Auswirkungen Von Big Data Auf Den Markt Der Onlinemedien

Total Page:16

File Type:pdf, Size:1020Kb

Auswirkungen Von Big Data Auf Den Markt Der Onlinemedien AUSWIRKUNGEN VON BIG DATA AUF DEN MARKT DER ONLINE MEDIEN IM RAHMEN DES ABIDA - FORSCHUNGSPROJEKTES D E S B M B F FÖRDERKENNZEICHEN 01 | S 1 5 0 1 6 A ‐ F 01IS15016A- F Goldmedia GmbH Strategy Consulting Autoren: Prof. Dr. Klaus Goldhammer, Dr. André Wiegand, Tim Prien M.A., Ina Wylenga M.A. Unter Mitarbeit von: Franziska Busse, Sophie Seyffert und Andrea Hamm Oranienburger Str. 27, 10117 Berlin-Mitte, Germany Tel. +49 30-246 266-0, Fax +49 30-246 266-66 [email protected] Datum: 28.02.2018 ABIDA - ASSESSING BIG DATA PROJEKTLAUFZEIT 01.0 3 . 2 0 1 5 - 2 8 . 0 2 . 2 0 1 9 FÖRDERKENNZEICHEN 01 | S 1 5 0 1 6 A ‐ F Westfälische Wilhelms-Universität Münster, Institut für Informations-, Telekommunikations- und Medienrecht (ITM), Zivilrechtliche Abteilung Karlsruher Institut für Technologie, Institut für Technikfolgenabschätzung und Systemanalyse (ITAS) Leibniz Universität Hannover Institut für Rechtsinformatik (IRI) Technische Universität Dortmund, Wirtschafts- und Sozialwissenschaftliche Fakultät (WiSo) Techniksoziologie Ludwig-Maximilians-Universität München, Forschungsstelle für Information, Organisation und Management (IOM) Wissenschaftszentrum Berlin für Sozialforschung www.abida.de ABIDA - Assessing Big Data Über das Gutachten Das Gutachten wurde im Rahmen des ABIDA-Projekts mit Mitteln des Bundesministeriums für Bildung und Forschung erstellt. Der Inhalt des Gutachtens gibt ausschließlich die Auffassungen der Autoren wieder. Diese decken sich nicht automatisch mit denen des Ministeriums und/oder der einzelnen Projektpartner. ABIDA lotet gesellschaftliche Chancen und Risiken der Erzeugung, Verknüpfung und Auswertung großer Datenmengen aus und entwirft Handlungsoptionen für Politik, Forschung und Entwicklung. © 2018 – Alle Rechte vorbehalten INHALTSVERZEICHNIS Abbildungsverzeichnis ....................................................................................................................................................... 3 Tabellenverzeichnis ............................................................................................................................................................ 5 Abkürzungsverzeichnis ...................................................................................................................................................... 6 1 Executive Summary ...................................................................................................................................................... 7 2 Einleitung und Struktur des Gutachtens ............................................................................................................... 13 3 Technologische Grundlagen von Big Data: Künstliche Intelligenz und Neuronale Netzwerke ............... 16 3.1 Definition Künstlicher Intelligenz .................................................................................................................. 17 3.2 Taxonomie von Big Data ................................................................................................................................. 18 3.3 Neuronale Netze als zentrale Methodik von Künstlicher Intelligenz................................................... 21 3.4 Deep Learning und weitere KNN-Topologien ............................................................................................ 23 3.5 Relationale Datenbanken und verteilte Dateisysteme ........................................................................... 26 3.6 Statistisches Natural Language Processing und Natural Language Generation ................................ 28 3.7 Hidden-Markov-Modelle ................................................................................................................................ 31 4 Ausgewählte Beispiele von medienbezogenen Big-Data-Anwendungen im B2C-Markt.......................... 34 4.1 Personal Voice Assistants: KI-basierte Kommunikation und Transaktion .......................................... 34 4.1.1 Definition und Anwendungsbereiche ....................................................................................................35 4.1.2 Marktpotentiale ............................................................................................................................................37 4.1.3 Nutzerakzeptanz ...........................................................................................................................................39 4.1.4 Zusammenfassung und Ausblick .............................................................................................................41 4.2 Chatbots und Social-Bots: Automatisierte (Massen-) Kommunikation .............................................. 43 4.2.1 Definition und Anwendungsbereiche ....................................................................................................44 4.2.2 Marktpotentiale ............................................................................................................................................45 4.2.3 Nutzerakzeptanz ...........................................................................................................................................47 4.2.4 Zusammenfassung und Ausblick .............................................................................................................49 4.3 Algorithmische Optimierung von Empfehlungen in Onlinemedien und im E-Commerce .............. 