Commission J: Radio Astronomy (Novebber 2007 – October 2010)

Total Page:16

File Type:pdf, Size:1020Kb

Commission J: Radio Astronomy (Novebber 2007 – October 2010) Commission J: Radio Astronomy (Novebber 2007 – October 2010) Edited by H. Kobayashi J1 Overview of Japanese radio astronomy activity One of most important activities in Japanese radio astronomy is ALMA project, which is a millimeter and submillimeter large array with 80 telescopes at Atacama Desert of Chili. Japan shares quarter burden for the construction and operation. In concrete terms, Japan has constructed ACA (Atacama Compact Array), which consists of four 12-m telescopes and twelve 7-m telescopes, and 3 band receiver cartridges for whole ALMA telescopes. The construction of ALMA is succeeding and science observations have been started. In the field of millimeter and submillimeter radio astronomy, ASTE telescope, which is a 10-m submillimeter telescope at Atacama Desert, has started science observations. A large TES bolometer array is used for simultaneously imaging the sky in the two bands (1100 and 850 micron). It discovered a cluster of galaxies, which show ultra star burst formation. And Nobeyama 45-m telescope is continued for science observations and Nobeyama millimeter array was closed for common use. At the field of VLBI (Very Long Baseline Interferometer) researches, VERA (VLBI Exploration of Radio Astrometry) was started to carry out a precise astrometry project to measure the distance of galactic maser objects by using trigonometric parallax measurement technique. It has revealed the structure of nearby spiral arm structure around the Sun. And a new VLBI correlator is developed under the collaboration with NAOJ (National Astronomical Observatory of Japan) and KASI (Korean Astronomy and Space Science Institute), which will be used for the East Asian VLBI network observations. Also Japanese VLBI network have started science observations with 6, 8 and 22 GHz bands. And NANTEN telescope, which is a 4-m submillimeter telescope at Chili, has made wide field mapping observations of southern hemisphere sky. On September 2007, SELENE satellite was launched, which is a lunar probe vehicle. In order to make precise hypsographic map and gravity map of whole lunar globe, Japanese VLBI network has used for the satellite tracking. It revealed the accurate gravitational field of the whole of the moon. J2. ALMA The Atacama Large Millimeter/submillimeter Array (ALMA) is most important project for Japanese radio astronomy. It is constructed and operated by Europe, Japan, and North America, in cooperation with the Republic of Chile. ALMA is funded in Europe by the European Organization for Astronomical Research in the Southern Hemisphere,in Japan by the National lnstitutes of Natural Sciences(NINS) in cooperation with the Academia Sinica in Taiwan, and in North America by the U.S. National Science Foundation (NSF) in cooperation with the National Research Council of Canada (NRC). ALMA construction and operations are led on behalf of Europe by ESO,on behalf of Japan by the National Astronomical 0bservatory of Japan (NAOJ), and on behalf of North America by the National Radio Astronomy Observatory (NRAO). ALMA will have 54 12-m telescopes and 12 7-m telescopes with 3-0.3 mm wavelength receivers. East Asia shares the construction of Atacama Compact Array (ACA), which is a part of ALMA for wide field and extended structure imagings. ACA consists of four 12-m telescopes and twelve 7-m telescopes. Also East Asia has been developing three bands receivers, which are 125-163GHz, 385-500GHz, and 780-950 GHz, and a correlator. Operation and data analysis software is developing with international collaborations. ALMA was succeded test observations at 230, 345, and 690 GHz with more than 10 telescopes. They already showed the higest feasibilities of sensitivity and spatial resolution in millimeter and submillimeter arrays. And first science program with common use will start within 2011. J3 .ASTE ASTE is 12-m single dish telescope for millimeter and submillimeter observations. It has four receivers, which are 350GHz/450GHz heterodyne receivers and the 270GHz/350GHz bolometer camera. It made important scientific results for star busrt galaxies, galactic star forming regions and others. ASTE discovered very active star burst galaxy at 11.5 Giga light-year distances, which shows 1000 time star formation than Milkyway galaxy. Also other star burst galaxies are