Lightweight Door Ring Solution in Car Body Development

Total Page:16

File Type:pdf, Size:1020Kb

Lightweight Door Ring Solution in Car Body Development Research Article – IJAAT – 2017 – 22 International Journal of Advances on Automotive and Technology http://dx.doi.org/10.15659/ijaat.17.07.529 Promech Corp. Press, Istanbul, Turkey Manuscript Received October 14, 2016; Accepted May 15, 2017. Vol.1, No. 3, pp. 131-136, July, 2017 This paper was recommended for publication in revised form by Co-Editor Yasin Karagoz LIGHTWEIGHT DOOR RING SOLUTION IN CAR BODY DEVELOPMENT *Evren Altınok Hakan Kayserili TOFAŞ, Turkish Automotive Company TOFAŞ, Turkish Automotive Company R&D Center R&D Center Bursa, Turkey Bursa, Turkey Ahmet Mert Serkan A. Altınel TOFAŞ, Turkish Automotive TOFAŞ, Turkish Automotive Company R&D Center Company R&D Center Bursa, Turkey Bursa, Turkey Keywords: Car Door Ring, Hot Stamping, Boron Alloyed Steel, A-Pillar, B-Pillar, Rocker, Body Light Weight, Frontal Crash, Lateral Crash Phone: +90 224 261 03 50, Fax: +90 224 261 0408 E-mail address: [email protected] ABSTRACT manufacturers in order to reduce CO2 emission that causes Lightweighting has become a target for car manufacturers greenhouse effect, the main reason for climate change. To in order to reduce CO2 emission that causes greenhouse effect, lessen vehicle load is aimed to increase fuel efficiency, provide the main reason for climate change. 40% of average weight occupant protection and environmental factors. distribution of a vehicle arises from the parts that belong to the The statistics show that fuel consumption may decrease 6- body. With a door ring design developed differently from 8% if the lightweight effect of full vehicle reaches 10% [1]. As standard methods, around 3 kg/vehicle weight reduction was the automotive structure possess about 40% weight of full achieved. Rocker which currently a couple of part was vehicle, the weight reduction in body structure is one key way converted to single part and the number of operation applied in to achieve fuel efficiency, harmful emissions reduction and raw production line was reduced. By this means the structure was material saving [2]. Moreover, crashworthiness is the other made more rigid. B-Pillar was designed as a lightweight part important issue that focuses on occupant protection to reduce suitable for the system. The weight reduction was obtained by the number of fatal injuries. The body is the suitable place to optimizing the parts without compromising vehicle safety reinforce structures to reduce effect of crashes. Hence, the objectives and by changing the loading method for welding ability of the vehicle to absorb energy comes into prominence process. By supporting designs with virtual analysis design for body design. Using resisting materials in design, providing validation was conducted. structural rigidity are the basis studies to increase stability for accidents. Especially the door ring that absorb energy in lateral crash must be designed without compromising vehicle safety objectives. INTRODUCTION The door ring (in Fig.1) is designed with three crucial parts Environmental problems that are increasing day by day which are A-Pillar that supports the windshield, B-Pillar that canalize the most of industrial areas like automotive industry to play a key role providing strength to the midsection of the new researches. Lightweighting has become a target for car 131 vehicle and Rocker that is located along the sides of the vehicle between front and rear wheel. In this paper, a new door ring was designed by developing differently from standard methods for a stronger and lightweight body structure. As a result, around 3 kg per vehicle weight reduction was achieved and new door ring design was verified by supporting with numerical analysis. The new door ring design method was developed according to FCA (Fiat Chrysler Automobiles) product development FIG.2 – PRODUCT DEVELOPMENT PROCESS process (Fig.2). The relevant process consists of four main phases which are concept, definition, execution, industrialization. RESULTS AND DISCUSSION Design Optimization The design of the door ring that is known as a life cage of the vehicles in side impact and the loading method of the door ring was developed in order to be more competitive without compromising vehicle performance. Problem Description and Alternative Solution: The standard door ring design is shown in Fig. 3. As can be seen in the figure, the standard design includes three important parts which are A-Pillar, B-Pillar and Rocker. FIG.1 – A-PILLAR, B-PILLAR, ROCKER PANEL IN A CAR BODY DESIGN FIG.3 – STANDARD DESIGN The new design was started in execution phase that includes technical development and tooling development process. In main design activities of technical development Gas metal arc welding (GMAW) is supposed to be applied stage that are packaging controls, virtual validations, on the back side of the door ring in order to avoid visual manufacturing feasibility and process simulations were made by pollution in the standard