52 4.3.1 Definition und Anwendungsbereiche ....................................................................................................52 4.3.2 Marktpotentiale ............................................................................................................................................55 4.3.3 Gesellschaftlicher Diskurs um ADM-Prozesse .....................................................................................56 4.3.4 Zusammenfassung und Ausblick .............................................................................................................59 5 Auswirkungen von medienbezogenen Big-Data-Anwendungen im B2B-Markt ......................................... 62 5.1 Teil- und vollautomatisierte Prozesse bei der Produktion von Medieninhalten .............................. 62 5.1.1 Definition und Anwendungsbereiche ....................................................................................................62 5.1.2 Marktpotentiale ............................................................................................................................................74 5.1.3 Zusammenfassung und Ausblick .............................................................................................................76 5.2 Innerbetriebliche Potentiale von Big Data bei Medienunternehmen ................................................. 78 5.2.1 Big-Data-Prozesse als neue Schlüsselaktivität .....................................................................................78 5.2.2 Marktpotential und Anwendungsbereiche ..........................................................................................81 5.2.3 Zusammenfassung und Ausblick .............................................................................................................83 5.3 Datengewinnung für Akquise und Vertrieb ............................................................................................... 88 5.3.1 Definition von personenbezogenen Daten ..........................................................................................89 1 5.3.2 Marktpotential und Anwendungsbereiche ..........................................................................................93 5.3.3 Zusammenfassung und Ausblick .............................................................................................................97 6 Auswirkungen von Big Data auf Onlinemedien: Beispiele und Case Studies .............................................. 99 6.1 Case Study: KI im Journalismus ..................................................................................................................... 99 6.2 Case Study: KI-Factchecking ........................................................................................................................ 100 6.3 Case Study: Content Blockchain................................................................................................................. 101 6.4 Case Study: Von Programmatic zu Predictive Advertising .................................................................. 103 6.5 Förderinitiativen: Google Digital News Initiative ................................................................................... 106 6.5.1 FAZ9 ............................................................................................................................................................... 107 6.5.2 Act2Access ................................................................................................................................................... 107 6.5.3 Journalism First .......................................................................................................................................... 107 7 Handlungsempfehlungen für die Politik & Fazit .............................................................................................. 108 7.1 Handlungsempfehlungen für die Politik .................................................................................................. 108 7.1.1 Sicherung der publizistischen Vielfalt ................................................................................................
Recommended publications
  • Towards the Implementation of an Intelligent Software Agent for the Elderly Amir Hossein Faghih Dinevari
    Towards the Implementation of an Intelligent Software Agent for the Elderly by Amir Hossein Faghih Dinevari A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science Department of Computing Science University of Alberta c Amir Hossein Faghih Dinevari, 2017 Abstract With the growing population of the elderly and the decline of population growth rate, developed countries are facing problems in taking care of their elderly. One of the issues that is becoming more severe is the issue of compan- ionship for the aged people, particularly those who chose to live independently. In order to assist the elderly, we suggest the idea of a software conversational intelligent agent as a companion and assistant. In this work, we look into the different components that are necessary for creating a personal conversational agent. We have a preliminary implementa- tion of each component. Among them, we have a personalized knowledge base which is populated by the extracted information from the conversations be- tween the user and the agent. We believe that having a personalized knowledge base helps the agent in having better, more fluent and contextual conversa- tions. We created a prototype system and conducted a preliminary evaluation to assess by users conversations of an agent with and without a personalized knowledge base. ii Table of Contents 1 Introduction 1 1.1 Motivation . 1 1.1.1 Population Trends . 1 1.1.2 Living Options for the Elderly . 2 1.1.3 Companionship . 3 1.1.4 Current Technologies . 4 1.2 Proposed System . 5 1.2.1 Personal Assistant Functionalities .
