Extended X-Ray Emission in the IC€2497 – Hanny's Voorwerp System

Total Page:16

File Type:pdf, Size:1020Kb

Extended X-Ray Emission in the IC€2497 – Hanny's Voorwerp System MNRAS 457, 3629–3636 (2016) doi:10.1093/mnras/stw230 Advance Access publication 2016 January 29 Extended X-ray emission in the IC 2497 – Hanny’s Voorwerp system: energy injection in the gas around a fading AGN Downloaded from https://academic.oup.com/mnras/article-abstract/457/4/3629/2589023 by Pontificia Universidad Catolica de Chile user on 11 June 2019 Lia F. Sartori,1‹ Kevin Schawinski,1‹ Michael Koss,1 Ezequiel Treister,2 W. Peter Maksym,3 William C. Keel,4 C. Megan Urry,5 Chris J. Lintott6 and O. Ivy Wong7 1Institute for Astronomy, Department of Physics, ETH Zurich,¨ Wolfgang-Pauli-Strasse 27, CH-8093 Zurich,¨ Switzerland 2Departamento de Astronom´ıa, Universidad de Concepcion,´ Casilla 160-C, Concepcion,´ Chile 3Harvard–Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138, USA 4Department of Physics and Astronomy, University of Alabama, Tuscaloosa, AL 35487, USA 5Yale Center for Astronomy & Astrophysics, Physics Department, PO Box 208120, New Haven, CT 06520, USA 6Oxford Astrophysics, Denys Wilkinson Building, Keble Road, Oxford OX1 3RH, UK 7ICRAR, The University of Western Australia M468, 35 Stirling Highway, Crawley, WA 6009, Australia Accepted 2016 January 25. Received 2016 January 25; in original form 2015 November 27 ABSTRACT We present deep Chandra X-ray observations of the core of IC 2497, the galaxy associated with Hanny’s Voorwerpand hosting a fading AGN. We find extended soft X-ray emission from 42 44 −1 hot gas around the low intrinsic luminosity (unobscured) AGN (Lbol ∼ 10 –10 erg s ). The temperature structure in the hot gas suggests the presence of a bubble or cavity around the 54 55 fading AGN (Ebub ∼ 10 –10 erg). A possible scenario is that this bubble is inflated by the fading AGN, which after changing accretion state is now in a kinetic mode. Other possibilities 46 −1 are that the bubble has been inflated by the past luminous quasar (Lbol ∼ 10 erg s ), or that the temperature gradient is an indication of a shock front from a superwind driven by the AGN. We discuss the possible scenarios and the implications for the AGN–host galaxy interaction, as well as an analogy between AGN and X-ray binaries lifecycles. We conclude that the AGN could inject mechanical energy into the host galaxy at the end of its lifecycle, and thus provide a source for mechanical feedback, in a similar way as observed for X-ray binaries. Key words: galaxies: active – quasars: general – quasars: individual: IC 2497 – X-rays: galaxies. and low electron temperature (T = 13500 ± 1300 K) exclude the 1 INTRODUCTION e possibility of ionization from shocks (Lintott et al. 2009). IC 2497 is a massive (M ∼ 1010 M), nearby (z = 0.05) spiral Large-scale radio observations of the system revealed an extended 10 galaxy associated with Hanny’s Voorwerp (HV), an extended emis- H I structure (M = 8.5 ± 2.1 × 10 M) with irregular kinematics sion line region (11 × 16 kpc in projected extent) located at ∼20 kpc around the southern part of IC 2497, which suggests a tidal origin in projection from the core of the galaxy and closely matching its (Jozsa´ et al. 2009). These observations also show a kpc-scale struc- redshift. HV was discovered by Hanny van Arkel,1 a citizen scientist ture which may be a jet coming from the AGN. HV lies where the participating in the Galaxy Zoo project (Lintott et al. 2008, 2009). jet meets the H I reservoir and corresponds to a local decrement of The optical spectrum of HV is dominated by [O III] λλ4959, 5007 Å H I column density which may be due to photoionization. At smaller