design. In addition to that GMAW design team. In addition to that the mathematic models were must be applied because of the Rocker which consists of two created in the CAD release level. In tooling development stage, parts (Fig.4). The same GMAW application must be used on the mathematic models were released by project team and the joint of A-Pillar and B-Pillar. previous design activities which are in technical development stage were continued in this stage too. Finally, in industrialization phase that is the final stage of development process, process verification, durability, VLO (vehicle layout controls), plant manufacturing process readiness, design validation and pre serial production were conducted by project team. 132 Conference Paper The necessity of GMAW usage was eliminated as producing a new single Rocker part. Instead of that, spot welding is adequate in order to join Rocker and B-Pillar before loading the door ring to the body. Hence, B-Pillar was optimized as removing unnecessary portions of part that is used for GMAW on B-Pillar (Fig. 6). FIG. 4– GMAW AREA ON THE DOOR RING FIG. 6 – SPOT WELDING AREA ON THE DOOR RING Each part of the door ring is loaded to the body separately. Therefore extra welding applications are required on joint The number of operation applied in production line was regions. Production process is extended due to many number of reduced whereby the new door ring is designed. Around 3 kg operation. The new design process was launched based on these per vehicle weight reduction was achieved due to form A- and problems eventually. The new door ring design can be seen in B-Pillar with hot stamping and due to remove unnecessary Fig. 5. portion of parts. The effect of hot stamping on weight reduction is an expected result. Hot stamping offers considerable potential for minimizing component weight by reducing sheet thickness and the number of components needed. Hot stamping technology can be used for A- and B-Pillar reinforcement roof rails, side wall members and beams for crash management structures [3]. Tolerancing and Loading to Body: In the standard design, single part tolerances are used so that each part of the door ring are loaded to the body separately. The parts cannot be loaded to the body that will be experienced in case of unsuitability of the new door ring tolerances. Loading simulations were made in order to determine proper tolerances. The tolerance studies are applied on the new door ring design can be seen in Fig. 7. Moreover, the tolerance values were validated as making loading simulations. FIG.5 – NEW DOOR RING DESIGN 133 FIG.7 – TOLERANCE STUDIES OF THE NEW DOOR RING DESIGN FIG.8 – SIDE IMPACT ANALYSIS IMAGE FOR EURO NCAP Optimization Process The goal of this study is to obtain more rigid and stronger The data which is taken after a car that is moved at 50km/h door ring design by reducing the reinforcement parts and is crashed to a stable testing vehicle were compared with without increasing overall weight. It is more important to know performance criteria. The deformation effect on B-Pillar that is the safety performance of the vehicle which parts are affected observed in side impact simulation is in Fig. 9. The data is by lateral crash. Structural and mechanical characteristic of obtained from the simulations results were determined in door ring is crucial for the safety performance of the vehicle. accordance with the criteria by the safety center of FIAT. The door ring should have good energy absorption characteristic and high mechanical properties in order to be protected safety door ring. Generally these characteristics are obtained by using functionally graded strength (FGS). FGS structures are found by optimizing all of the crashworthiness and its deviation by the time of the crash impact (peak forces, max-min acceleration of the deformation, max displacement of the related zone in safety cage etc.) [4]. In optimization process, stampability analysis, side impact simulations, NVH tests, chemical composition and micro structure analysis were made on the new door ring design and optimal door ring design solution was obtained successfully. Side Impact Simulations (Lateral Crash Tests): Research has shown that side impacts are relatively uncommon, but they represent a disproportionately high level of fatalities FIG.9 – SIDE IMPACT SIMULATION RESULTS FOR [5]. Euro NCAP- European New Car Assessment Programme EURO NCAP added a pole test to demonstrate passenger safety. Euro NCAP’s pole test has seen several updates, including the test dummy, NVH Tests: Recently, various structural and mechanism performance criteria and scoring [6]. The image of side impact analysis techniques have been applied to vehicle development analysis according to Euro NCAP standards can be seen in contributing to simplification of prototyping and reduction of Fig.8. labour time required for vehicle development [7]. Thus, the finite element model of the door ring that is designed for change of concept was created for NHV test that is one of these analysis techniques (Fig.10).