    [Show full text]
  • Intellibot: a Domain-Specific Chatbot for the Insurance Industry
    IntelliBot: A Domain-specific Chatbot for the Insurance Industry MOHAMMAD NURUZZAMAN A thesis submitted in fulfilment of the requirements for the degree of Doctor of Philosophy UNSW Canberra at Australia Defence Force Academy (ADFA) School of Business 20 October 2020 ORIGINALITY STATEMENT ‘I hereby declare that this submission is my own work and to the best of my knowledge it contains no materials previously published or written by another person, or substantial proportions of material which have been accepted for the award of any other degree or diploma at UNSW or any other educational institute, except where due acknowledgement is made in the thesis. Any contribution made to the research by others, with whom I have worked at UNSW or elsewhere, is explicitly acknowledged in the thesis. I also declare that the intellectual content of this thesis is the product of my own work, except to the extent that assistance from others in the project’s design and conception or in style, presentation and linguistic expression is acknowledged.’ Signed Date To my beloved parents Acknowledgement Writing a thesis is a great process to review not only my academic work but also the journey I took as a PhD student. I have spent four lovely years at UNSW Canberra in the Australian Defence Force Academy (ADFA). Throughout my journey in graduate school, I have been fortunate to come across so many brilliant researchers and genuine friends. It is the people who I met shaped who I am today. This thesis would not have been possible without them. My gratitude goes out to all of them.
    [Show full text]
  • Jarvis Application for Android
    Jarvis Application For Android Unenlightened or cultivated, Flemming never brims any hippocrases! Sometimes lithe Frank propound her luncher amiably, but placatory Myron inhumes fragilely or grudge assiduously. Irresolute Raleigh imagining or parchmentize some trekker refinedly, however autarchical Way worrit deceptively or knobs. We conquered bugs and its own virtual assistant apps for nearly any jarvis application for android to the android users interface design envisioned in the sample projects page with a permanent addition of them After all, set alarms, It offers higher personalization as you can choose a voice and create a name for the assistant. Amazon alexa devices and jarvis events you for jarvis app is jarvis app. Presence detected at kitchen and living rooms. VPN connection for a private internet experience. You will never miss any updates of your favorite games by turning on APKPure notifications when new updates are available. Then, it is easy and simple to use. Chat, Hollywood, and movies in many other languages. Marvel Universe that lets you contribute. App supports playback for fine virtual assistants for jarvis? Other than the basic assistant functions such as making calls, rather than check a global setting to allow installation from unknown sources, and quick. You can also visit a land of mushrooms if it sounds more like your cup of tea. You must try if you want only notes of your daily task and long dictations. Android market providing smartphones software downloads. This is because we can create a virtual machine image that already has most of the dependencies we need. CDN can quickly deliver your videos across the globe, the user does not need to set the alarm to a certain time themselves, Inc.
    [Show full text]
  • An Analysis on the Present and Future of Chatbots
    JASC: Journal of Applied Science and Computations ISSN NO: 1076-5131 An Analysis on the Present and Future of Chatbots Saveeth R1, Sowmya R2 , Varshini M2 1Assistant Professor, Department of Computer Science and Engineering, Coimbatore Institute of Technology, Coimbatore 2U.G Student, Department of Computer Science and Engineering, Coimbatore Institute of Technology, Coimbatore [email protected] [email protected], [email protected] Abstract - With the increase in messaging applications in the modern world, the evolution of chatbots, also referred to as chatter robots seem to have revolutionized not only the industrial sectors but also the lives of common people to a great extent. A chatbot is a computer program which performs all the tasks required by humans by applying Artificial Intelligence techniques like Natural Language Processing (NLP), Natural Language Understanding (NLU) and Natural Language Generation (NLG). For the chatbot to understand the query/request posted by the user, a technique called pattern-matching is employed. Structured Query Language (SQL) is used for pattern matching. The data to respond to the user request is made available through the chatbots databases. Artificial Intelligence Markup Language (AIML) [9] is used to build a bot which communicates with humans. This paper gives an overview of conversational chatbots in the new era of technological advancements. Keywords – Chatter robots, AIML, Artificial Intelligence, Pattern-matching, Neural networks I. INTRODUCTION A chatbot [1] is a conversational agent which communicates with humans to respond with the best possible result from its knowledge database. [11] The response to a particular request is made by matching the user input with the stored data in the database through pattern matching technique.