emission, and the presence of lines of high ionization species such scales, Rampadarath et al. (2010) found a radio AGN in the core of as [Ne V] λλ3346, 3426 and He IIλ4616 suggests that the cloud is IC 2497, and a second nuclear source which may be a jet hotspot in photoionized by the hard continuum of an active galactic nucleus the large-scale jet reported by Jozsa´ et al. (2009). (AGN) in IC 2497 rather than star formation (Lintott et al. 2009). In order to produce sufficient ionizing photons to power the ob- −1 Moreover, the relatively quiet kinematics (line widths <100 km s ) served [O III] emission in HV, the quasar in IC 2497 has to have a 46 −1 bolometric luminosity of at least Lbol = 10 erg s .However,the optical nuclear spectrum shows only very weak emission lines, so E-mail: [email protected] (LFS); [email protected] that the ionizing source is classified as LINER or low-luminosity (KS) Seyfert galaxy (Lintott et al. 2009; Keel et al. 2012a). The two 1 Hanny’s Voorwerp means Hanny’s object in Dutch. possible explanations to reconcile observed and expected emission C 2016 The Authors Published by Oxford University Press on behalf of the Royal Astronomical Society 3630 L. F. Sartori et al. are: (1) the quasar is obscured only along our line of sight but not (PIX_ADJ=EDSER; Tsunemi et al. 2001;Lietal.2003, 2004), and in the direction of HV, or (2) IC 2497 hosts a faded AGN. This flagged the background events most likely associated with cosmic second option would mean that the quasar dropped in luminosity rays by running the task ACIS_PROCESS_EVENTS (CHECK_VF_PHA=YES within the last ∼200 kyr, the travel time needed from the photons in CHANDRA_REPRO). We analysed the background light curves with to reach the cloud (Keel et al. 2012a), but HV still remains lit up the CIAO routine lc_sigma_clip() and found no interval of un- because of this travel time. Support for the fading scenario was usually strong background flaring. Because of the low count rate Downloaded from https://academic.oup.com/mnras/article-abstract/457/4/3629/2589023 by Pontificia Universidad Catolica de Chile user on 11 June 2019 given by Schawinski et al. (2010) who analysed the IR data from the observations show no evidence of pileup. IRAS and X-ray data from XMM and Suzaku obtained for IC 2497. In order to correct for the offset in the relative astrometry of the First, as already reported in Lintott et al. (2009) the IR data show no two observations, we first rebinned the reprocessed event files to evidence of the reprocessed luminosity expected from an obscured 1/4 pixel resolution (0.125 arcsec) using the CIAO DMCOPY routine strong quasar. In addition, the XMM spectrum is best fitted with an with binning factor 0.25. We then ran the CIAO DMSTAT routine on the unobscured power law with photon index = 2.5 ± 0.7, as expected rebinned images to get the centroid of the emission from IC 2497. from an unobscured AGN, and a component for the hot gas in the In the following we will consider the centroid as the centre of the galaxy. The quality of the fit is not improved if additional absorp- emission in the respective observation. tion and obscuration are taken into account. This model implies a We extracted the spectra and generated the response files using 42 −1 bolometric luminosity of the AGN Lbol = 4.2 × 10 erg s ,which the CIAO tool SPECEXTRACT (see Section 3 for more details about the is ∼4 orders of magnitude lower than that expected from HV. In extraction regions). For the background estimation we considered addition, Suzaku observations show only a marginal detection with three source-free circular regions with a 5 arcsec radius ∼20 arc- the 15–30 keV PIN camera (hard X-ray