphenol moiety In vivo efficacy after oral administration was demonstrated in distinguishes micacocidin from the structurally chicken that had been infected with M. gallisepticum (Kobayashi related siderophore yersiniabactin, and this residue et al., 2000). The thiazoline-containing natural product micaco- cidin is structurally closely related to the siderophore yersinia- also contributes to the potent antimycoplasma bactin (Drechsel et al., 1995), and cellular uptake studies effects. The biosynthesis of the pentylphenol moiety, suggest that it might also be involved in iron acquisition of the as deduced from bioinformatic analysis and stable producing bacterium Ralstonia solanacearum (Kreutzer et al., isotope feeding experiments, involves an iterative 2011). -
Computational and Experimental Evidence on Reaction Mechanisms of Oxidized Sulfur-Containing Compounds in Ground and Excited States Jerry W
Iowa State University Capstones, Theses and Retrospective Theses and Dissertations Dissertations 2001 Computational and experimental evidence on reaction mechanisms of oxidized sulfur-containing compounds in ground and excited states Jerry W. Cubbage Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/rtd Part of the Organic Chemistry Commons, and the Physical Chemistry Commons Recommended Citation Cubbage, Jerry W., "Computational and experimental evidence on reaction mechanisms of oxidized sulfur-containing compounds in ground and excited states " (2001). Retrospective Theses and Dissertations. 419. https://lib.dr.iastate.edu/rtd/419 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. INFORMATION TO USERS This manuscript has been reproduced from the microfilm master. UMI films the text directly from the original or copy submitted. Thus, some thesis and dissertation copies are in typewriter face, while others may be from any type of computer printer. The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleedthrough, substandard margins, and improper alignment can adversely affect reproduction. In the unlikely event that the author did not send UMI a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material had to be removed, a note will indicate the deletion. -
5-Endo-Die. Approaches to Pyrroles Jirada Singkhonrat
5-Endo-Die. Approaches to Pyrroles A thesis submitted to Cardiff University By Jirada Singkhonrat BSc, MSc In candidature of Doctor of Philosophy September 2004 Department of Chemistry Cardiff University UMI Number: U584670 All rights reserved INFORMATION TO ALL USERS The quality of this reproduction is dependent upon the quality of the copy submitted. In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion. Dissertation Publishing UMI U584670 Published by ProQuest LLC 2013. Copyright in the Dissertation held by the Author. Microform Edition © ProQuest LLC. All rights reserved. This work is protected against unauthorized copying under Title 17, United States Code. ProQuest LLC 789 East Eisenhower Parkway P.O. Box 1346 Ann Arbor, Ml 48106-1346 Declaration This work has not previously been accepted in substance for any degree and is not being concurrently submitted in candidature for any degree. Signed a toJfl (candidate) Date QS_____________ Statement one This thesis is the result of my own investigations, except where otherwise stated. Other sources are acknowledged by footnotes giving explicit references. A bibliography is appended. Signed vo ________ (candidate) Date k y ja * } Q 5__ Statement two I hereby give consent for my thesis, if accepted, to be made available for photocopying and for inter-library loan, and for the title and summary to be made available to outside organisations. Signed — aofg errs (candidate) Date wJXv* 0 5 Abstract This project required developing new practical routes towards pyrroles and could help the project of total synthesis of (-)-rhazinilam. -
Biosynthesis of Natural Products
Biosynthesis of Natural Products Biosynthesis of Fatty Acids & Polyketides Alan C. Spivey [email protected] Nov 2015 Format & Scope of Lectures • What are fatty acids? – 1° metabolites: fatty acids; 2° metabolites: their derivatives – biosynthesis of the building blocks: acetyl CoA & malonyl CoA • Fatty acid synthesis by Fatty Acid Synthases (FASs) – the chemistry involved – the FAS protein complex & the dynamics of the iterative synthesis process • Fatty acid secondary metabolites – eiconasiods: prostaglandins, thromboxanes & leukotrienes • What are polyketides? – definitions & variety • Polyketide synthesis by PolyKetide Synthases (PKSs) – the chemistry involved – the PKS protein complexes & the dynamics of the iterative synthesis process • Polyketide secondary metabolites – Type I modular metabolites: macrolides – e.g. erythromycin – Type I iterative metabolites: e.g. mevinolin (=lovastatin®) – Type II iterative metabolites: aromatic compounds and polyphenols: e.g. actinorhodin Fatty Acid Primary Metabolites OH OH • Primary metabolites: OH glycerol – fully saturated, linear carboxylic acids & derived (poly)unsaturated derivatives: 3x fatty acids • constituents of essential natural waxes, seed oils, glycerides (fats) & phospholipids • structural role – glycerides & phospholipids are essential constituents of cell membranes OCOR1 • energy storage – glycerides (fats) can also be catabolised into acetate → citric acid cycle OCOR2 OCOR3 • biosynthetic precursors – for elaboration to secondary metabolites glycerides SATURATED ACIDS [MeCH2(CH2CH2)nCH2CO2H (n=2-8)] e.g. CO2H caprylic acid (C8, n = 2) CO2H myristic acid (C14, n = 5) 8 1 14 1 CO H CO2H capric acid (C8, n = 3) 2 palmitic acid (C16, n = 6) 1 10 1 16 CO2H lauric acid (C12, n = 4) CO2H stearic acid (C18, n = 7) 12 1 18 1 MONO-UNSATURATED ACID DERIVATIVES (MUFAs) e.g. -
Chapter 4 Erythronolide B and the Erythromycins
124 Chapter 4 Erythronolide B and the Erythromycins Isolation and Structure Isolated in 1952 from the soil bacteria actinomycetes,1 the erythromycins are a distinguished family of natural products by virtue of their clinically useful antibacterial properties and complex structures. Soon after their discovery, scientists elucidated the structure of erythromycin A (1),2 and then erythromycin B (2),3,4 through extensive degradation studies (Figure 1).5 X-ray crystallography studies have established the three dimensional structure of these natural products.6 The erythromycins are characterized by 14-membered macrolactones with glycosidic linkages at C(3) and C(5) to 6-deoxysugars, L-cladinose and D-desosamine, respectively. The name “erythronolide” refers to the polyketide derived-aglycone (e.g., 3 and 4, Figure 1), while the letter codes (i.e., A, B, etc.) reflect each isomer and its order of discovery. In contrast to erythronolide A (3), erythronolide B (4) is a natural product and more importantly, the biogenic precursor of all the erythromycin isomers. 125 O O Me Me Me Me 9 Me Me Me 11 7 OH Me OH R OH R OH NMe 13 Me 5 HO 2 Me O O O Me O OH Me 1 3 Me O O OMe O OH Me Me Me O OH Me 1 R = OH erythromycin A 3 R = OH erythronolide A 2 R = H erythromycin B 4 R = H erythronolide B Figure 1. Representative members of the erythromycin macrolide family of antibiotics Biosynthesis of Erythronolide B Our understanding on the biosynthesis of polyketides derives mainly from extensive studies conducted on the biosynthetic mechanism of the erythromycins.7 The first polyketide synthase genome sequenced was that of 6-deoxyerythronolide B synthase (DEBS).8 Many Streptomyces polyketide synthases sequenced thereafter proved similar in structure and function to DEBS.