Recommended publications
  • Greenhouse Gases and Light-Duty Vehicles (PDF)
    Greenhouse Gases and Light-duty Vehicles Clean Air Act Advisory Committee Meeting th Sept 18 , 2008 David Haugen National Vehicle and Fuel Emissions Laboratory Office of Transportation and Air Quality 1 Many technology options available to reduce Light Duty vehicle GHGs • Tendency is to focus on the “big hitters” – Hybrids (and PHEVs) like the Prius, “2-Mode”, and the Volt – Advanced Clean Diesels • However, there are many “small hitters” that remain available to the fleet to reduce vehicle GHGs at very affordable costs – Better engines (for efficiency, not just improved performance) – Advanced transmissions – Improved vehicle and accessories Care must be taken when combining these technologies, so appropriate benefits are predicted 2 Vehicle Technologies available to reduce GHGs from Light Duty • Engines – Reduced Engine Friction & Improved Lubricants – Variable valve timing and lift – Cylinder deactivation – Gasoline direct injection – Turbocharging with engine downsizing – Clean Diesels • Transmissions – 6-speed automatic – Automated manual • Hybrids (“mild”, “medium” and “full” – electric, plug-ins and series hydraulic) • Vehicle and Accessories – Reduced aerodynamic vehicle drag, through design – Improved low rolling resistance tires – Weight reduction – Halting or rolling back the “performance race” – Improved alternators, electrical & A/C systems and other accessories – Electric power steering 3 LD Technologies Entering Fleet 1998 2008 Multi-valve engine 40% 77% Variable valve timing negligible 58% Cylinder deactivation 0% 7% Turbocharging 1.4% 2.5% Manual transmission 13% 7% Continuously variable trans 0% 8% Hybrid 0 2.5% Diesel 0.1% 0.1% 4 Engine Technologies • Variable Valve Timing & Lift (VVT & VVL) – Also known as cam phasing – Precise control of valve opening & closing and how much they open and close.
    [Show full text]
  • Vehicle Greenhouse Shape Analysis for Design of a Parametric Test Buck for Dynamic Rollover Testing
    VEHICLE GREENHOUSE SHAPE ANALYSIS FOR DESIGN OF A PARAMETRIC TEST BUCK FOR DYNAMIC ROLLOVER TESTING Patrick Foltz Taewung Kim Jason R. Kerrigan Jeff R. Crandall Center for Applied Biomechanics, University of Virginia United States Paper Number 11-0271 ABSTRACT The goal of this study was to define a set of vehicle a means to assess the effects of adjusting a single greenhouse geometries that are representative of the parameter independently of the other factors. current vehicle fleet for use on a parametric rollover Computational modeling provides for a means to test buck. Greenhouse geometry data for 60 vehicles perform such independent evaluations, but were taken from New Car Assessment Program uncertainties regarding the validity of vehicle models (NCAP) test reports and compiled in a database for in dynamic rollover simulations (Parent et al. 2010) analysis. The database was then used to determine suggest that simulation results should be used only to XYZ coordinates for landmark points that guide and not define parameter prioritization. While characterized the greenhouse geometries for those 60 experimental analyses have the benefit of utilizing vehicles. These landmark-based greenhouse physical structures, which eliminates concerns representations were then analyzed and grouped into regarding validity, parametric analysis of rollover one of three groups using an Optimization technique. crashes using experimental testing is complicated by The mean shape was found for each group, and this variations in multiple parameters between vehicles. was used as a representation of the group. These For instance, in general, while vehicle A may differ three representative shapes were found to have a from vehicle B in roof strength, they also may vary in maximum variation of 15 degrees in the windshield roof shape, roll moment of inertia, mass and a variety angle, 120 mm in roof rail height, 119 mm in of other factors.