discovered. These results are important for understanding of the revolution of galaxies. J4. VLBI In the field of VLBI, Japan has mainly two activities. One is ground-based arrays, such as VERA, JVN and EAVN. The other is a space-based project, which is VSOP-2. VERA aims to measure the trigonometric parallaxes for galactic maser sources and reveal real structure of the Milkyway galaxy. VERA has started to observe more than 200 sources and determine the distance and proper motions for around 50 sources. And neaby arm structure around Sun is decided. Also JVN (Japanese VLBI Network) has started science observations, which consists of 12 VLBI stations in Japan. Fine structure of jets and disks in star forming regions are revealed by 6.7GHz methanol maser observations. And other high sentivity VLBI observations have been carried out. Moreover EAVN (East Asian VLBI network) is started. Some test observations were done and feasibility is checked between Japan, Korea and China. EAVN has around 20 VLBI stations, which is the biggest in the world. And new VLBI correlator is constructed by the interbational collaborations between Japan and Korea. It has 16 stations correlations with 8Gbps data rate per station, which is the biggest capability in the world. Space VLBI project, which is used space radio telescope as a VLBI station, is started the project. 9-m deployment antenna, which is a key instrument, met some difficulties. It is under the review of project by ISAS/JAXA. J5. Others Japan has many activities of radio astronomy. Hokakido University has a 11-m telescope for 22 GHz observations. NH3 observations for galactic sources are published. Ibaraki University is operating two 32-m telescopes at Takahagi under the collaboration with NAOJ. They have 6, 8, and 22 GHz receivers for single dish and VLBI observations. National Institute of Communication and Trasmission (NICT) has a 32-m telescope at Kashima for VLBI. And NICT has developed VLBI sampler, recorder and software correlator for geodesy VLBI. Geo-Survey Institute (GSI) of Japan has a 32-m telescope at Tsukuba for geodesy VLBI, which is to keep the original point in Japan. GSI has three 11-m telescopes for geodesy VLBI in Shitotsugawa, Aira, and Chichijima. Moreover Tsukuba University uses GSI 32-m telescope for astonomy usage at 22GHz. Institute of Space and Astronaitics Science (ISAS) has a 64-m telescope at Usuda, which is mainly used for satellite tracking. It is used for VLBI. Waseda University has an 8-element array with 20-m fixed telescopes at 1.4 GHz, which is mainly used for pulsar and transient sources. Naogoya University has a 4-m submillimeter telescope at Atacama, which is called as NANTEN. It made large survey of some star forming regions. Gifu University has a 11-m telescope at 8 and 22GHz, which is used for geodey VLBI and optical fiber VLBI experiments. Osaka Prefecture University has a 1.85-m telescope at Nobeyama and an activity to develop new receivers. 6GHz and 8GHz common polarized and receiver is developed and used at Takahagi and Shanghai telescopes. Yamaguchi University is operating 32-m telescope at Yamaguchi with NAOJ, which has 6GHz and 8GHz receivers. It is used for single dish and VLBI obserbations and made some results of methanol masers and active galactic nuclei sources. Kagoshima Univeristy is collaborating with NAOJ for VERA. Period luminosity relation of Mira variables is deteming. References and Abstracts Abdo, A.A., M. Ackermann, M. Ajello, A. Axelsson, L. Baldini, J. Ballet, G. Barbielline, D. Bastieri, B. M. Baughman, K. Bechtol, R. Bekkazzini, B. Berenji, E. D. Bloom, E. Bonamente, A. W. Borgland, J. Bregeon, A. Brez, M. Brigida, P. Bruel, T. H. Burnett, G. A. Caliandro, R. A. Cameron, P. A. Caraveo, J. M. Casandjian, E. Cavazzuti, C. Cecchi, Ö. Celik, A. Celotti, A. Chekhtman, J. Chiang, S. Ciprini, R. Claus, J. Cohen-Tanugi, W. Collmar, J. Conrad, L. Costamante, S. Cutini, A. de Angelis, F. de Palma, E. do Couto e