University Archives of Virginia Tech a History of Plant

Total Page:16

File Type:pdf, Size:1020Kb

University Archives of Virginia Tech a History of Plant University Archives of Virginia Tech A History of Plant Pathology in Virginia (1888-1997) By Curtis W. Roane Introduction The Pre-Alwood Era The Alwood Era (1888-1904) The Moncure Era (1904-1908) The Reed Era (1908-1915) The Fromme Era (1915-1928) The Wingard Era (1928-1964) I - 1928-1935 II - 1935-1949 III - 1949-1964 The Couch Era (1965-1974) The Foy Era (1974-1980) The Hooper Era (1980-1984) The Moore Era (1984-1997) Department of Plant Pathology, Physiology, and Weed Science's History Page Department of Plant Pathology, Physiology, and Weed Science's Chronology Page Electronic version by Scott Spyrison & Tamara Kennelly Back Next VT History | Digital Library and Archives | Special Collections | University Archives Send questions or comments to: Tamara Kennelly, University Archivist University Libraries Virginia Tech P.O. Box 90001 Blacksburg, VA, 24062-9001 URL: http://spec.lib.vt.edu/archives/ppws/plant.htm Last Modified on: Thursday, 23-Sep-2004 15:41:47 EDT University Archives of Virginia Tech A History of Plant Pathology in Virginia: Introduction On August 20, 1926, Erwin F. Smith, the pioneer plant bacteriologist, addressed the International Congress of Plant Sciences at Ithaca, New York, under the title, "Fifty Years of Pathology." Strict adherence to the title would include an era back to 1876. At that time, Virginia Agricultural and Mechanical College was four years old and had just graduated its first students. The Agricultural Experiment Station, was to be created by an act of the Virginia General Assembly on March 1, 1886 but was not organized until 1888. Smith's opening statement could be made today with as much veracity as it reflected in 1926: "In many ways the last 50 years is a remarkable period in the history of the world. Among its striking characteristics, the most impressive perhaps have been the enormous advances in scientific discovery. This period has seen an entire change in our views as to the constitution of matter, the development of living things, and the extent of the cosmos. Outward in various directions the visible universe has been extended thousands of light years, downward it has been extended into the minutest subdivisions of matter far beyond the "atoms" of the old Greeks, or the wildest dreams of Victorian physicists and chemists. In pathology the advances have been no less wonderful." For the period 1872 to 1888, there was no Plant Pathology at Va. A. & M., and after 1891 until 1908, it was as taught and studied by mycologists. Plant Pathology in Virginia had its start soon after William B. Alwood was appointed Vice-Director of the Virginia Agricultural Experiment Station in 1888. He was also designated Horticulturist and Entomologist. In 1891, Alwood was appointed Professor and Head of Horticulture, Entomology, and Mycology, whereupon he was for the first time assigned teaching duties in these three disciplines. A vignette of agriculture as Alwood took up the reins might be helpful. Home Table of Contents Next VT History | Digital Library and Archives | Special Collections | University Archives Send questions or comments to: Tamara Kennelly, University Archivist University Libraries Virginia Tech P.O. Box 90001 Blacksburg, VA, 24062-9001 URL: http://spec.lib.vt.edu/archives/ppws/intro.htm Last Modified on: Thursday, 21-Oct-2004 12:54:00 EDT University Archives of Virginia Tech A History of Plant Pathology in Virginia: The Pre-Alwood Era It is difficult for one to look back over 100 years and portray the world as it really was before 1888. Fungi had been demonstrated to cause some plant diseases, but there was much skepticism and mystery about most, and there were virtually no remedies for any. Sulphur was useful for the powdery mildews, and copper salts had been found useful for controlling grain smuts and downy mildews. Many plant diseases had been recognized, even named, but their parasitic instigators were not yet recognized. Bacteria were known from the time of Leeuwenhoek in 1683; Koch (1867) and Pasteur (1877) had demonstrated them to be animal pathogens, and Burrill (1877) demonstrated that bacteria caused fire blight of apple and pear. Many fungus diseases were known from the efforts of Berkeley, DeBary, Kühn, and Farlow; viruses were unknown but diseases later attributed to viruses were recognized; the wheat gall nematode was known since Needham found it in 1743 but was not known as a cause of a plant malady until Roffredi's work in 1775-6. Cabbage club root had been studied by Woronin (1876). In 1882, Robert Koch invented the poured plate method, an assistant substituted agar-agar for Koch's gelatin and a second assistant named Petri devised the culture dishes that bear his name. Thus, four simple innovations, cotton plugs, poured-plates, agar-agar, and Petri dishes became the greatest contributions of all time to the advancement of bacteriology and mycology. Also in 1882, Robert Hartig's textbook of tree diseases appeared. DeBary published his magnificent book whose title