detector). If these counts sec away from the source. We then grouped each spectrum with a are real, this would mean that the AGN is strongly obscured and minimum of three counts per bin using the HEASOFT tool GRPPHA. we are observing the reemission instead of the AGN power law, We simulated the PSF images needed for the analysis using MARX but the obtained luminosity would still be ∼2 orders of magnitude 5.1 (Davis et al. 2012). First, we created a model of the emis- below that expected from HV. Also the HST observations presented sion using XSPEC and SHERPA (see Section 3 for details about the by Keel et al. (2012a) argue against the hypothesis of a luminous, assumed models). We then used MARX to run the RAYTRACE sim- strongly obscured AGN. WFC3 images show a complex dust struc- ulation and project the ray-tracings on to the ACIS-S detector. ture near the nucleus of the galaxy, but the view of the nucleus is not Since we are interested in the sub-pixel regime we ran the sim- hindered by absorbing features, so that obscuration cannot be the ulations with pixadj=EDSER and AspectBlur=0.19 arcsec explanation of the lack of strong AGN features. Moreover, there is (telescope pointing uncertainty). We also included the telescope no high-ionization gas near the nucleus, suggesting that the current dithering (DitherModel=INTERNAL, DitherAmp_Ra=8, radiative output from the AGN is low. DitherAmp_Dec=8) and corrected for SIM drift and offset.2 The observations described above suggest that the quasar in IC 2497 dropped in luminosity by at least 2 orders of magnitude ∼ 5 in the last 10 yr. The system composed by HV and its galaxy is 3ANALYSIS therefore a great laboratory to study AGN variability on previously inaccessible time-scales. The analysis of the galaxy allows us to 3.1 Radial profile and source extension study the present state of the AGN and the AGN-host galaxy inter- action in this ‘post quasar’ phase, while HV provides information We compute the 0.5–6.0 keV background-subtracted surface bright- about the past state of the AGN.
Recommended publications
  • Rak a Malý Lev Na Rozhraní Zimní a Jarní Oblohy Uprostřed Jarního Trojúhelníku Leží Malé Souhvězdí, Po Němž Máme Na Zemi Pojmenovaný Obratník
    Pozorování © Nigel Sharp, Mark Hanna/NOAO/AURA/NSF Rak a Malý lev Na rozhraní zimní a jarní oblohy uprostřed jarního trojúhelníku leží malé souhvězdí, po němž máme na Zemi pojmenovaný obratník. Souhvězdí Raka. V minulosti totiž právě v tomto souhvězdí dosahovalo Slunce největší deklinace. Dnes, díky precesi, k tomu dochází v souhvězdí Blíženců. Rak je v antice zpodobňován jako krab pomáhající Hydře v boji proti Herkulovi. Chaldejci zde zase viděli místo, kudy sestupují duše na Zem, aby zde přijaly fyzické tělo. Ve starověkém Egyptě toto souhvězdí znali již v roce 2 000 př. n. l. Nenápadné souhvězdí Malého lva najdeme mezi Lvem a Velkou medvědicí. Toto nenápadné a ve městě v podstatě neviditelné souhvězdí se na oblohu dostalo až v novověku díky Janu Heveliovi, definitivně se Malý lev na obloze zabydlel až ve 20. století, kdy byla na Valném shromáždění IAU přijata dnešní podoba souhvězdí. M 67 Rak leží na ekliptice, proto můžeme být někdy svědky zákrytu jeho hvězd Měsícem, asi 580 ly. Skutečný rektascenze deklinace jasnost rozměry výjimečně i planetou. Nejjasnější hvězda, průměr je asi 13 ly. α Cnc, se jmenuje Acubens, což znamená Stáří se odhaduje na α Cnc 8h 58,9m 11° 50′ 4,3+11,8 11″ „klepeto“, a dosahuje 4. velikosti. Jedná se 730 mil. let. První ι Cnc 8h 47,1m 28° 44′ 4,1+6,0 30″ o dvojhvězdu. Ve vzdálenosti 11″ se nachází pozoroval M 44 již druhá složka 11. velikosti. Celý systém je Galileo Galilei a roz- M 44 8h 40m 19° 40′ 3,5 95′ od nás vzdálen asi 170 ly.