    [Show full text]
  • Vehicle Fuel Economy and Greenhouse Gas Standards: Frequently Asked Questions
    Vehicle Fuel Economy and Greenhouse Gas Standards: Frequently Asked Questions Updated June 1, 2021 Congressional Research Service https://crsreports.congress.gov R45204 SUMMARY R45204 Vehicle Fuel Economy and June 1, 2021 Greenhouse Gas Standards: Richard K. Lattanzio Frequently Asked Questions Specialist in Environmental Policy On January 20, 2021, President Joe Biden issued Executive Order 13990, “Protecting Public Health and the Environment and Restoring Science to Tackle the Climate Crisis,” which directs Linda Tsang federal agencies to review regulations and other agency actions from the Trump Administration, Legislative Attorney including the rules that revised the Obama Administration’s vehicle fuel economy and greenhouse gas (GHG) emissions standards. Bill Canis Currently, the federal standards that regulate fuel economy and GHG emissions from new Specialist in Industrial passenger cars and light trucks include the Corporate Average Fuel Economy (CAFE) standards Organization and Business promulgated by the U.S. Department of Transportation’s National Highway Traffic Safety Administration (NHTSA) and the Light-Duty Vehicle GHG emissions standards promulgated by the U.S. Environmental Protection Agency (EPA). They are known collectively as the National Program. NHTSA derives its authorities for the standards from the Energy Policy and Conservation Act of 1975, as amended (49 U.S.C. §§32901-32919). EPA derives its authorities for the standards from the Clean Air Act, as amended (42 U.S.C. §§7401-7626). Under the Obama Administration, EPA and NHTSA promulgated joint rulemakings affecting model year (MY) 2012-2016 passenger cars and light trucks on May 7, 2010 (Phase 1). The agencies promulgated a second phase of standards affecting MYs 2017-2025 on October 15, 2012.
    [Show full text]
  • National Register of Historic Places Multiple Property Documentation
    NFS Form 10-SCO-b RECEIVED 2/80 CMS No. 1024-0018 (June 1991) 1 United States Department of the Interior National Park Service MAR PUI996 National Register of Historic Places NAT. REGISTER OF HISTORIC PLACES Multiple Property Documentation Form NATIONAL PARK SERVICE This form is used for documenting multiple property groups relating to one or several historic contexts. See instructions in How to Complete the Multiple Proper?/ Documentation Form (National Register Bulletin 168). Complete each item by entering tne requested information. For adoitional space, use continuation sheets (Form 10-900-a). Use a typewriter, word processor, or computer to complete ail items. X New Submission Amended Submission A. Name of Multiple Property Listing Early Auto-Related Properties in Pasadena, California S. Associated Historic Contexts _____________________________________ (Name each associated historic context, identifying theme, geograpnical area, and chrono!oc:cai period for.eacn.) Early Auto-Related Properties in Pasadena, California, 1897-1944 Automobile Manufacturing, 1901-1937 Marketing and Servicing the Automobile, 1902-1944 Influences of the Automobile on Other Businesses, 1924-1944 Roadways and Bridges, 1899-1944 C. Form Prepared by name/title Teresa Grimes. Architectural Historian organization Historic Resources Group___ date January 2. 1QQ6 street & number 1728 North Whitley Avenue telephone 2! 3-469-2349 city or town Hollywood________ state CA zip code QQQ2R______ D. Certification As the designated authority under the National Historic Preservation Act of 1966, as amended, I hereby certify that this documentation form meets the National Register documentation standards and sets forth requirements for the listing of related properties consistent with the National Register criteria. This submission meets the procedural and professional requirements set forth in 36 CFR Part 60 and the Secretary of the Interior's Standards and Guidelines for Archeology and Historic Preservation.