Silva, P. S. Frell, D. Dumora, C. Farnier, C. Favuzzi, S. J. Fegan, W. B. Focke, P. Fortin, L. Foschini, M. Frailis, L. Fuhrmann, Y. Fukazawa, S. Funk, P. Fusco, F. Gargano, N. Gehrels, S. Germani, N. Giglietto, F. Giordano, M. Giroletti, T. Glanzman, G. Godfrey, I. A. Grenier, IJ. E. Grove, L. Guillemot, S. Guiriec, Y. Hanabata, E. Hays, R. E. Hughes, M. S. Jackson, G. Johannesson, A. S. Johnson, W. N. Johnson, M. Kadler, T. Kamae, H. Katagiri, J. Kataoka, N. Kawai, M. Kerr, J. Knodlseder, M. L. Kocian, M. Kuss, J. Lander, L. Latronico, F. Longo, F. Loparco, B. Lott, M. N. Lovelette, P. Lubrano, G. M. Madejski, A. Makeev, W. Max-Moerbeck, M. N. Mazziotta, W. McConville, J. E. McEnery, S. McGlynn, C. Meurer, P. F. Michelson, W. Mitthumsiri, T. Mizuno, A. A. Moiseev, C. Monte, M. E. Monzani, A. Morselli, I. V. Moskalenko, I. Nestoras, P. L. Nolan, J. P. Norris, E. Nuss, T. Ohsugi, N. Omodei, E. Orlando, J. F. Ormes, D. Paneque, D. Parent, V. Pavlidou, V. Pelassa, M. Pepe, M. Persc-Rollins, F. Piron, T. A. Porter, S. Raino, R. Rando, M. Razzano, A. Readhead, O. Reimer, T. Reposeur, J. L. Richards, A. Y. Rodriguez, M. Roth, F. Ryde, H. F. -W. Sadrozinski, D. Sanchez, A. Sander, P. M. Saz Parkinson, J. D. Scargle, C. Sgro, M. S. Shaw, P. D. Smith, G. Spandre, P. Spinelli, M. S. Strickman, D. J. Suson, G. Tagliaferri, H. Tajima, H. Takahashi, T. Tanaka, J. B. Thayer, J. G. Thayer, D. J. Tho,pson, L.
Recommended publications
  • Evidence for Very Extended Gaseous Layers Around O-Rich Mira Variables and M Giants B
    The Astrophysical Journal, 579:446–454, 2002 November 1 # 2002. The American Astronomical Society. All rights reserved. Printed in U.S.A. EVIDENCE FOR VERY EXTENDED GASEOUS LAYERS AROUND O-RICH MIRA VARIABLES AND M GIANTS B. Mennesson,1 G. Perrin,2 G. Chagnon,2 V. Coude du Foresto,2 S. Ridgway,3 A. Merand,2 P. Salome,2 P. Borde,2 W. Cotton,4 S. Morel,5 P. Kervella,5 W. Traub,6 and M. Lacasse6 Received 2002 March 15; accepted 2002 July 3 ABSTRACT Nine bright O-rich Mira stars and five semiregular variable cool M giants have been observed with the Infrared and Optical Telescope Array (IOTA) interferometer in both K0 (2.15 lm) and L0 (3.8 lm) broad- band filters, in most cases at very close variability phases. All of the sample Mira stars and four of the semire- gular M giants show strong increases, from ’20% to ’100%, in measured uniform-disk (UD) diameters between the K0 and L0 bands. (A selection of hotter M stars does not show such a large increase.) There is no evidence that K0 and L0 broadband visibility measurements should be dominated by strong molecular bands, and cool expanding dust shells already detected around some of these objects are also found to be poor candi- dates for producing these large apparent diameter increases. Therefore, we propose that this must be a con- tinuum or pseudocontinuum opacity effect. Such an apparent enlargement can be reproduced using a simple two-component model consisting of a warm (1500–2000 K), extended (up to ’3 stellar radii), optically thin ( ’ 0:5) layer located above the classical photosphere.
    [Show full text]
  • Aerospace Safety Advisory Panel
    Aerospace Safety Advisory Panel Annual Report for 2009 NASA AEROSPACE SAFETY ADVISORY PANEL National Aeronautics and Space Administration Washington, DC 20546 VADM Joseph W. Dyer, USN (Ret.), Chair January 15, 2010 The Honorable Charles F. Bolden, Jr. Administrator National Aeronautics and Space Administration Washington, DC 20546 Dear General Bolden: Pursuant to Section 106(b) of the National Aeronautics and Space Administration Authorization Act of 2005 (P.L. 109-155), the Aerospace Safety Advisory Panel (ASAP) is pleased to submit the ASAP Annual Report for 2009 to the U.S. Congress and to the Administrator of the National Aeronautics and Space Administration (NASA). ASAP members believe that NASA and the Administration face significant challenges for the Nation’s space program. Following the precedent set in 2008, the ASAP again pro - vides this letter report in lieu of the lengthier annual report submitted in previous years. This letter report is based on the Panel’s 2009 quarterly meetings (and public session minutes), fact-finding meetings, and formal recommendations, as well as ASAP members’ past experiences. In Section II of this report, the Panel provides a summary of key safety-related issues that the Agency confronts at this time. The most important relate to the future of the Nation’s human space flight program, and the ASAP hopes to encourage key stakeholders to immediately consider the critical decisions relating to this mission. Significant issues include human rating requirements for potential commercial and international entities, extension of Shuttle beyond the current manifest, workforce transition from the Shuttle to the follow-on program, the need for candid public communications about the risks of human space flight, and the more aggressive use of robots to reduce the risk of human exploration.
