Star Gazer News

Total Page:16

File Type:pdf, Size:1020Kb

Star Gazer News Star Gazer News Astronomy News for Bluewater Stargazers Vol 14 No.4 Jul/Aug 2020 Jul/Aug 2020 SGN Contents p 1: Messages from President and Editor p 2: Perseid Meteor Shower is back! Arecibo Observatory radar image of 2 km wide asteroid 1998 p 3: Mars may have had Rings! OR-2, which flew past Earth on April 29, 2020, seems to show p 4: More on Rings in our Solar System it wearing a coronavirus mask. But the asteroid’s uneven p 5: Four Major Greek Discoveries shape caused the illusion, scientists say. NASA/NSF image p 6: Greek Discoveries (cont’d) p 7: Two planets around Proxima Centauri From the Editor: p 8-9: Einstein Theory Confirmed Again p 10: Sky Sights: July/August ES Fox observing coming back slowly p 11: Jupiter and Saturn at Opposition in July After the Ontario government started slowly relaxing p 12: Constellation page: Leo, Major and Minor restrictions due to the Covid-19 pandemic, your BAS p 13: Miscellaneous Page and Classified executive contacted the Bluewater Education Foundation, p 14: Feature Image: Leo Triplet owners of the BOEC with a request to slowly re-start [Quetican Field of View will return next issue -ed] observing at the Fox Observatory. They agreed with our arguments about the Fox being a low-risk outdoor facility From “Pro Tem” President Eric: and our commitment to follow social distancing, hand Hi all. sanitization, etc., and have allowed BAS members (only) In this time of continuing change, we have all been isolating in hope that the tide will turn. It seems that we are now to start re-using the observatory. seeing some light, and with that there is the start of viewing from the ES Fox Observatory at the Bluewater Outdoor The first of those events, involving observing only from the Education Centre (BOEC). The Bluewater Education grounds around the Fox with no access to the interior Foundation has granted us access to the observatory for occurred on our scheduled viewing night June 20. viewing purposes. Being that we are still in the grips of the Notwithstanding the mosquitoes and late sunset (it was still Covid-19 pandemic, there are a few new procedures to not truly dark even at 10 pm) a small group of observers did follow when attending events at the Fox Observatory. take advantage of the dark sky site. The next viewing night will be July 18 for the oppositions of Jupiter and Saturn Access is still limited by provincial guidelines and the emergency act. That is to say as we are entering into Phase followed by Perseid meteor watching Tues Aug 11/12 (Note 2 of the reopening on Friday (June 12) the following can change of date). As we get into the summer, access to the occur. observatory will gradually be permitted as long as we follow simple health precautions. See the column by Eric I. on this Access to the outside of the Observatory is permitted and page explaining the protocols. the maximum number on the site is limited to 10. You must bring your own equipment at this time to view. There will be no sharing of equipment or use of equipment On arrival the leader of the observing session will have a inside the Fox Observatory. Please bring your own hand sign in book. You must sign in. sanitizer, and we recommend a mask. You may also wish to use gloves. Note at this time there will be no access to the inside of the Fox Observatory or any BOEC buildings. This means that If viewing is desired an email needs to be sent to me there are no washroom facilities available. at [email protected] . If there is at least 2 people then viewing can occur. Of course the maximum number is 10. Remember it is mosquito season. Self screening is essential. If you are not feeling well, have At the end of the session you must see the leader and sign a new cough, fever, or been asked to isolate, then please out. stay at home. Happy Observing and stay safe On arrival at the BOEC you need to go directly to the Eric Ingard Observatory as currently the rest of the site is off limits. S G N Astro News Jul/Aug 2020 pg 2 Disclaimer: SGN reports on the activities of the Bluewater BAS Executive 2020-2021 Astronomical Society (formerly Bruce County Astronomical President (interim): Eric Ingard [email protected] Society) but any opinions presented herein are not necessarily V-President (interim): Brett Tatton [email protected] endorsed by BAS. For up-to-date details relating to BAS Secretary: Lorraine Rodgers [email protected] Treasurer: Cheryl Dawson [email protected] events see the BAS