    [Show full text]
  • The Sudden Death of the Nearest Quasar Hannyʼs Voorwerp and Its Cousins Shed Light on Black Hole Accretion
    The Sudden Death of the Nearest Quasar Hannyʼs Voorwerp and its cousins shed light on black hole accretion Dan Evans Harvard-Smithsonian Center for Astrophysics & Elon University Key collaborators: Kevin Schawinski, William Keel, Meg Urry, Shanil Virani, Chris Lintott, Priyamvada Natarajan Hanny van Arkel, Richard Proctor, Hannah Hutchins, Elizabeth Baeten, Massimo Mezzoprete, Elizabeth Siegel, Aida Berges, voyager1682002, Caro, Christian Manteuffel... 430,000+ Zooniverse Citizen Scientists Schawinski et al. 2010, ApJ Letters, 724, L30 Science Questions What is the time scale on which quasar phases turn on and off? What do rapid “deaths” tell us about black hole accretion physics? Are “dead” quasars the real culprits in quasar feedback? Discovered by citizen scientist Hanny van Arkel in 2007 Named by GZ forum members after discoverer Spectroscopic Properties z=0.05 - same as IC 2497 Lintott, Schawinski et al. (2009) Spectroscopic Properties Low Density Gas: [S II] λ6717/6731 ratio is density sensitive and lies in the low density limit (ne < 50 cm−3) AGN Photoionized: He II λ4616 and [NeV] λλ3346,3426 + [OIII] imply high ionization parameter, log U = −2.2 (need v ~ 400km/s to get lines due to shock) Low Metallicity: [N II]/Hα and [S II]/Hα indicate low metallicity of ~0.1-0.2 Zsolar Lintott, Schawinski et al. (2009) 1.4 GHz continuum 9 10 Msun of HI From: WSRT, Jozsa et al. (2010) HST F184W How luminous? • Template SED from Elvis et al. (1994) • Scaled SED to match the minimum UV luminosity to ionize the Voorwerp • Find Lbol ~ 1046 erg/s • L2-10 keV ~ 8x1044 erg/s Quasar - Lbol ~1046 erg/s! Why donʼt we see a quasar? 1.
    [Show full text]
  • Joel R. Primack ! Distinguished Professor of Physics, University of California, Santa Cruz
    April 18, 2014 GalaxyZoo and the Zooniverse of Astronomy Citizen Science Joel R. Primack ! Distinguished Professor of Physics, University of California, Santa Cruz Director, University of California High-Performance AstroComputing Center (UC-HiPACC) Galaxy Zoo started back in July 2007, with a data set made up of a million galaxies imaged by the Sloan Digital Sky Survey. Within 24 hours of launch we were stunned to be receiving almost 70,000 classifications an hour. More than 50 million classifications were received by the project during its first year, contributed by more than 150,000 people.! ! That meant that each galaxy was seen by many different participants. This is deliberate; having multiple independent classifications of the same object is important, as it allows us to assess how reliable our results are. For example, for projects where we may only need a few thousand galaxies but want to be sure they're all spirals before using up valuable telescope time on them, there's no problem - we can just use those that 100% of classifiers agree are spiral. For other projects, we may need to look at the properties of hundreds of thousands of galaxies, and can use those that a majority say are spiral.! ! In that first Galaxy Zoo all we asked volunteers to do was to split the galaxies into ellipticals, mergers and spirals and - if the galaxy was spiral - to record the direction of the arms. But it was enough to show that the classifications Galaxy Zoo provides were as good as those from professional astronomers, and were of use to a large number of researchers.
    [Show full text]
  • HST Observaqons of Hanny's Voorwerp and IC 2497
    The History And Environment Of A Faded Quasar: HST Observaons Of Hanny's Voorwerp And IC 2497 William C. Keel1, C. Linto2, K. Schawinski3, V. Bennert4, D. Thomas5, A. Manning1, S. D. Chojnowski6, H. van Arkel7, S. Lynn8, Galaxy Zoo team 1Univ. of Alabama, 2Adler Planetarium, 3Yale Univ., 4UCSB, 5Univ. of Portsmouth, UK, 6Texas Chrisan Univ., 7CITAVERDE College, NL, 8Oxford Univ., UK. Perhaps the signature discovery of the Galaxy Zoo cizen‐science project has been Hanny's Voorwerp, a high‐ionizaon cloud extending 45 kpc from the IC 2497 and Hanny’s Voorwerp spiral galaxy IC 2497. It must be ionized by a luminous yet unseen AGN. We Previous results: explore this system using HST imaging and spectroscopy. The disk of IC 2497 Voorwerp has high‐ionizaon opcal spectrum, at z=0.05 matching IC 2497 45 is warped, with complex dust absorpon near the nucleus; the near‐IR peak Gas requires ionizing luminosity ~4x10 erg/s coincides closely with the VLBI core. STIS spectra show the AGN as a low‐ Extent to 45 kpc in projecon 10 luminosity LINER, matching its weak X‐ray emission, and accompanied by an Part of 300‐kc H I tail with nearly 10 solar masses expanding loop of ionized gas ~500 pc in diameter (expansion age < 7 x 105 Connuum with substanal recombinaon component 42 years). We find no high‐ionizaon gas near the core, further evidence that Galaxy nucleus is a LINER, with implied (and X‐ray) luminosity ~10 erg/s the AGN has indeed faded. [O III] and Ηα+[N II] images show fine structure in Summary: IC 2497 hosted a quasar‐luminosity AGN, either obscured to an Hanny's Voorwerp, with limb‐brightened secons suggesng mild interacon enormous extent or recently (and dramacally) faded.