    [Show full text]
  • Regulating Access to System Sensors in Cooperating Programs
    Regulating Access to System Sensors in Cooperating Programs Giuseppe Petracca Jens Grossklags Patrick McDaniel Trent Jaeger Penn State University, US Technical University of Munich, DE Penn State University, US Penn State University, US [email protected] [email protected] [email protected] [email protected] Abstract—Modern operating systems such as Android, iOS, by Gizmodo [8]. Whenever users asked their voice assistants Windows Phone, and Chrome OS support a cooperating program “Siri, I need a ride”, the assistant launched the ride-sharing abstraction. Instead of placing all functionality into a single app. Leveraging the entitlement provided by the service, the program, programs cooperate to complete tasks requested by users. However, untrusted programs may exploit interactions app requested recording of users’ screens, even while running with other programs to obtain unauthorized access to system in the background. The ride-sharing app abused this service sensors either directly or through privileged services. Researchers to spy on users, while they were taking a ride. have proposed that programs should only be authorized to access However, voice assistants are just one type of application system sensors on a user-approved input event, but these methods that may be exploited by such types of attacks. Several do not account for possible delegation done by the program receiving the user input event. Furthermore, proposed delegation real-world incidents have been reported to the public, where methods do not enable users to control the use of their input malicious apps, able to track and spy on users by stealthily events accurately. In this paper, we propose ENTRUST, a system opening smartphones’ cameras, microphones, and GPS re- that enables users to authorize sensor operations that follow their ceivers, made their way through official stores such as the input events, even if the sensor operation is performed by a Apple App Store and the Google Play Store, after bypassing program different from the program receiving the input event.
    [Show full text]
  • From Eliza to Xiaoice: Challenges and Opportunities with Social Chatbots
    10 Shum et al. / Front Inform Technol Electron Eng 2018 19(1):10-26 Frontiers of Information Technology & Electronic Engineering www.jzus.zju.edu.cn; engineering.cae.cn; www.springerlink.com ISSN 2095-9184 (print); ISSN 2095-9230 (online) E-mail: [email protected] Review: From Eliza to XiaoIce: challenges and opportunities with social chatbots Heung-yeung SHUM‡, Xiao-dong HE, Di LI Microsoft Corporation, Redmond, WA 98052, USA E-mail: [email protected]; [email protected]; [email protected] Received Dec. 10, 2017; Revision accepted Jan. 8, 2018; Crosschecked Jan. 8, 2018 Abstract: Conversational systems have come a long way since their inception in the 1960s. After decades of research and de- velopment, we have seen progress from Eliza and Parry in the 1960s and 1970s, to task-completion systems as in the Defense Advanced Research Projects Agency (DARPA) communicator program in the 2000s, to intelligent personal assistants such as Siri, in the 2010s, to today’s social chatbots like XiaoIce. Social chatbots’ appeal lies not only in their ability to respond to users’ diverse requests, but also in being able to establish an emotional connection with users. The latter is done by satisfying users’ need for communication, affection, as well as social belonging. To further the advancement and adoption of social chatbots, their design must focus on user engagement and take both intellectual quotient (IQ) and emotional quotient (EQ) into account. Users should want to engage with a social chatbot; as such, we define the success metric for social chatbots as conversation-turns per session (CPS). Using XiaoIce as an illustrative example, we discuss key technologies in building social chatbots from core chat to visual awareness to skills.
    [Show full text]
  • Pdfs/115041 Speaking Sa Mple Task - Part 1.Ashx?La=En Kanda, T., T
    Korean Journal of English Language and Linguistics, Vol 21, April 2021, pp. 375-391 DOI: 10.15738/kjell.21..202104.375 KOREAN JOURNAL OF ENGLISH LANGUAGE AND LINGUISTICS ISSN: 1598-1398 / e-ISSN 2586-7474 http://journal.kasell.or.kr Exploring the Use of An Artificial Intelligence Chatbot as Second Language Conversation Partners* Dongkwang Shin (Gwangju National University of Education) Heyoung Kim (Chung-Ang University) Jang Ho Lee (Chung-Ang University) Hyejin Yang (Chung-Ang University) ABSTRACT This is an open-access article Shin, Dongkwang, Heyoung Kim, Jang Ho Lee and Hyejin Yang. 2021. distributed under the terms of the Exploring the use of an artificial intelligence chatbot as second language Creative Commons License, which conversation partners. Korean Journal of English Language and Linguistics permits unrestricted non-commercial 21, 375-391. use, distribution, and reproduction in any medium, provided the This study investigated the appropriateness of using artificially intelligent original work is properly cited. chatbots as conversation partners for second language (L2) learners. 27 Korean high school and 26 college students had a task-oriented conversation Received: March 23, 2021 with a text-based chatbot, Mitsuku, for 20 minutes. Chat log data were Revised: April 20, 2021 collected and analyzed quantitatively and qualitatively in terms of the Accepted: April 25, 2021 quantity of students’ utterances and their vocabulary levels, along with the Dongkwang Shin (1st author) degree of conversation task success between the chatbot and its users. Both Professor, Gwangju National groups finished their tasks, successfully developing conversations with the Univ. of Education chatbot and producing double the expected minimum quantity of utterances, [email protected] although their performances varied individually.