website at www.bluewaterastronomy.com. Member-at-Large: Zoë Kessler [email protected] SGN is produced and edited by John Hlynialuk and I am solely Membership: Marian Ratcliffe [email protected] responsible for its content. I maintain a web presence at www.johns- Public Outreach: John Hlynialuk [email protected] astronomy.com. Your original articles, images, opinions, comments, observing Past Pres: John Hlynialuk [email protected] reports, etc., are welcome at SGN. I reserve the right to edit for brevity or clarity. Errors or omissions are entirely mine. I will not publish your emails or other materials without your specific permission. No part of this publication shall be reproduced in any form whatsoever without the editor’s consent. However, the Sky Events and Constellation pages are free to copy for non-commercial use. Feel free to forward this issue in its entirety to friends. You are welcome to email comments and/or submissions to [email protected] From “Retiring” President John As was announced at our last physical meeting in March, I there are limits on the sizes of groups. have decided to step back from president duties as of That is not to say that the exec has not been busy. May 31 and BAS has appointed a temporary president Organizing on-line meetings has fallen on the shoulders of Eric Ingard, to take on those duties until the next election both secretary Lorraine as host and Eric as chair of those in March of 2021. Brett Tatton was also appointed to take meetings. Brett has been busy communicating with his on the vice-presidential job vacated by Eric. I am staying contact at the national park as they gradually try to re- on exec as Public Outreach Chair, responsible for open. Unfortunately, group size restrictions make it promoting public events. impossible to hold astronomical viewing events and so our To some extent the reasons I had for stepping down annual “dark-in-the-park” weekend at the Bruce National have been declared moot by the Covid-19 pandemic since Park for July has been cancelled until next year. The post- many of the duties that would have been on the Labour Day Inverhuron weekend may or may not go ahead president’s plate have been cancelled or postponed. Even but it will be in modified form, and nothing is confirmed at the Public Outreach job is duty-free at this point since this point as staff gradually return to Ont. Provincial Parks. there are no public viewings (anywhere in Ontario) until Nothing, it seems is normal and I think we can expect possibly in September. In addition, astronomy programs more of the same until well into the fall. Hang in there for students at the Outdoor Ed Centre have been folks, stay safe! Enjoy the stars from your backyards! All cancelled as well. These may start up again in September, the best from the BAS exec and a sincere personal "Thank but we are not sure what form they will take, especially if you” for your support of this retiring president. Perseid Meteor Shower -from IMO International Meteor Organization Active from July 17th to August 26th, 2020 The Perseids are particles released from comet 109P/Swift-Tuttle during its numerous returns to the inner solar system. They are called Perseids since the radiant (the area of the sky where the meteors seem to originate) is located near the prominent constellation of Perseus. Shower details - Radiant: 03:12 +57.6° - ZHR: 100 - Velocity: (swift - 60km/s) Parent Object: 109P/Swift-Tuttle Peak - The Perseids will peak at 9 am EDT Aug 12, 2020 so Aug 11 or 12 are prime nights. The moon is LQ (43%). enough by 9:30 pm Aug 11 and the radiant is 16° above the NE horizon by then. Until the LQ moon rises at 12:30 am Perseid meteor viewing will be best on the nights of Aug Aug 12, there is a good 3 hour window to observe shooting 11-12, 2020. The official peak is 9 am EDT on Wed Aug 12 stars. The same applies the previous night, Aug 10-11 and in North America, so the previous night is closest to peak. also 12-13 (2.5 and 3.5 hour windows, respectively, before Aug 10/11 and 12/13 should be good as well. The RASC Moon rise). handbook gives 100 per hour as a peak rate but only under Make sure you give your camera a workout! Just mount it ideal conditions, -still you can expect about 50 to 60 per on a tripod, focus on infinity and set exposure to a minute hour around midnight on those nights. It should be dark or so, with a low ISO and fire away. S G N Mars with Rings? Jul/Aug 2020 pg 3 Mars May Have Had a Ring in Mars rings -artist the Past SETI Press Rel.