translates to "Comparative Morphology and Biology of the Fungi, Mycetozoa, and Bacteria." Although Millardet realized the possibilities of copper sulphate and lime for control of grape downy mildew in 1882, he experimented with various mixtures until 1884, and in 1885 published his discovery. Thereafter it was "demonstrated everywhere to be a sovereign remedy not only for the ravages of grape Peronospora (= Plasmopara) but also for many other diseases of cultivated plants, including black rot of grape and the devastating mildew (Phytophthora) of the potato. This was the first great advance in plant therapeutics" (Smith, 1926). In 1885, the Section of Mycology was established in the U.S. Department of Agriculture with F. L. Scribner as Chief. Smith was appointed his first assistant in 1886, and in the same year Mayer demonstrated that tobacco mosaic was an infectious disease. Spray equipment was being developed and the world's grape, orchard, and potato crops were being blued with Bordeaux mixture. In 1887, the U. S. Department of Agriculture renamed its Section of Mycology the Section of Vegetable Pathology; essentially, that was the birth of Plant Pathology in the United States, although Burrill had included plant pathogenic fungi in a botany course at the University of Illinois beginning in 1873, and Farlow at Harvard in 1875 had emphasized fungi causing diseases of plants. However, through 1890, American Plant Pathology, as Smith (1926) said, "was little more than sublimated mycology." In 1887, the Hatch Act was passed by Congress; this paved the way for establishment of state agricultural experiment stations. Oscar Rierson of Glendover, Virginia, first used Bordeaux mixture for grape black rot (Wingard, 1951). In 1888, Jensen described the hot-water treatment for control of barley and wheat loose smuts, but most significantly for Virginia, the Virginia Agricultural Experiment Station was organized and staffed with funds entirely of federal origin in consequence of the Hatch Act. William B. Alwood, Botanist and Entomologist; Walker Bowman, Chemist; and D. O. Nourse, Agriculturist (Young, 1975) were the first staff members appointed to get research programs under way. The Alwood era had begun. Previous Table of Contents Next VT History | Digital Library and Archives | Special Collections | University Archives Send questions or comments to: Tamara Kennelly, University Archivist University Libraries Virginia Tech P.O. Box 90001 Blacksburg, VA, 24062-9001 URL: http://spec.lib.vt.edu/archives/ppws/prealwood.htm Last Modified on: Thursday, 21-Oct-2004 12:52:45 EDT University Archives of Virginia Tech A History of Plant Pathology in Virginia: The Alwood Era (1888- 1904) When William B. Alwood was appointed Vice-Director of the Virginia Agricultural Experiment Station, the grape industry in Virginia had been virtually destroyed; apple scab, bitter rot and fire blight were exacting large tolls from fruit growers' pockets. Wingard (1951) wrote that fire blight had destroyed a promising pear orchard industry in the James River Valley. From colonial days, tobacco and corn had been major crops. History textbooks record how tobacco and flax soon wore out the land and farmers were constantly clearing new land for these crops. We can speculate that in addition to nutrient depletion, increases of soil-borne pathogens endemic to Virginia may have contributed to soils becoming "worn out." Fusarium wilts are sometimes seed-borne and may have been introduced; thus, they may also have contributed to "worn out" soils. Perhaps root knot was a factor. Crop rotation was probably an established but haphazardly practiced procedure. By the late 19th century, the major area of tobacco production was centered in Southside Virginia, i.e., the southern piedmont counties; the orchard industry was widely scattered, with apples mostly in the piedmont and mountains; and grains were produced mostly in the Valley of Virginia and southwestern counties although most farmers were obligated to produce feed grains to power their horse-drawn implements. No doubt potatoes, beans, and cole crops were the remaining staple crops. Cotton and peanuts were established in the southeastern counties. Alwood had received training at the Royal Pomology School in Germany and the Pasteur Institute in France; therefore, his initial interests were in fruit production and utilization. Prior to his appointment to the Virginia Agricultural Experiment Station, he had been the superintendant of the Ohio Experiment Station Farm for 4 years and a special agent for the U.S.D.A. In addition to being Station Vice-Director, he was designated Professor of Botany and Entomology from 1888 to 1891; in 1891, he was named Professor of Horticulture, Entomology, and Mycology and Head of the Department of Horticulture, Entomology, and Mycology with teaching assignments in the College added. As the Station staff was very small, administrative duties were light, red tape and empire building had not yet become the way of life for administrators, and the 40 hour week was far in the future, Alwood could devote most of his time to research, publication, and teaching.