    [Show full text]
  • Joint Technical Support Document: Rulemaking to Establish Light-Duty
    National Vehicle and Fuel Emissions Laboratory Office of Transportation and Air Quality Office of International Policy, Fuel Economy, U.S. Environmental Protection Agency and Consumer Programs National Highway Traffic Safety Administration U.S. Department of Transportation EPA-420-R-10-901 Joint Technical Support Document: Rulemaking to Establish Light-Duty Vehicle Greenhouse Gas Emission Standards and Corporate Average Fuel Economy Standards April 2010 TABLE OF CONTENTS Executive Summary iv CHAPTER 1: The Baseline and Reference Vehicle Fleet 1-1 1.1 Why do the agencies establish a baseline and reference vehicle fleet? 1-1 1.2 The 2008 baseline vehicle fleet 1-2 1.2.1 Why did the agencies choose 2008 as the baseline model year? 1-2 1.3 The MY 2011-2016 Reference Fleet 1-13 1.3.1 On what data is the reference vehicle fleet based? 1-13 1.3.2 How do the agencies develop the reference vehicle fleet? 1-15 1.3.3 How has the reference fleet changed from the NPRM to the Final Rule? 1-24 1.3.4 What are the sales volumes and characteristics of the reference fleet? 1-26 1.3.5 How is the development of the baseline and reference fleet for this final rule different from NHTSA’s historical approach and why is this approach preferable? 1-30 1.3.6 How does manufacturer product plan data factor into the baseline used in this final rule? 1-31 CHAPTER 2: What Are the Attribute-Based Curves the Agencies Are Using, and How Were They Developed? 2-1 2.1 Standards are attribute-based and are defined by a mathematical function 2-1 2.2 What attribute do the agencies
    [Show full text]
  • BOSLEY Pages for Internet.Indd
    IMAGINE IMAGINE RICHARD BOSLEY RICHARD BOSLEY RICHARD BOSLEY AMERICAN COACHBUILDER AMERICAN COACHBUILDER AMERICAN IMAGINE RICHARD BOSLEY AMERICAN COACHBUILDER Dedicated to Ron & Sonya Kellogg in grateful appreciation of their vision to acquire and restore the Mark I, and their friendship with our father, and to Stephen & Kim Bruno, whose discerning eyes and entrepreneurial determination brought the Interstate back to life. Except as otherwise noted, all photographs in this book were taken by (and all drawings made by) Richard Bosley. Compiled and printed by his family. For more information, email [email protected]. Copyright: 2017, Children of Richard W. Bosley. From Ohio roots Peace... Golden Wings... June Bride... all roses grown by Bosley Nursery. Once known as the Rose Capital of the Nation, Mentor, Ohio was home to more than a dozen wholesale growers. And home to Richard Bosley. Bosley Nursery boss Paul (at left , holding Richard) was a plantsman and a natural salesman, and his wife Edith was both matriarch and a businesswoman ahead of her time. When Paul got out of the Army in 1918, he courted his future wife, who lived in distant Geneva, via the Cleveland, Painesville, and Eastern interurban railroad. Th e land they kept passing (and eventually acquired) at Stop 68 in Mentor seemed to be an ideal place to establish their family and business. While supplying their plants to a six-state area, they raised four children - Paul Jr., Patricia, Richard, and Virginia. In those halcyon days before labor laws, the young siblings were called upon to "thorn" roses in the fi elds. At far middle left is Richard with his fi rst vehicle, likely in about 1930 - just a few yards from where he would build the Interstate thirty years later.