Recommended publications
  • Evidence for Very Extended Gaseous Layers Around O-Rich Mira Variables and M Giants B
    The Astrophysical Journal, 579:446–454, 2002 November 1 # 2002. The American Astronomical Society. All rights reserved. Printed in U.S.A. EVIDENCE FOR VERY EXTENDED GASEOUS LAYERS AROUND O-RICH MIRA VARIABLES AND M GIANTS B. Mennesson,1 G. Perrin,2 G. Chagnon,2 V. Coude du Foresto,2 S. Ridgway,3 A. Merand,2 P. Salome,2 P. Borde,2 W. Cotton,4 S. Morel,5 P. Kervella,5 W. Traub,6 and M. Lacasse6 Received 2002 March 15; accepted 2002 July 3 ABSTRACT Nine bright O-rich Mira stars and five semiregular variable cool M giants have been observed with the Infrared and Optical Telescope Array (IOTA) interferometer in both K0 (2.15 lm) and L0 (3.8 lm) broad- band filters, in most cases at very close variability phases. All of the sample Mira stars and four of the semire- gular M giants show strong increases, from ’20% to ’100%, in measured uniform-disk (UD) diameters between the K0 and L0 bands. (A selection of hotter M stars does not show such a large increase.) There is no evidence that K0 and L0 broadband visibility measurements should be dominated by strong molecular bands, and cool expanding dust shells already detected around some of these objects are also found to be poor candi- dates for producing these large apparent diameter increases. Therefore, we propose that this must be a con- tinuum or pseudocontinuum opacity effect. Such an apparent enlargement can be reproduced using a simple two-component model consisting of a warm (1500–2000 K), extended (up to ’3 stellar radii), optically thin ( ’ 0:5) layer located above the classical photosphere.
    [Show full text]
  • 1 0929 Rioja Dodson__Precise Radio Astrometry.Pdf
    Astron Astrophys Rev (2020)28:6 https://doi.org/10.1007/s00159-020-00126-z(0123456789().,-volV)(0123456789().,-volV) REVIEW ARTICLE Precise radio astrometry and new developments for the next generation of instruments 1,2,3 2 Marı´a J. Rioja • Richard Dodson Received: 9 January 2020 / Accepted: 17 June 2020 Ó Springer-Verlag GmbH Germany, part of Springer Nature 2020 Abstract We present a technique-led review of the progression of precise radio astrometry, from the first demonstrations, half a century ago, until to date and into the future. We cover the developments that have been fundamental to allow high accuracy and precision astrometry to be regularly achieved. We review the opportunities provided by the next generation of instruments coming online, which are primarily: SKA, ngVLA, and pathfinders, along with EHT and other (sub)mm-wavelength arrays, Space-VLBI, Geodetic arrays, and optical astrometry from GAIA. From the his- torical development, we predict the future potential astrometric performance, and, therefore, the instrumental requirements that must be provided to deliver these. The next generation of methods will allow ultra-precise astrometry to be performed at a much wider range of frequencies (hundreds of MHz to hundreds of GHz). One of the key potentials is that astrometry will become generally applicable, and, there- fore, unbiased large surveys can be performed. The next-generation methods are fundamental in allowing this. We review the small but growing number of major astrometric surveys in the radio, to highlight the scientific impact that such projects can provide. Based on these perspectives, the future of radio astrometry is bright.