    [Show full text]
  • Institute of Astronautical Science Space
    Institute of Space and Astronautical Science 3-1-1 Yoshinodai, Chuo-ku, Sagamihara, Kanagawa 252-5210, JAPAN http://www.isas.jaxa.jp/e/ Towards the Affluent Future Pioneered by Space Science Greetings As a core institute conducting space science researches Saku Tsuneta, Director General of ISAS Missions of ISAS The missions of ISAS aim to push ahead academic researches through the planning, development, ying experiments, operations and result production of characteristic and excellent space science missions consistently with the cooperation from universities, institutes in Japan and each foreign space institutes with the use of satellites, probes, sound rockets, big balloons and international space station. The biggest advantage of ISAS is that researchers of space engineering and space science cooperate with each other to research and develop, which means that engineers lead science missions with advanced technologies and new technologies that scientists expect can be developed efciently. ● To solutions to the fundamental problems of the modern space science and make them common intellectual properties of the society ● To create and execute new exploration programs such as landing on The Institute of Space and Astronautical Science( ISAS)is an celestial bodies like the moon, the Mars and its satellites and collecting essential part of Japan Aerospace eXploration Agency (JAXA) extraterrestrial materials and going back to the earth through the close and is as well a unique institute. ISAS becomes a hub for cooperation between space science and space engineering. universities or institutes to work together with all the researchers in Japan to realize the space science missions which are ● To continuously evolve the space transportation system to execute impossible to start for them individually.
    [Show full text]
  • 1 0929 Rioja Dodson__Precise Radio Astrometry.Pdf
    Astron Astrophys Rev (2020)28:6 https://doi.org/10.1007/s00159-020-00126-z(0123456789().,-volV)(0123456789().,-volV) REVIEW ARTICLE Precise radio astrometry and new developments for the next generation of instruments 1,2,3 2 Marı´a J. Rioja • Richard Dodson Received: 9 January 2020 / Accepted: 17 June 2020 Ó Springer-Verlag GmbH Germany, part of Springer Nature 2020 Abstract We present a technique-led review of the progression of precise radio astrometry, from the first demonstrations, half a century ago, until to date and into the future. We cover the developments that have been fundamental to allow high accuracy and precision astrometry to be regularly achieved. We review the opportunities provided by the next generation of instruments coming online, which are primarily: SKA, ngVLA, and pathfinders, along with EHT and other (sub)mm-wavelength arrays, Space-VLBI, Geodetic arrays, and optical astrometry from GAIA. From the his- torical development, we predict the future potential astrometric performance, and, therefore, the instrumental requirements that must be provided to deliver these. The next generation of methods will allow ultra-precise astrometry to be performed at a much wider range of frequencies (hundreds of MHz to hundreds of GHz). One of the key potentials is that astrometry will become generally applicable, and, there- fore, unbiased large surveys can be performed. The next-generation methods are fundamental in allowing this. We review the small but growing number of major astrometric surveys in the radio, to highlight the scientific impact that such projects can provide. Based on these perspectives, the future of radio astrometry is bright.