Recommended publications
  • ISOLATION and IDENTIFICATION of Taphrina Caerulescens in Quercus Eduardii in AGUASCALIENTES, MEXICO
    ISOLATION AND IDENTIFICATION OF Taphrina caerulescens IN Quercus eduardii IN AGUASCALIENTES, MEXICO AISLAMIENTO E IDENTIFICACIÓN DE Taphrina caerulescens EN Quercus eduardii EN AGUASCALIENTES, MÉXICO Gregg Evans1, Onesimo Moreno-Rico2*, José J. Luna-Ruíz3, Joaquín Sosa-Ramírez3, Celeste E. Moreno-Manzano4 1Ciencias Biológicas, Centro de Ciencias Básicas (CCB), Universidad Autónoma de Aguascalientes (UAA), Avenida Universidad # 940, Colonia Ciudad Universitaria, C.P. 20131, Aguascalientes, Aguascalientes, México ([email protected]). 2Departamento de Microbiología, CCB, UAA, Avenida Universidad # 940, Ciudad Universitaria C.P. 20131, Aguascalientes, Aguascalientes, México ([email protected]). 3Departamento de Disciplinas Agrícolas, Centro de Ciencias Agropecuarias, UAA, Jesús María, Aguascalientes. ([email protected]), ([email protected]). 4CBTA 61, Aquiles Elorduy Garcia, Calvillo, Aguascalientes, México ([email protected]). ABSTRACT RESUMEN Taphrina caerulescens exclusively affects plants of the Quercus Taphrina caerulescens afecta exclusivamente a las plantas del gé- genus. The identification and isolation of this fungus is difficult nero Quercus. La identificación y el aislamiento de este hongo due to its dimorphic nature and extremely slow growth habit es difícil debido a su naturaleza dimórfica y su hábito de cre- in artificial growth media. The objective of this research was to cimiento extremadamente lento en los medios de crecimiento isolate and identify the fungal pathogen T. caerulescens. Three artificial. El objetivo de esta investigación fue aislar e identificar methods were used to isolate the fungus, however, only the spore el patógeno fúngico T. caerulescens. Tres métodos se usaron para fall method was successful. In order to identify the fungus, a aislar el hongo; sin embargo, solo el método de caída de esporas visual inspection of the host plants infected leaves was carried fue exitoso.
    [Show full text]
  • A Scanning Electron Microscopic Study of the Infection of Water Oak (Quercus Nigra) by Taphrina Caerulescens
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by SFA ScholarWorks Stephen F. Austin State University SFA ScholarWorks Faculty Publications Biology 2000 A Scanning Electron Microscopic Study of the Infection of Water Oak (Quercus nigra) by Taphrina Caerulescens Josephine Taylor Stephen F Austin State University, Department of Biology, [email protected] Dale O. Birdwell Follow this and additional works at: http://scholarworks.sfasu.edu/biology Part of the Biology Commons, and the Plant Sciences Commons Tell us how this article helped you. Recommended Citation Taylor, Josephine and Birdwell, Dale O., "A Scanning Electron Microscopic Study of the Infection of Water Oak (Quercus nigra) by Taphrina Caerulescens" (2000). Faculty Publications. Paper 88. http://scholarworks.sfasu.edu/biology/88 This Article is brought to you for free and open access by the Biology at SFA ScholarWorks. It has been accepted for inclusion in Faculty Publications by an authorized administrator of SFA ScholarWorks. For more information, please contact [email protected]. Mycological Society of America A Scanning Electron Microscopic Study of the Infection of Water Oak (Quercus nigra) by Taphrina caerulescens Author(s): Josephine Taylor and Dale O. Birdwell Source: Mycologia, Vol. 92, No. 2 (Mar. - Apr., 2000), pp. 309-311 Published by: Mycological Society of America Stable URL: http://www.jstor.org/stable/3761566 Accessed: 07-10-2015 16:18 UTC Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at http://www.jstor.org/page/ info/about/policies/terms.jsp JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive.