    [Show full text]
  • Astrometrically Registered Maps of H2O and Sio Masers Toward VX Sagittarii
    ARTICLE DOI: 10.1038/s41467-018-04767-8 OPEN Astrometrically registered maps of H2O and SiO masers toward VX Sagittarii Dong-Hwan Yoon1,2, Se-Hyung Cho2,3, Youngjoo Yun2, Yoon Kyung Choi2, Richard Dodson4, María Rioja4,5, Jaeheon Kim6, Hiroshi Imai7, Dongjin Kim3, Haneul Yang1,2 & Do-Young Byun2 The supergiant VX Sagittarii is a strong emitter of both H2O and SiO masers. However, previous VLBI observations have been performed separately, which makes it difficult to 1234567890():,; spatially trace the outward transfer of the material consecutively. Here we present the astrometrically registered, simultaneous maps of 22.2 GHz H2O and 43.1/42.8/86.2/129.3 GHz SiO masers toward VX Sagittarii. The H2O masers detected above the dust-forming layers have an asymmetric distribution. The multi-transition SiO masers are nearly circular ring, suggesting spherically symmetric wind within a few stellar radii. These results provide the clear evidence that the asymmetry in the outflow is enhanced after the smaller molecular gas clump transform into the inhomogeneous dust layers. The 129.3 GHz maser arises from the outermost region compared to that of 43.1/42.8/86.2 GHz SiO masers. The ring size of the 129.3 GHz maser is maximized around the optical maximum, suggesting that radiative pumping is dominant. 1 Astronomy Program, Department of Physics and Astronomy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Korea. 2 Korea Astronomy and Space Science Institute, 776 Daedeokdae-ro, Yuseong-gu, Daejeon 34055, Korea. 3 Department of Astronomy, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Korea.
    [Show full text]
  • Rak a Malý Lev Na Rozhraní Zimní a Jarní Oblohy Uprostřed Jarního Trojúhelníku Leží Malé Souhvězdí, Po Němž Máme Na Zemi Pojmenovaný Obratník
    Pozorování © Nigel Sharp, Mark Hanna/NOAO/AURA/NSF Rak a Malý lev Na rozhraní zimní a jarní oblohy uprostřed jarního trojúhelníku leží malé souhvězdí, po němž máme na Zemi pojmenovaný obratník. Souhvězdí Raka. V minulosti totiž právě v tomto souhvězdí dosahovalo Slunce největší deklinace. Dnes, díky precesi, k tomu dochází v souhvězdí Blíženců. Rak je v antice zpodobňován jako krab pomáhající Hydře v boji proti Herkulovi. Chaldejci zde zase viděli místo, kudy sestupují duše na Zem, aby zde přijaly fyzické tělo. Ve starověkém Egyptě toto souhvězdí znali již v roce 2 000 př. n. l. Nenápadné souhvězdí Malého lva najdeme mezi Lvem a Velkou medvědicí. Toto nenápadné a ve městě v podstatě neviditelné souhvězdí se na oblohu dostalo až v novověku díky Janu Heveliovi, definitivně se Malý lev na obloze zabydlel až ve 20. století, kdy byla na Valném shromáždění IAU přijata dnešní podoba souhvězdí. M 67 Rak leží na ekliptice, proto můžeme být někdy svědky zákrytu jeho hvězd Měsícem, asi 580 ly. Skutečný rektascenze deklinace jasnost rozměry výjimečně i planetou. Nejjasnější hvězda, průměr je asi 13 ly. α Cnc, se jmenuje Acubens, což znamená Stáří se odhaduje na α Cnc 8h 58,9m 11° 50′ 4,3+11,8 11″ „klepeto“, a dosahuje 4. velikosti. Jedná se 730 mil. let. První ι Cnc 8h 47,1m 28° 44′ 4,1+6,0 30″ o dvojhvězdu. Ve vzdálenosti 11″ se nachází pozoroval M 44 již druhá složka 11. velikosti. Celý systém je Galileo Galilei a roz- M 44 8h 40m 19° 40′ 3,5 95′ od nás vzdálen asi 170 ly.