    [Show full text]
  • Real Transportation Solutions for Greenhouse Gas Emissions Reductions
    Real Transportation Solutions for Greenhouse Gas Emissions Reductions utos and light-duty trucks contribute 16.5 percent of the greenhouse gases in A the United States. States are looking at the best ways to reduce these emissions while sustaining the transportation services people and businesses depend upon. We are committed to doing our part to help achieve the goal of reducing U.S. greenhouse gas (GHG) emissions 80 percent by 2050. Our strategies include: 1. Smarter Travel: Reduce the rate of growth in the number of vehicle miles traveled (VMT) in the United States. 2. Better Cars: Increase vehicle fuel efficiency. 3. Better Fuels: Shift to fuels that produce low or zero carbon dioxide emissions. 4. Optimize the System: Improve the efficiency and operation of our roads. ow can we reduce greenhouse gases produced by cars and light trucks without sacrificing jobs and our way H of life? There are many options on the table—driving less and more efficiently, using alternative fuels, building more fuel-efficient cars. In fact, there is no single best way to reduce emissions from these vehicles—which produce 16.5 percent of all greenhouse gases in the United States. The real answer is a combination of new technologies, cutting-edge public policy, and changing how we drive. The American Association of State • reducing the annual growth in Highway Transportation Officials driving, and its state members are committed • increasing vehicle fuel efficiency, to a goal of reducing greenhouse gases • shifting to fuels that produce low or 80 percent by 2050, compared to 2005 zero carbon dioxide, and levels, through a combination of four • improving the efficiency and operation basic strategies: of our roads.
    [Show full text]
  • A Global Comparison of the Life-Cycle Greenhouse Gas Emissions of Combustion Engine and Electric Passenger Cars
    WHITE PAPER J ULY 2021 A GLOBAL COMPARISON OF THE LIFE-CYCLE GREENHOUSE GAS EMISSIONS OF COMBUSTION ENGINE AND ELECTRIC PASSENGER CARS Georg Bieker www.theicct.org [email protected] twitter @theicct BEIJING | BERLIN | SAN FRANCISCO | SÃO PAULO | WASHINGTON ACKNOWLEDGMENTS The author thanks all ICCT colleagues who contributed to this report, with special thanks to Yidan Chu, Zhinan Chen, Sunitha Anup, Nikita Pavlenko, and Dale Hall for regional data input, and Peter Mock, Stephanie Searle, Rachel Muncrief, Jen Callahan, Hui He, Anup Bandivadekar, Nic Lutsey, and Joshua Miller for guidance and review of the analysis. In addition, the author thanks all external reviewers: Pierpaolo Cazzola (ITF), Matteo Craglia (ITF), Günther Hörmandinger (Agora Verkehrswende), Jacob Teter (IEA), and four anonymous individuals; their review does not imply an endorsement. Any errors are the author’s own. For additional information: ICCT – International Council on Clean Transportation Europe Neue Promenade 6, 10178 Berlin +49 (30) 847129-102 [email protected] | www.theicct.org | @TheICCT © 2021 International Council on Clean Transportation Funding for this work was generously provided by the European Climate Foundation and the Climate Imperative Foundation. EXECUTIVE SUMMARY If the transportation sector is to align with efforts supporting the best chance of achieving the Paris Agreement’s goal of limiting global warming to below 2 °C, the greenhouse gas (GHG) emissions from global road transport in 2050 need to be dramatically lower than today’s levels. ICCT’s projections show that efforts in line with limiting warming to 1.5 °C mean reducing emissions from the combustion and production of fuels and electricity for transport by at least 80% from today’s levels by 2050, and the largest part of this reduction needs to come from passenger cars.