    [Show full text]
  • The Sudden Death of the Nearest Quasar
    THE SUDDEN DEATH OF THE NEAREST QUASAR The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. Citation Schawinski, Kevin, Daniel A. Evans, Shanil Virani, C. Megan Urry, William C. Keel, Priyamvada Natarajan, Chris J. Lintott, et al. “THE SUDDEN DEATH OF THE NEAREST QUASAR.” The Astrophysical Journal 724, no. 1 (October 26, 2010): L30–L33. © 2010 The American Astronomical Society As Published http://dx.doi.org/10.1088/2041-8205/724/1/l30 Publisher IOP Publishing Version Final published version Citable link http://hdl.handle.net/1721.1/95688 Terms of Use Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use. The Astrophysical Journal Letters, 724:L30–L33, 2010 November 20 doi:10.1088/2041-8205/724/1/L30 C 2010. The American Astronomical Society. All rights reserved. Printed in the U.S.A. THE SUDDEN DEATH OF THE NEAREST QUASAR Kevin Schawinski1,2,18, Daniel A. Evans3,4,5, Shanil Virani1,2,6, C. Megan Urry1,2,6, William C. Keel7,19, Priyamvada Natarajan1,2,6, Chris J. Lintott8,9, Anna Manning7,19, Paolo Coppi1,2,6, Sugata Kaviraj8,10, Steven P. Bamford11, Gyula I. G. Jozsa´ 12,13, Michael Garrett12,14,15, Hanny van Arkel12, Pamela Gay16, and Lucy Fortson17 1 Department of Physics, Yale University, New Haven, CT 06511, USA; [email protected] 2 Yale Center for Astronomy and Astrophysics, Yale University, P.O. Box 208121, New Haven, CT 06520, USA 3 Massachusetts Institute of Technology, Kavli Institute for Astrophysics and Space Research, 77 Massachusetts Avenue, Cambridge, MA 02139, USA 4 Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138, USA 5 Elon University, Elon, NC 27244, USA 6 Department of Astronomy, Yale University, New Haven, CT 06511, USA 7 Department of Physics and Astronomy, University of Alabama, P.O.