    [Show full text]
  • The Sudden Death of the Nearest Quasar Hannyʼs Voorwerp and Its Cousins Shed Light on Black Hole Accretion
    The Sudden Death of the Nearest Quasar Hannyʼs Voorwerp and its cousins shed light on black hole accretion Dan Evans Harvard-Smithsonian Center for Astrophysics & Elon University Key collaborators: Kevin Schawinski, William Keel, Meg Urry, Shanil Virani, Chris Lintott, Priyamvada Natarajan Hanny van Arkel, Richard Proctor, Hannah Hutchins, Elizabeth Baeten, Massimo Mezzoprete, Elizabeth Siegel, Aida Berges, voyager1682002, Caro, Christian Manteuffel... 430,000+ Zooniverse Citizen Scientists Schawinski et al. 2010, ApJ Letters, 724, L30 Science Questions What is the time scale on which quasar phases turn on and off? What do rapid “deaths” tell us about black hole accretion physics? Are “dead” quasars the real culprits in quasar feedback? Discovered by citizen scientist Hanny van Arkel in 2007 Named by GZ forum members after discoverer Spectroscopic Properties z=0.05 - same as IC 2497 Lintott, Schawinski et al. (2009) Spectroscopic Properties Low Density Gas: [S II] λ6717/6731 ratio is density sensitive and lies in the low density limit (ne < 50 cm−3) AGN Photoionized: He II λ4616 and [NeV] λλ3346,3426 + [OIII] imply high ionization parameter, log U = −2.2 (need v ~ 400km/s to get lines due to shock) Low Metallicity: [N II]/Hα and [S II]/Hα indicate low metallicity of ~0.1-0.2 Zsolar Lintott, Schawinski et al. (2009) 1.4 GHz continuum 9 10 Msun of HI From: WSRT, Jozsa et al. (2010) HST F184W How luminous? • Template SED from Elvis et al. (1994) • Scaled SED to match the minimum UV luminosity to ionize the Voorwerp • Find Lbol ~ 1046 erg/s • L2-10 keV ~ 8x1044 erg/s Quasar - Lbol ~1046 erg/s! Why donʼt we see a quasar? 1.
    [Show full text]
  • Extended X-Ray Emission in the IC€2497 – Hanny's Voorwerp System
    MNRAS 457, 3629–3636 (2016) doi:10.1093/mnras/stw230 Advance Access publication 2016 January 29 Extended X-ray emission in the IC 2497 – Hanny’s Voorwerp system: energy injection in the gas around a fading AGN Downloaded from https://academic.oup.com/mnras/article-abstract/457/4/3629/2589023 by Pontificia Universidad Catolica de Chile user on 11 June 2019 Lia F. Sartori,1‹ Kevin Schawinski,1‹ Michael Koss,1 Ezequiel Treister,2 W. Peter Maksym,3 William C. Keel,4 C. Megan Urry,5 Chris J. Lintott6 and O. Ivy Wong7 1Institute for Astronomy, Department of Physics, ETH Zurich,¨ Wolfgang-Pauli-Strasse 27, CH-8093 Zurich,¨ Switzerland 2Departamento de Astronom´ıa, Universidad de Concepcion,´ Casilla 160-C, Concepcion,´ Chile 3Harvard–Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138, USA 4Department of Physics and Astronomy, University of Alabama, Tuscaloosa, AL 35487, USA 5Yale Center for Astronomy & Astrophysics, Physics Department, PO Box 208120, New Haven, CT 06520, USA 6Oxford Astrophysics, Denys Wilkinson Building, Keble Road, Oxford OX1 3RH, UK 7ICRAR, The University of Western Australia M468, 35 Stirling Highway, Crawley, WA 6009, Australia Accepted 2016 January 25. Received 2016 January 25; in original form 2015 November 27 ABSTRACT We present deep Chandra X-ray observations of the core of IC 2497, the galaxy associated with Hanny’s Voorwerpand hosting a fading AGN. We find extended soft X-ray emission from 42 44 −1 hot gas around the low intrinsic luminosity (unobscured) AGN (Lbol ∼ 10 –10 erg s ). The temperature structure in the hot gas suggests the presence of a bubble or cavity around the 54 55 fading AGN (Ebub ∼ 10 –10 erg).