    [Show full text]
  • The Moon Beyond 2002: Next Steps in Lunar Science and Exploration
    The Moon Beyond 2002: Next Steps in Lunar Science and Exploration September 12-14, 2002 Taos, New Mexico Sponsors Los Alamos National laboratory The University of California Institute of Geophysics and Planetary Physics (ICPP) Los Alamos Center for Space Science and Exploration Lunar and Planetary Institute Meeting Organizer David J. Lawrence (Los Alamos National Laboratory) Scientific Organizing Committee Mike Duke (Colorado School of Mines) Sarah Dunkin (Rutherford Appleton Laboratory) Rick Elphic (Los Alamos National Laboratory) Ray Hawke (University of Hawai’i) Lon Hood (University of Arizona) Brad Jolliff (Washington University) David Lawrence (Los Alamos National Laboratory) Chip Shearer (University of New Mexico) Harrison Schmitt (University of Wisconsin) Lunar and Planetary Institute 3600 Bay Area Boulevard Houston TX 77058-1113 LPI Contribution No. 1128 Compiled in 2002 by LUNAR AND PLANETARY INSTITUTE The Institute is operated by the Universities Space Research Association under Contract No. NASW-4574 with the National Aeronautics and Space Administration. Material in this volume may be copied without restraint for library, abstract service, education, or personal research purposes; however, republication of any paper or portion thereof requires the written permission of the authors as well as the appropriate acknowledgment of this publication. Abstracts in this volume may be cited as Author A. B. (2002) Title of abstract. In The Moon Beyond 2002: Next Steps in Lunar Science and Exploration, P. XX. LPI Contribution No. 1128, Lunar and Planetary Institute, Houston. The volume is distributed by ORDER DEPARTMENT Lunar and Planetary Institute 3600 Bay Area Boulevard Houston TX 77058-1113, USA Phone: 281-486-2172 Fax: 281-486-2186 E-mail: [email protected] Mail order requestors will be invoiced for the cost of shipping and handling.
    [Show full text]
  • SPACE NEWS Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page BEF Mags INTERNATIONAL
    Contents | Zoom in | Zoom out For navigation instructions please click here Search Issue | Next Page SPACEAPRIL 19, 2010 NEWSAN IMAGINOVA CORP. NEWSPAPER INTERNATIONAL www.spacenews.com VOLUME 21 ISSUE 16 $4.95 ($7.50 Non-U.S.) PROFILE/22> GARY President’s Revised NASA Plan PAYTON Makes Room for Reworked Orion DEPUTY UNDERSECRETARY FOR SPACE PROGRAMS U.S. AIR FORCE AMY KLAMPER, COLORADO SPRINGS, Colo. .S. President Barack Obama’s revised space plan keeps Lockheed Martin working on a Ulifeboat version of a NASA crew capsule pre- INSIDE THIS ISSUE viously slated for cancellation, potentially positioning the craft to fly astronauts to the interna- tional space station and possibly beyond Earth orbit SATELLITE COMMUNICATIONS on technology demonstration jaunts the president envisions happening in the early 2020s. Firms Complain about Intelsat Practices Between pledging to choose a heavy-lift rocket Four companies that purchase satellite capacity from Intelsat are accusing the large fleet design by 2015 and directing NASA and Denver- operator of anti-competitive practices. See story, page 5 based Lockheed Martin Space Systems to produce a stripped-down version of the Orion crew capsule that would launch unmanned to the space station by Report Spotlights Closed Markets around 2013 to carry astronauts home in an emer- The office of the U.S. Trade Representative has singled out China, India and Mexico for not meet- gency, the White House hopes to address some of the ing commitments to open their domestic satellite services markets. See story, page 13 chief complaints about the plan it unveiled in Feb- ruary to abandon Orion along with the rest of NASA’s Moon-bound Constellation program.
    [Show full text]
  • Global Satellite Communications Technology and Systems
    International Technology Research Institute World Technology (WTEC) Division WTEC Panel Report on Global Satellite Communications Technology and Systems Joseph N. Pelton, Panel Chair Alfred U. Mac Rae, Panel Chair Kul B. Bhasin Charles W. Bostian William T. Brandon John V. Evans Neil R. Helm Christoph E. Mahle Stephen A. Townes December 1998 International Technology Research Institute R.D. Shelton, Director Geoffrey M. Holdridge, WTEC Division Director and ITRI Series Editor 4501 North Charles Street Baltimore, Maryland 21210-2699 WTEC Panel on Satellite Communications Technology and Systems Sponsored by the National Science Foundation and the National Aeronautics and Space Administration of the United States Government. Dr. Joseph N. Pelton (Panel Chair) Dr. Charles W. Bostian Mr. Neil R. Helm Institute for Applied Space Research Director, Center for Wireless Deputy Director, Institute for George Washington University Telecommunications Applied Space Research 2033 K Street, N.W., Rm. 304 Virginia Tech George Washington University Washington, DC 20052 Blacksburg, VA 24061-0111 2033 K Street, N.W., Rm. 340 Washington, DC 20052 Dr. Alfred U. Mac Rae (Panel Chair) Mr. William T. Brandon President, Mac Rae Technologies Principal Engineer Dr. Christoph E. Mahle 72 Sherbrook Drive The Mitre Corporation (D270) Communications Satellite Consultant Berkeley Heights, NJ 07922 202 Burlington Road 5137 Klingle Street, N.W. Bedford, MA 01730 Washington, DC 20016 Dr. Kul B. Bhasin Chief, Satellite Networks Dr. John V. Evans Dr. Stephen A. Townes and Architectures Branch Vice President Deputy Manager, Communications NASA Lewis Research Center and Chief Technology Officer Systems and Research Section MS 54-2 Comsat Corporation Jet Propulsion Laboratory 21000 Brookpark Rd.