    [Show full text]
  • Joint Nustar and Chandra Analysis of the Obscured Quasar in IC 2497
    MNRAS 474, 2444–2451 (2018) doi:10.1093/mnras/stx2952 Advance Access publication 2017 November 17 Joint NuSTAR and Chandra analysis of the obscured quasar in IC 2497 - Hanny’s Voorwerp system Downloaded from https://academic.oup.com/mnras/article-abstract/474/2/2444/4638537 by Pontificia Universidad Católica de Chile user on 11 June 2019 Lia F. Sartori,1‹ Kevin Schawinski,1‹ Michael J. Koss,1,2 Claudio Ricci,3,4,5 Ezequiel Treister,3 Daniel Stern,6 George Lansbury,7 W. Peter Maksym,8 Mislav Balokovic,´ 8,9 Poshak Gandhi,10 William C. Keel11 and David R. Ballantyne12 1Institute for Particle Physics and Astrophysics, ETH Zurich,¨ Wolfgang-Pauli-Strasse 27, CH-8093 Zurich,¨ Switzerland 2Eureka Scientific Inc., 2452 Delmer St. Suite 100, Oakland, CA 94602, USA 3Instituto de Astrof´ısica, Facultad de F´ısica, Pontificia Universidad Catolica´ de Chile, Casilla 306, Santiago 22, Chile 4Kavli Institute for Astronomy and Astrophysics, Peking University, Beijing 100871, China 5Chinese Academy of Sciences South America Center for Astronomy and China–Chile Joint Center for Astronomy, Camino El Observatorio 1515, Las Condes, Santiago, Chile 6Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA 91109, USA 7Institute of Astronomy, University of Cambridge, Madingley Road, Cambridge CB3 0HA, UK 8Harvard-Smithsonian Center for Astrophysics, 60 Garden St., Cambridge, MA 02138, USA 9Cahill Center for Astronomy and Astrophysics, California Institute of Technology, Pasadena, CA 91125, USA 10Department of Physics and Astronomy, University of Southampton, Highfield, Southampton SO17 1BJ, UK 11Department of Physics and Astronomy, University of Alabama, Box 870324, Tuscaloosa, AL 35487, USA 12Center for Relativistic Astrophysics, School of Physics, Georgia Institute of Technology, Atlanta, GA 30332, USA Accepted 2017 November 14.
    [Show full text]
  • "Do Not Look at Stars As Bright Spots Only. Try to Take in the Vastness Of
    Recruiting the next generation is key to the vitality of any subject. Astronomy is no Mel Blake, Department of Physics and Earth exception. As interesting as it is, astronomy needs Image of the Month Science. to get younger people interested in the field and recruit the best talent. That recruitment effort is not going to be successful if we do not try to get both girls and boys interested in becoming scientists. If you are starting off with only one half the population, ten you will not get all the best people. This limits the field and wastes talent and potential. One thing that seems to hold is that people interested in a given field also need to be able to picture themselves doing that work. This requires role models, and when few of their group are engaged in a subject, this can make it harder. Astronomy is fortunate to have a long history of participation compared to other sciences, and some of the most important research has been done by women. Caroline Hershel discovered comets, Annie Cannon devised our stellar classification system, and Celia Payne was the first to unravel the mystery of stellar spectra. March is Women’s history month, UNA Planetarium be recognizing this through a series of Facebook posts, lectures and shows showcasing the contributions of women to astronomy. Hopefully we will help create interest in astronomy and get the next generation of scientists on their path to making the next breakthroughs in our understanding of the universe. Mel Blake, Department of Physics and Earth Science.
    [Show full text]
  • The Soft X-Ray Counterpart of Hanny's Voorwerp Near IC 2497
    The Soft X-ray Counterpart of Hanny’s Voorwerp near IC 2497 G. Fabbiano & M. Elvis Center for Astrophysics | Harvard & Smithsonian, 60 Garden Street, Cambridge MA 02138, USA ABSTRACT We report the detection in Chandra ACIS archival data of an elongated soft (< 3keV) X-ray feature to the south of the Compton Thick Active Galactic Nucleus (CT AGN) galaxy IC 2497, coincident with the emission line feature known as Hanny’s Voorwerp. The data are consistent with the spatial correspondence between X-ray, optical emission line, and radio features detected in nearby obscured AGNs (e.g., ESO 428-G014). The X-ray luminosity of the (0.3 – 3.0 keV) soft feature is ~1.2 x 1040 erg s-1. We infer an [OIII]/Soft-X-ray ratio in the range of ~ 200, consistent with the highest values measured in some of the clouds of NGC 4151. Overall, given the uncertainties, Hanny’s Voorwerp appears to be a feature consistent with the ionization cone emission of nearby AGNs. We estimate an X-ray recombination time of ~2 x 107 yr, longer than the [OIII] recombination time (~8000 yr). This suggests that extended soft X-ray components may be a better diagnostic of overall long-term activity, while detection of an [OIII] HV would point to a time-limited activity burst. 1. Introduction The serendipitous discovery of an emission line feature (Hanny’s Voorwerp), ~20 kpc south of the massive spiral galaxy IC 2497 (D~225 Mpc; 1” ~1 kpc; NED) led to the hypothesis of a past quasar outburst ~105 yr ago in this apparently quiescent galaxy (Lintott et al.