    [Show full text]
  • Joel R. Primack ! Distinguished Professor of Physics, University of California, Santa Cruz
    April 18, 2014 GalaxyZoo and the Zooniverse of Astronomy Citizen Science Joel R. Primack ! Distinguished Professor of Physics, University of California, Santa Cruz Director, University of California High-Performance AstroComputing Center (UC-HiPACC) Galaxy Zoo started back in July 2007, with a data set made up of a million galaxies imaged by the Sloan Digital Sky Survey. Within 24 hours of launch we were stunned to be receiving almost 70,000 classifications an hour. More than 50 million classifications were received by the project during its first year, contributed by more than 150,000 people.! ! That meant that each galaxy was seen by many different participants. This is deliberate; having multiple independent classifications of the same object is important, as it allows us to assess how reliable our results are. For example, for projects where we may only need a few thousand galaxies but want to be sure they're all spirals before using up valuable telescope time on them, there's no problem - we can just use those that 100% of classifiers agree are spiral. For other projects, we may need to look at the properties of hundreds of thousands of galaxies, and can use those that a majority say are spiral.! ! In that first Galaxy Zoo all we asked volunteers to do was to split the galaxies into ellipticals, mergers and spirals and - if the galaxy was spiral - to record the direction of the arms. But it was enough to show that the classifications Galaxy Zoo provides were as good as those from professional astronomers, and were of use to a large number of researchers.
    [Show full text]
  • I N S I D E T H I S I S S
    Publications and Products of October / octobre 2005 Volume/volume 99 Number/numéro 5 [714] The Royal Astronomical Society of Canada Observer’s Calendar — 2006 The award-winning RASC Observer's Calendar is your annual guide Created by the Royal Astronomical Society of Canada and richly illustrated by photographs from leading amateur astronomers, the calendar pages are packed with detailed information including major lunar and planetary conjunctions, The Journal of the Royal Astronomical Society of Canada Le Journal de la Société royale d’astronomie du Canada meteor showers, eclipses, lunar phases, and daily Moonrise and Moonset times. Canadian and U.S. holidays are highlighted. Perfect for home, office, or observatory. Individual Order Prices: $16.95 Cdn/ $13.95 US RASC members receive a $3.00 discount Shipping and handling not included. The Beginner’s Observing Guide Extensively revised and now in its fifth edition, The Beginner’s Observing Guide is for a variety of observers, from the beginner with no experience to the intermediate who would appreciate the clear, helpful guidance here available on an expanded variety of topics: constellations, bright stars, the motions of the heavens, lunar features, the aurora, and the zodiacal light. New sections include: lunar and planetary data through 2010, variable-star observing, telescope information, beginning astrophotography, a non-technical glossary of astronomical terms, and directions for building a properly scaled model of the solar system. Written by astronomy author and educator, Leo Enright; 200 pages, 6 colour star maps, 16 photographs, otabinding. Price: $19.95 plus shipping & handling. Skyways: Astronomy Handbook for Teachers Teaching Astronomy? Skyways Makes it Easy! Written by a Canadian for Canadian teachers and astronomy educators, Skyways is Canadian curriculum-specific; pre-tested by Canadian teachers; hands-on; interactive; geared for upper elementary, middle school, and junior-high grades; fun and easy to use; cost-effective.