    [Show full text]
  • Astrometrically Registered Maps of H2O and Sio Masers Toward VX Sagittarii
    ARTICLE DOI: 10.1038/s41467-018-04767-8 OPEN Astrometrically registered maps of H2O and SiO masers toward VX Sagittarii Dong-Hwan Yoon1,2, Se-Hyung Cho2,3, Youngjoo Yun2, Yoon Kyung Choi2, Richard Dodson4, María Rioja4,5, Jaeheon Kim6, Hiroshi Imai7, Dongjin Kim3, Haneul Yang1,2 & Do-Young Byun2 The supergiant VX Sagittarii is a strong emitter of both H2O and SiO masers. However, previous VLBI observations have been performed separately, which makes it difficult to 1234567890():,; spatially trace the outward transfer of the material consecutively. Here we present the astrometrically registered, simultaneous maps of 22.2 GHz H2O and 43.1/42.8/86.2/129.3 GHz SiO masers toward VX Sagittarii. The H2O masers detected above the dust-forming layers have an asymmetric distribution. The multi-transition SiO masers are nearly circular ring, suggesting spherically symmetric wind within a few stellar radii. These results provide the clear evidence that the asymmetry in the outflow is enhanced after the smaller molecular gas clump transform into the inhomogeneous dust layers. The 129.3 GHz maser arises from the outermost region compared to that of 43.1/42.8/86.2 GHz SiO masers. The ring size of the 129.3 GHz maser is maximized around the optical maximum, suggesting that radiative pumping is dominant. 1 Astronomy Program, Department of Physics and Astronomy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Korea. 2 Korea Astronomy and Space Science Institute, 776 Daedeokdae-ro, Yuseong-gu, Daejeon 34055, Korea. 3 Department of Astronomy, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Korea.
    [Show full text]
  • Appendix I Lunar and Martian Nomenclature
    APPENDIX I LUNAR AND MARTIAN NOMENCLATURE LUNAR AND MARTIAN NOMENCLATURE A large number of names of craters and other features on the Moon and Mars, were accepted by the IAU General Assemblies X (Moscow, 1958), XI (Berkeley, 1961), XII (Hamburg, 1964), XIV (Brighton, 1970), and XV (Sydney, 1973). The names were suggested by the appropriate IAU Commissions (16 and 17). In particular the Lunar names accepted at the XIVth and XVth General Assemblies were recommended by the 'Working Group on Lunar Nomenclature' under the Chairmanship of Dr D. H. Menzel. The Martian names were suggested by the 'Working Group on Martian Nomenclature' under the Chairmanship of Dr G. de Vaucouleurs. At the XVth General Assembly a new 'Working Group on Planetary System Nomenclature' was formed (Chairman: Dr P. M. Millman) comprising various Task Groups, one for each particular subject. For further references see: [AU Trans. X, 259-263, 1960; XIB, 236-238, 1962; Xlffi, 203-204, 1966; xnffi, 99-105, 1968; XIVB, 63, 129, 139, 1971; Space Sci. Rev. 12, 136-186, 1971. Because at the recent General Assemblies some small changes, or corrections, were made, the complete list of Lunar and Martian Topographic Features is published here. Table 1 Lunar Craters Abbe 58S,174E Balboa 19N,83W Abbot 6N,55E Baldet 54S, 151W Abel 34S,85E Balmer 20S,70E Abul Wafa 2N,ll7E Banachiewicz 5N,80E Adams 32S,69E Banting 26N,16E Aitken 17S,173E Barbier 248, 158E AI-Biruni 18N,93E Barnard 30S,86E Alden 24S, lllE Barringer 29S,151W Aldrin I.4N,22.1E Bartels 24N,90W Alekhin 68S,131W Becquerei
    [Show full text]
  • A Guide to Star Names, Pronunciations, and Related Constellations
    Astronomy Club of Asheville 3 Feb. 2020 version Page 1 of 8 A Guide to Star Names, Pronunciations, and Related Constellations Proper Star Names: There are over 300 proper star names that are used and accepted worldwide today -- and approved by the International Astronomical Union. Most of them come from the ancient Arabic cultures, but there are many star names in common use from the Greek, the Roman, European, and other cultures as well. On the pages below you will find an alphabetical list of many, but not all, of the proper star names, their pronunciations, and related constellations. Find a list of star names by constellation at this web link. Find another list of common star names at this web link. Star Catalogs that are Currently Used by Astronomers 1. Bayer Catalog: This first widely recognized star catalog was published by German astronomer