    [Show full text]
  • The COLOUR of CREATION Observing and Astrophotography Targets “At a Glance” Guide
    The COLOUR of CREATION observing and astrophotography targets “at a glance” guide. (Naked eye, binoculars, small and “monster” scopes) Dear fellow amateur astronomer. Please note - this is a work in progress – compiled from several sources - and undoubtedly WILL contain inaccuracies. It would therefor be HIGHLY appreciated if readers would be so kind as to forward ANY corrections and/ or additions (as the document is still obviously incomplete) to: [email protected]. The document will be updated/ revised/ expanded* on a regular basis, replacing the existing document on the ASSA Pretoria website, as well as on the website: coloursofcreation.co.za . This is by no means intended to be a complete nor an exhaustive listing, but rather an “at a glance guide” (2nd column), that will hopefully assist in choosing or eliminating certain objects in a specific constellation for further research, to determine suitability for observation or astrophotography. There is NO copy right - download at will. Warm regards. JohanM. *Edition 1: June 2016 (“Pre-Karoo Star Party version”). “To me, one of the wonders and lures of astronomy is observing a galaxy… realizing you are detecting ancient photons, emitted by billions of stars, reduced to a magnitude below naked eye detection…lying at a distance beyond comprehension...” ASSA 100. (Auke Slotegraaf). Messier objects. Apparent size: degrees, arc minutes, arc seconds. Interesting info. AKA’s. Emphasis, correction. Coordinates, location. Stars, star groups, etc. Variable stars. Double stars. (Only a small number included. “Colourful Ds. descriptions” taken from the book by Sissy Haas). Carbon star. C Asterisma. (Including many “Streicher” objects, taken from Asterism.
    [Show full text]
  • Astronomy Magazine SPACE TELESCOPE • Top Science Discoveries P
    The man behind OF HUBBLE SPACE TELESCOPE Hubble’s “Pillars” p. 26 SPECIAL 2 5COLLECTOR’STH ANNIVERSARY EDITION APRIL 2015 HUBBLEThe world’s best-selling astronomy magazine SPACE TELESCOPE • Top science discoveries p. 28 • Space missions To celebrate 25 years of discovery, the Hubble that saved the Space Telescope used its latest camera to telescope p. 44 capture this image of the Eagle Nebula, the subject of a famous 1995 photo dubbed the • How Hubble “Pillars of Creation.” changed the world p. 50 BEST www.Astronomy.com BONUS Vol. 43 ONLINE • IMAGES Issue 4 28 CONTENT FROM HUBBLE p. 56 CODE p. 4 WorldMags.net DESIGN. PERFORMANCE. QUALITY. EDGEHD OPTICS MAKE YOUR ASTROIMAGES SHINE. True Flat Field EdgeHD’s patented aplanatic Schmidt optical design provides a true flat field, eliminating the visual defects of coma and field curvature. The result is sharp, pinpoint stars all the way to the edge of even today’s largest imaging sensors. The Most Flexible Imaging Platform From precision images of galaxies to wide field mosaics, you can capture it all with EdgeHD. At prime focus, shoot at the native f/10 focal ratio or at f/7 by adding an optional reducer lens. Or, for ultra-fast wide field imaging, Celestron’s Fastar technology allows you to add a third party lens assembly to reach f/2. Uncompromising Quality After enduring rigorous visual testing by Celestron technicians, every EdgeHD optical tube must pass a photographic test to ensure pinpoint stars on every corner of a Canon DSLR imaging sensor. Learn more about EdgeHD and download our technical whitepaper at celestron.com/edgehd FINAL ACCEPTANCE TEST Technicians test every EdgeHD photographically on this custom engineered fixture.