    [Show full text]
  • Quantization of Planetary Systems and Its Dependency on Stellar Rotation Jean-Paul A
    Quantization of Planetary Systems and its Dependency on Stellar Rotation Jean-Paul A. Zoghbi∗ ABSTRACT With the discovery of now more than 500 exoplanets, we present a statistical analysis of the planetary orbital periods and their relationship to the rotation periods of their parent stars. We test whether the structure of planetary orbits, i.e. planetary angular momentum and orbital periods are ‘quantized’ in integer or half-integer multiples with respect to the parent stars’ rotation period. The Solar System is first shown to exhibit quantized planetary orbits that correlate with the Sun’s rotation period. The analysis is then expanded over 443 exoplanets to statistically validate this quantization and its association with stellar rotation. The results imply that the exoplanetary orbital periods are highly correlated with the parent star’s rotation periods and follow a discrete half-integer relationship with orbital ranks n=0.5, 1.0, 1.5, 2.0, 2.5, etc. The probability of obtaining these results by pure chance is p<0.024. We discuss various mechanisms that could justify this planetary quantization, such as the hybrid gravitational instability models of planet formation, along with possible physical mechanisms such as inner discs magnetospheric truncation, tidal dissipation, and resonance trapping. In conclusion, we statistically demonstrate that a quantized orbital structure should emerge naturally from the formation processes of planetary systems and that this orbital quantization is highly dependent on the parent stars rotation periods. Key words: planetary systems: formation – star: rotation – solar system: formation 1. INTRODUCTION The discovery of now more than 500 exoplanets has provided the opportunity to study the various properties of planetary systems and has considerably advanced our understanding of planetary formation processes.
    [Show full text]
  • 1709.07167.Pdf
    Publication Year 2017 Acceptance in OA@INAF 2020-11-24T18:03:22Z Title The science case for simultaneous mm-wavelength receivers in radio astronomy Authors Dodson, Richard; Rioja, María J.; Jung, Taehyun; Goméz, José L.; Bujarrabal, Valentin; et al. DOI 10.1016/j.newar.2017.09.003 Handle http://hdl.handle.net/20.500.12386/28522 Journal NEW ASTRONOMY REVIEWS Number 79 The Science Case for Simultaneous mm-Wavelength Receivers in Radio Astronomy Richard Dodsona, Mar´ıaJ. Riojaa,b,c, Taehyun Jungd,e, Jos´eLuis Gom´ezf, Valentin Bujarrabalc, Luca Moscadillig, James C. A. Miller-Jonesh, Alexandra J. Tetarenkoi, Gregory R. Sivakoffi aInternational Centre for Radio Astronomy Research, The University of Western Australia, 35 Stirling Hwy, Western Australia bCSIRO Astronomy and Space Science, 26 Dick Perry Avenue, Kensington WA 6151, Australia cObservatorio Astron´omicoNacional (IGN), Alfonso XII, 3 y 5, 28014 Madrid, Spain dKorea Astronomy and Space Science Institute 776, Daedeokdae-ro, Yuseong-gu, Daejeon, 34055, Republic of Korea eUniversity of Science and Technology, 217, Gajeong-ro, Yuseong-gu, Daejeon, 34113, Korea fInstituto de Astrof´ısicade Andaluc´ıa-CSIC,Glorieta de la Astronom´ıas/n, E-18008 Granada, Spain gINAF-Osservatorio Astrofisico di Arcetri, Largo E. Fermi 5, 50125, Firenze, Italy hInternational Centre for Radio Astronomy Research, Curtin University, GPO Box U1987, Perth, WA 6845, Australia iDepartment of Physics, CCIS 4-183, University of Alberta, Edmonton, AB T6G 2E1, Canada Abstract This review arose from the European Radio Astronomy Technical Forum (ERATec) meeting held in Firenze, October 2015, and aims to highlight the breadth and depth of the high-impact science that will be aided and assisted by the use of simultaneous mm-wavelength receivers.