    [Show full text]
  • Because Sustainability
    Change Making Simplified Addressing technology- business transformation in the COVID-era Contents Foreword 03 Thriving on Data 36 Applying TechnoVision 73 Leveraging data and algorithms as an asset to Introduction 04 increase the "Corporate IQ". A Few More Things 84 TechnoVision and COVID-19 06 Process on the Fly 43 TechnoVision 2020 Team 88 Building, managing, and running processes that Simplify 11 match the dynamics of the digital outside world. About Capgemini 90 You Experience 50 Being Architects of Positive Futures 15 Creating seamless user experiences for decisive, Overview of TechnoVision 18 magical moments. We Collaborate 57 Invisible Infostructure 22 Tapping into the power of the connected and Evolving the IT Infrastructure into the simple, collaborative "everything". pluggable utility it was always supposed to be. Design for Digital 64 Applications Unleashed 29 Overarching design principles to be followed and Liberating the legacy application landscape and checked throughout the journey of becoming a unleashing the next generation of powerful, agile, Technology Business. cloud-based apps. Invisible Infostructure Applications Unleashed Thriving on Data Process on the Fly You Experience We Collaborate Design for Digital Applying TechnoVision Special Foreword Patrick Nicolet Group Executive Board Member and Group CTO “Future Thinking, Change Making” businesses to operate, retailers to sell and companies to deliver. While The theme of this edition is ‘Simplify’ because, in a world where data the value of traditional ‘safe’ commodities has dropped exponentially, seems to overwhelm us all, we recognize that technology should It’s a sobering thought that, only a few months ago, when we were the popularity of technology and technological companies has soared aim to make the lives of consumers, colleagues and citizens easier.
    [Show full text]
  • Conversational AI Demystified Build Your Bot in Just Minutes
    Platzhalter für Titelbild – Hier können Sie Bilder aus der Mediathek einfügen! Placeholderfor title picture – Youcaninsertherepicturesfromthe Mediathek! Image: Laura & Sascha Wolter Conversational AI Demystified Build your bot in just Minutes. Sascha Wolter | Chief Advisor for Conversational AI & UX | @saschawolter | [email protected] Conversational AI The new User Interface. DB Systel | Sascha Wolter | @saschawolter | 2020 Source: cognigy.ai Already today screens without "touch" feel broken. It will soon be the same with devices that cannot speak. DB Systel | Sascha Wolter | @saschawolter | 2020 How does Conversational AI work Turn-taking Invocation / Intent Request Response Prompt DB Systel | Sascha Wolter | @saschawolter | 2020 How does Conversational AI work Turn-taking Natural Language Processing & Understanding 易 Invocation / Intent Request Response ⚙️ 3rd party Services Prompt DB Systel | Sascha Wolter | @saschawolter | 2020 Conversational Augmented Intelligence Text & Voice Natural Language Processing & Understanding 易 Invocation / Intent Request Response ⚙️ 3rd party Services Prompt DB Systel | Sascha Wolter | @saschawolter | 2020 DB Systel | Sascha Wolter | @saschawolter | 2020 Image: Google By 2021, more than 50% of enterprises will spend more per annum on bots and chatbot creation than traditional mobile app development. Is it really one or the other? https://www.gartner.com/smarterwithgartner/gartner-top-strategic-predictions-for-2018-and-beyond/ DB Systel | Sascha Wolter | @saschawolter | 2020 Image: https://commons.wikimedia.org/wiki/File:Broken_mobile_phone_20180403.jpg
    [Show full text]
  • The Fourth Industrial Revolution
    The Fourth Industrial Revolution Janusz SOBIERAJ Author es una marca editorial de ISBN: 978-84-17659-XX-X Depósito Legal: M-XXXXX-2019 TABLE OF CONTENTS PREFACIO ................................................................................................................................................. 3 PREFACE .................................................................................................................................................. 7 INTRODUCTION ..................................................................................................................................... 12 1 AUTOMATION AND SMART FACTORY ........................................................................................... 19 2 CHALLENGES OF THE FOURTH INDUSTRIAL REVOLUTION ............................................................ 38 3 INDUSTRIAL REVOLUTION 4.0 AND THE ECONOMY ..................................................................... 58 4 MEGATRENDS OF THE INDUSTRIAL REVOLUTION 4.0: PHYSICAL, DIGITAL AND BIOLOGICAL ..... 72 5 INTERNET DEVELOPMENT ............................................................................................................. 86 6 CLOUD COMPUTING ...................................................................................................................... 93 7 BIG DATA ..................................................................................................................................... 100 8 ARTIFICIAL INTELLIGENCE ...........................................................................................................