    [Show full text]
  • 2018 SUSTAINABILITY REPORT Highlights
    FERRARI N.V. Sustainability Report 2018 Ferrari N.V. Official Seat: Amsterdam, The Netherlands Dutch Trade Registration Number: 64060977 Administrative Offices: Via Abetone Inferiore 4 I-41053, Maranello (MO) Italy FERRARI N.V. 2018 SUSTAINABILITY REPORT Highlights +14% +45% total training employees hours (vs. 2017) (vs. 2017) 2 Sustainability Report 2018 – e 11% ˜1.2 bn CO2 emissions expensed R&D ( estimated reduction in 2018 and CAPEX vs. 2014 on the EU fleet) Sustainability Report 2018 3 FERRARI N.V. Table of Contents Letter from the Chairman and the Chief Executive Officer 6 Our Journey to Sustainability 9 Ferrari Group 10 About Ferrari 10 Our DNA 13 Our Values 13 Our Strategy 14 Our Business 16 Sports and GT Range, Special Series and Icona: Ferrari Line-Up Strategic Pillars 16 Limited Edition Hypercars, Fuori Serie and One-Offs 19 Track Cars 19 Personalization Offer 21 Formula 1 Activities 22 Brand Activities 25 Intellectual Property 26 Materiality Matrix and Stakeholder Engagement 28 Materiality Matrix of Ferrari Group 28 Stakeholder Engagement 32 Our Governance 36 Our Governance and Sustainability Committee 37 Integrity of Business Conduct 38 Anti-Bribery and Corruption 38 Whistleblowing 38 Compliance 39 Sustainability Risks 40 4 Sustainability Report 2018 | Table of Contents Product Responsibility 42 Research, Innovation and Technology 42 Client Relations 51 Vehicle Safety 58 Responsible Supply Chain 60 Conflict Minerals 61 Production Process 62 Our People 65 Working Environment 65 Training and Talent Development 68 Talent Recruitment
    [Show full text]
  • 2018 Cadillac Professional Vehicle NON-VIN Specific
    DOCUMENT FOR INCOMPLETE VEHICLE, APPLICABLE TO THE 2018 MODEL YEAR CADILLAC XTS B05 – ARMORED VEHICLE, B9Q – FUNERAL COACH, V4U – LIMOUSINE, OR W30 – SHORT STRETCH LIVERY General Motors, Renaissance Center P.O. Box 300 Detroit, Michigan 48265-3000 www.gm.com DO NOT REMOVE THIS DOCUMENT MUST REMAIN WITH THIS VEHICLE UNTIL IT IS CERTIFIED AS A COMPLETED VEHICLE PLACE LABEL HERE The Label affixed here includes the following information: the name of the incomplete vehicle manufacturer; the month and yearPLACE the incomplete vehicle manufacturer performed its last manufacturing operation on the incomplete vehicle; LABEL the vehicle identificationHERE number (VIN); the Gross Vehicle Weight Rating (GVWR) expressed in kg (lb), intended for the vehicle when it is a completed vehicle; The Gross Axle Weight Rating (GAWR) expressed in kg (lb), intended for each axle of the vehicle when it is a completed vehicle, listed in order from front to rear. This document is furnished as required by the Canada Motor Vehicle Safety Act and United States (U.S.) Federal Motor Vehicle Safety Regulations (FMVSR) to aid intermediate and final stage manufacturers in their determination of conformity of the completed vehicle with applicable Canada Motor Vehicle Safety Standards (CMVSS) and U.S. Federal Motor Vehicle Safety Standards (FMVSS). Also included are instructions which must be followed in order to assure that Environmental Protection Agency (EPA) and California Air Resources Board (CARB) emission certification requirements, U.S. National Highway Traffic Safety Administration (NHTSA) Fuel Economy Regulations and Environmental Protection Agency (EPA) Greenhouse Gas Regulations are met. This document is not a substitute for knowledge and understanding of the requirements of the Canada Motor Vehicle Safety Act, Federal Motor Vehicle Safety Regulations (FMVSR), or applicable Canada Motor Vehicle Safety Standards (CMVSS) and Federal Motor Vehicle Safety Standards (FMVSS).