    [Show full text]
  • HST Observaqons of Hanny's Voorwerp and IC 2497
    The History And Environment Of A Faded Quasar: HST Observaons Of Hanny's Voorwerp And IC 2497 William C. Keel1, C. Linto2, K. Schawinski3, V. Bennert4, D. Thomas5, A. Manning1, S. D. Chojnowski6, H. van Arkel7, S. Lynn8, Galaxy Zoo team 1Univ. of Alabama, 2Adler Planetarium, 3Yale Univ., 4UCSB, 5Univ. of Portsmouth, UK, 6Texas Chrisan Univ., 7CITAVERDE College, NL, 8Oxford Univ., UK. Perhaps the signature discovery of the Galaxy Zoo cizen‐science project has been Hanny's Voorwerp, a high‐ionizaon cloud extending 45 kpc from the IC 2497 and Hanny’s Voorwerp spiral galaxy IC 2497. It must be ionized by a luminous yet unseen AGN. We Previous results: explore this system using HST imaging and spectroscopy. The disk of IC 2497 Voorwerp has high‐ionizaon opcal spectrum, at z=0.05 matching IC 2497 45 is warped, with complex dust absorpon near the nucleus; the near‐IR peak Gas requires ionizing luminosity ~4x10 erg/s coincides closely with the VLBI core. STIS spectra show the AGN as a low‐ Extent to 45 kpc in projecon 10 luminosity LINER, matching its weak X‐ray emission, and accompanied by an Part of 300‐kc H I tail with nearly 10 solar masses expanding loop of ionized gas ~500 pc in diameter (expansion age < 7 x 105 Connuum with substanal recombinaon component 42 years). We find no high‐ionizaon gas near the core, further evidence that Galaxy nucleus is a LINER, with implied (and X‐ray) luminosity ~10 erg/s the AGN has indeed faded. [O III] and Ηα+[N II] images show fine structure in Summary: IC 2497 hosted a quasar‐luminosity AGN, either obscured to an Hanny's Voorwerp, with limb‐brightened secons suggesng mild interacon enormous extent or recently (and dramacally) faded.
    [Show full text]
  • The Sudden Death of the Nearest Quasar
    THE SUDDEN DEATH OF THE NEAREST QUASAR The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. Citation Schawinski, Kevin, Daniel A. Evans, Shanil Virani, C. Megan Urry, William C. Keel, Priyamvada Natarajan, Chris J. Lintott, et al. “THE SUDDEN DEATH OF THE NEAREST QUASAR.” The Astrophysical Journal 724, no. 1 (October 26, 2010): L30–L33. © 2010 The American Astronomical Society As Published http://dx.doi.org/10.1088/2041-8205/724/1/l30 Publisher IOP Publishing Version Final published version Citable link http://hdl.handle.net/1721.1/95688 Terms of Use Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use. The Astrophysical Journal Letters, 724:L30–L33, 2010 November 20 doi:10.1088/2041-8205/724/1/L30 C 2010. The American Astronomical Society. All rights reserved. Printed in the U.S.A. THE SUDDEN DEATH OF THE NEAREST QUASAR Kevin Schawinski1,2,18, Daniel A. Evans3,4,5, Shanil Virani1,2,6, C. Megan Urry1,2,6, William C. Keel7,19, Priyamvada Natarajan1,2,6, Chris J. Lintott8,9, Anna Manning7,19, Paolo Coppi1,2,6, Sugata Kaviraj8,10, Steven P. Bamford11, Gyula I. G. Jozsa´ 12,13, Michael Garrett12,14,15, Hanny van Arkel12, Pamela Gay16, and Lucy Fortson17 1 Department of Physics, Yale University, New Haven, CT 06511, USA; [email protected] 2 Yale Center for Astronomy and Astrophysics, Yale University, P.O. Box 208121, New Haven, CT 06520, USA 3 Massachusetts Institute of Technology, Kavli Institute for Astrophysics and Space Research, 77 Massachusetts Avenue, Cambridge, MA 02139, USA 4 Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138, USA 5 Elon University, Elon, NC 27244, USA 6 Department of Astronomy, Yale University, New Haven, CT 06511, USA 7 Department of Physics and Astronomy, University of Alabama, P.O.
    [Show full text]