    [Show full text]
  • Designers Characterize Naturalness in Voice User Interfaces: Their Goals, Practices, and Challenges
    Designers Characterize Naturalness in Voice User Interfaces: Their Goals, Practices, and Challenges by Yelim Kim BSc., The University of Toronto, 2016 A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE in The Faculty of Graduate and Postdoctoral Studies (Computer Science) THE UNIVERSITY OF BRITISH COLUMBIA (Vancouver) March 2020 c Yelim Kim, 2020 The following individuals certify that they have read, and recommend to the Faculty of Graduate and Postdoctoral Studies for acceptance, the thesis entitled: Designers Characterize Naturalness in Voice User Interfaces: Their Goals, Practices, and Challenges submitted by Yelim Kim in partial fulfillment of the requirements for the degree of Master of Science in Computer Science Examining Committee: Dongwook Yoon, Computer Science Supervisor Joanna McGrenere, Computer Science Supervisor Karon MacLean, Computer Science Examining committee member ii Abstract With substantial industrial interests, conversational voice user interfaces (VUIs) are becoming ubiquitous through devices that feature voice assistants such as Apple's Siri and Amazon Alexa. Naturalness is often considered to be central to conversational VUI designs as it is associated with numerous benefits such as reducing cognitive load and increasing accessibility. The lit- erature offers several definitions for naturalness, and existing conversational VUI design guidelines provide different suggestions for delivering a natural experience to users. However, these suggestions are hardly comprehensive and often fragmented. A precise characterization of naturalness is necessary for identifying VUI designers' needs and supporting their design practices. To this end, we interviewed 20 VUI designers, asking what naturalness means to them, how they incorporate the concept in their design practice, and what challenges they face in doing so.
    [Show full text]
  • Protótipo Para Extração De Metadados De Vídeo
    Estágio Mestrado em Engenharia Informática – Computação Móvel Protótipo para Extração de Metadados de Vídeo Daniel dos Santos Vieira Leiria, agosto de 2017 Estágio Mestrado em Engenharia Informática – Computação Móvel Protótipo para Extração de Metadados de Vídeo Daniel dos Santos Vieira Estágio de Mestrado realizada sob a orientação de Vítor Manuel de Oliveira Pegado de Noronha e Távora, Professor da Escola Superior de Tecnologia e Gestão do Instituto Politécnico de Leiria. Leiria, agosto de 2017. Esta página foi intencionalmente deixada em branco ii Dedicatória Aos meus pais. iii Esta página foi intencionalmente deixada em branco iv Agradecimentos Com o término do presente Relatório de Estágio curricular não posso deixar de agradecer a algumas pessoas que, direta ou indiretamente, me ajudaram nesta caminhada tão importante da minha vida pessoal, académica e profissional. Em primeiro lugar, agradeço a orientação que o Professor Vitor Távora disponibilizou durante a elaboração do presente Relatório. Obrigada pelo profissionalismo que demonstrou ter. Foi um privilégio ser seu orientando. Agradeço ao corpo docente e não docente da Escola Superior de Tecnologia e Gestão de Leiria por terem feito com que me sentisse em "casa" na "vossa casa". Um muito obrigado aos amigos que fiz e trouxe comigo. Agradeço à Ana, ao Nélson e ao Diogo por suportarem o meu mau feitio. Por fim, mas não menos importante, agradeço à minha família pois sem ela dificilmente conseguiria chegar até aqui. Por estarem sempre lá para me amparar, para me criticar, e para me felicitar, fazendo-me sentir uma pessoa melhor. Agradeço à minha mãe por ter um gostinho especial de me colocar sempre à prova, e ao meu pai por esperar mais aquele bocadinho no carro enquanto eu terminava qualquer coisa na sala de estudo.
    [Show full text]