    [Show full text]
  • Understanding Structural Damage on Today's Vehicles
    HammerDolly_0811.qxd:Layout 1 7/13/11 12:17 PM Page 31 TECHNICAL FEATURE o k n e l Understanding Structural o m r a Y y i d a k r A / m Damage on Today’s o c . o t o h p k c o t s i Vehicles © By Larry Montanez III, CDA and Jeff Lange, PE PART 2 OF 3: SIDE IMPACT COMPONENTS In last month’s column, we talked about the understanding of damage to the panels themselves and not the supporting structure. collision-related structural damage and how to diagnose the dam- Damage may be hidden deep inside the structure of the vehi- age to the frontal components. This month, we will discuss the cle, which can be a major issue that may cause a multitude of understanding and diagnosing of the structural side components of problems. A repair that was assumed to be low-cost and take a day a vehicle and how they manage the applied force in a collision or so can easily turn into an eight-to-15-day repair and cost event. Today’s vehicles are designed to absorb a certain amount of upwards of thousands of dollars due to the UHSS pillar reinforce- side collision energy (or collision pulse), and then transfer that ment. There are two major reasons why this happens: A lack of pulse up and over, and down and under the passenger compart- knowledge of what occurs in a collision event and how the vehicle ment for the safety of the occupants. The questions associated with reacts, and laziness.
    [Show full text]
  • Fontographer
    2015 MODEL YEAR For more information visit: www.jeep.com FCA US LLC GRAND CHEROKEE LIMITED 4X4 or call 1-877-IAM-JEEP EPA Fuel Economy and Environment E85 Flexible-Fuel Vehicle THIS VEHICLE IS MANUFACTURED TO MEET SPECIFIC UNITED STATES REQUIREMENTS. THIS DOT C Gasoline-Ethanol (E85) VEHICLE IS NOT MANUFACTURED FOR SALE OR REGISTRATION OUTSIDE OF THE UNITED STATES. FMANUFACTURER’S SUGGESTED RETAIL PRICE OF EXTERIOR FEATURES Fuel Economy THIS MODEL INCLUDING DEALER PREPARATION 18-Inch x 8.0-Inch Polished Aluminum Wheels Standard SUV 4WD range from 13 to 28 MPG. You spend P265/60R18 BSW AS On/Off-Rd Low Roll Resist Tires MPG The best vehicle rates 119 MPGe. Values C are based on gasoline and do not reflect Base Price: $39,065 Low Beam Daytime Running Headlamps performance and ratings based on E85. LED Tail Lamps $2,750 JEEP GRAND CHEROKEE LIMITED 4X4 Exterior Color: Maximum Steel Metallic Clear Coat Exterior Paint Premium Fog Lamps 17 24 5.3 more in fuel costs Interior Color: Black Interior Color Pwr Heat Mem Multi-Function Mirrors w/Man Fold-Away 19combined city/hwy city highway gallons per 100 miles Interior: Leather Trim Seats with Perforated Inserts Driving Range over 5 years Engine: 3.6-Liter Pentastar V6 Engine OPTIONAL EQUIPMENT (May Replace Standard Equipment) Gasoline: 467 miles compared to the Transmission: 8-Speed Paddle-Shift Automatic Transmission Customer Preferred Package 23H JEthanol (E85): 369 miles average new vehicle. STANDARD EQUIPMENT (UNLESS REPLACED BY OPTIONAL EQUIPMENT) Luxury Group II $4,200 FUNCTIONAL/SAFETY FEATURES 506-Watt Amplifier Fuel Economy & Greenhouse Gas Rating (tailpipe only) Smog Rating (tailpipe only) 34Quadra-Trac II® 4WD System Automatic High Beam Headlamp Control Annual fuel cost Selec-Terrain™ System Automatic Headlamp Leveling System N P ParkView™ Rear Back-Up Camera Bi-Xenon HID Headlamps 110110 ParkSense® Rear Park Assist System LED Daytime Running Headlamps $2,750 Best Best Advanced Multistage Front Airbags Rain Sensitive Windshield Wipers This vehicle emits 458 grams CO2 per mile.
    [Show full text]