Johann Bayer in 1603. This list of naked-eye stars indexes the stars in each constellation, using the letters of the Greek alphabet, followed by the genitive form of its parent constellation's Latin name, e.g., alpha Orionis. Typically, the brightest star in each constellation received the first Greek letter (alpha), the second brightest star the second letter (beta), and on-and-on. But you will often notice that the Bayer sequencing of the bright stars in the constellations is not true to what we see and know today about their apparent brightness. Original errors in the brightness estimates, along with the brightness variability of the stars (like Betelgeuse in Orion), have caused the Bayer sequencing not to match the stellar brightness that we observe today.
    [Show full text]
  • The Double Helix Nebula: a Magnetic Torsional Wave Propagating out of the Galactic Centre
    The Double Helix Nebula: a magnetic torsional wave propagating out of the Galactic centre Mark Morris1, Keven Uchida2, and Tuan Do1 1Department of Physics and Astronomy, University of California, Los Angeles, Los Angeles, CA 90095-1547, USA 2Center for Radiophysics and Space Research, Cornell University, Space Sciences Building, Ithaca, NY 14853-6801 Radioastronomical studies have indicated that the magnetic field in the central few hundred parsecs of our Milky Way Galaxy has a dipolar geometry and a strength substantially larger than elsewhere in the Galaxy, with estimates ranging up to a milligauss1-6. A strong, large-scale magnetic field can affect the Galactic orbits of molecular clouds by exerting a drag on them, it can inhibit star formation, and it can guide a wind of cosmic rays away from the central region, so a characterization of the magnetic field at the Galactic center is important for understanding much of the activity there. Here, we report Spitzer Space Telescope observations of an unprecedented infrared nebula having the morphology of an intertwined double helix. This feature is located about 100 pc from the Galaxy’s dynamical centre toward positive Galactic latitude, and its axis is oriented perpendicular to the Galactic plane. The observed segment is about 25 pc in length, and contains about 1.25 full turns of each of the two continuous, helically wound strands. We interpret this feature as a torsional Alfvén wave propagating vertically away from the Galactic disk, driven by rotation of the magnetized circumnuclear gas disk. As such, it offers a new morphological probe of the Galactic center magnetic field.
    [Show full text]
  • The Idea of Sacred Time Is As Old As Human History As Well As Being Attributed to a Time Before Human History Began
    The Sacred Time of 2012 By Willard G. Van De Bogart June 21, 2008 The wonderful host of rays has risen: the eye of Mitra, Varuna, and Agni: the Sun, the soul of all that moves or Immovable, has filled the heaven, the Earth and the firmament. Rig-Veda: 1, 115, 1 The idea of sacred time is as old as human history itself as well as being attributed to a time before human history began. It is a time known as the creation time. The time 2012 is thought of as the end time, the time when the world comes to an end and unimaginable catastrophes end the human race resulting in the infamous doomsday scenario and the fulfillment of the two millennia of Christian eschatology. Due to the loss of understanding of the celestial significance of the time 2012, and its relationship to human cognition, the unprecedented opportunity to be spiritually transformed is the other scenario which this paper on the sacred time of 2012 will address. 1 Sacred time is unlike the time associated with daily activities but is rather a time affiliated with a reverence for heaven and earth, honored and held in the highest esteem, and definitely not to be sullied by actions counter to the messages conveyed by actions or events considered to be a part of that sacred time when the universe was born; the creation time. Assailing or desacralizing the concept of something which is sacred is perhaps one of the greatest cultural efforts attempted by a deconstructionist point of view, or even by those who just wish to undermine or dismantle the ideological framework which allows the idea of something to become sacred.
    [Show full text]