    [Show full text]
  • S Voorwerp: Radio Observations of IC 2497
    A&A 500, L33–L36 (2009) Astronomy DOI: 10.1051/0004-6361/200912402 & c ESO 2009 Astrophysics Letter to the Editor Revealing Hanny’s Voorwerp: radio observations of IC 2497 G. I. G. Józsa1, M. A. Garrett1,2,3, T. A. Oosterloo1,4,H.Rampadarath2,5, Z. Paragi5,6, H. van Arkel1, C. Lintott7,W.C.Keel8, K. Schawinski9, and E. Edmondson10 1 Netherlands Institute for Radio Astronomy, Postbus 2, 7990 AA Dwingeloo, The Netherlands e-mail: [email protected] 2 Leiden Observatory, Univ. Leiden, PO Box 9513, 2300 RA Leiden, The Netherlands 3 Centre for Astrophysics and Supercomputing, Univ. Swinburne, Mail number H39, Swinburne University of Technology, PO Box 218, Hawthorn, Victoria 3122, Australia 4 Kapteyn Astronomical Institute, Univ. Groningen, Postbus 800, 9700 AV Groningen, The Netherlands 5 Joint Institute for VLBI in Europe, Postbus 2, 7990 AA Dwingeloo, The Netherlands 6 MTA Research Group for Physical Geodesy and Geodynamics, PO Box 91, 1521 Budapest, Hungary 7 Univ. Oxford, Dept. Physics, Denys Wilkinson Building, Keble Road, Oxford, OX1 3RH, UK 8 Univ. Alabama, Dept. Physics & Astronomy, Box 870324, University of Alabama, Tuscaloosa, AL 35487-0324, USA 9 Univ. Yale, Dept. Physics, J.W. Gibbs Laboratory, 260 Whitney Avenue, Yale University, New Haven, CT 06511, USA 10 Institute of Cosmology and Gravitation, Dennis Sciama Building, Burnaby Road, Portsmouth, PO1 3FX, UK Received 29 April 2009 / Accepted 12 May 2009 ABSTRACT We present multi-wavelength radio observations in the direction of the spiral galaxy IC 2497 and the neighbouring emission nebula known as “Hanny’s Voorwerp”. Our WSRT continuum observations at 1.4 GHz and 4.9 GHz reveal the presence of extended emission at the position of the nebulosity, although the bulk of the emission remains unresolved at the centre of the galaxy.
    [Show full text]
  • Volume 76 Nos 1 & 2 February 2017 in This Issue
    Volume 76 Nos 1 & 2 February 2017 In this issue: NEWS NOTES, AB JONES OBITUARY NRF RATING AND H-INDEX COMPARED REMARKABLE WORK AT PRIVATE OBSERVATORIES COLLOQUIA AND SEMINARS SKY DELIGHTS EDITORIAL Mr Case Rijsdijk (Editor, MNASSA ) BOARD Mr Auke Slotegraaf (Editor, Sky Guide Africa South ) Mr Christian Hettlage (Webmaster) Mr James Smith (Web Manager) Prof M.W. Feast (Member, University of Cape Town) Prof B. Warner (Member, University of Cape Town) MNASSA Mr Case Rijsdijk (Editor, MNASSA ) PRODUCTION Dr Ian Glass (Assistant Editor) Vacant (Book Review Editor) Willie Koorts (Consultant) EDITORIAL MNASSA, PO Box 9, Observatory 7935, South Africa ADDRESSES Email: [email protected] Web Manager: [email protected] MNASSA Download Page: www.mnassa.org.za SUBSCRIPTIONS MNASSA is available for free download on the Internet ADVERTISING Advertisements may be placed in MNASSA at the following rates per insertion: full page R400, half page R200, quarter page R100. Small advertisements R2 per word. Enquiries should be sent to the editor at [email protected] CONTRIBUTIONS MNASSA mainly serves the Southern African astronomical community. Articles may be submitted by members of this community or by those with strong connections. Else they should deal with matters of direct interest to the community . MNASSA is published on the first day of every second month and articles are due one month before the publication date. RECOGNITION Articles from MNASSA appear in the NASA/ADS data system. Cover: A bizarre binary star system has been discovered where a degenerate white dwarf pulsar is “lashing” its red dwarf companion with its strong magnetic field and beamed radiation every minute as it spins on its axis (See News Note :Dwarf-Star wars”.
    [Show full text]