    [Show full text]
  • Old Woman Creek National Estuarine Research Reserve Management Plan 2011-2016
    Old Woman Creek National Estuarine Research Reserve Management Plan 2011-2016 April 1981 Revised, May 1982 2nd revision, April 1983 3rd revision, December 1999 4th revision, May 2011 Prepared for U.S. Department of Commerce Ohio Department of Natural Resources National Oceanic and Atmospheric Administration Division of Wildlife Office of Ocean and Coastal Resource Management 2045 Morse Road, Bldg. G Estuarine Reserves Division Columbus, Ohio 1305 East West Highway 43229-6693 Silver Spring, MD 20910 This management plan has been developed in accordance with NOAA regulations, including all provisions for public involvement. It is consistent with the congressional intent of Section 315 of the Coastal Zone Management Act of 1972, as amended, and the provisions of the Ohio Coastal Management Program. OWC NERR Management Plan, 2011 - 2016 Acknowledgements This management plan was prepared by the staff and Advisory Council of the Old Woman Creek National Estuarine Research Reserve (OWC NERR), in collaboration with the Ohio Department of Natural Resources-Division of Wildlife. Participants in the planning process included: Manager, Frank Lopez; Research Coordinator, Dr. David Klarer; Coastal Training Program Coordinator, Heather Elmer; Education Coordinator, Ann Keefe; Education Specialist Phoebe Van Zoest; and Office Assistant, Gloria Pasterak. Other Reserve staff including Dick Boyer and Marje Bernhardt contributed their expertise to numerous planning meetings. The Reserve is grateful for the input and recommendations provided by members of the Old Woman Creek NERR Advisory Council. The Reserve is appreciative of the review, guidance, and council of Division of Wildlife Executive Administrator Dave Scott and the mapping expertise of Keith Lott and the late Steve Barry.
    [Show full text]
  • Peach Leaf Curl
    Dr. Yonghao Li Department of Plant Pathology and Ecology The Connecticut Agricultural Experiment Station 123 Huntington Street, P. O. Box 1106 New Haven, CT 06504 Phone: (203) 974-8601 Fax: (203) 974-8502 Founded in 1875 Email: [email protected] Putting science to work for society Website: www.ct.gov/caes PEACH LEAF CURL Peach leaf curl is a world-wide disease and noticeable even at a distance. As infection one of most common diseases in commercial progresses, abnormal multiplication of plant and residential orchards in Connecticut. This cells at the margin of infected leaves results in disease attacks peach, nectarine, and related puckered and thickened appearance (Figure ornamental species and causes early 2). In moist conditions, gray or white powdery defoliation when the weather is conducive appearance may be seen on the surface of with periods of rains and high humidity in distorted leaves as a result of the production early spring. Severe early defoliation can of fungal spores (Figure 2). Diseased leaves weaken tree vitality, and the weakened tree is turn yellow or brown and drop in the early more susceptible to winter injury and growth stages. Fruit and twigs rarely get opportunistic diseases. The disease is infected. When they are infected, fruits tend potentially devastating to both crop yield and to drop early and twigs are swollen and tree longevity. stunted. SYMPTOMS AND DIAGNOSTICS DISEASE CYCLE AND DEVELOPMENT Peach leaf curl mainly attack leaves. The Peach leaf curl is caused by a fungus, initial symptom is distorted leaves with red or Taphrina deformans. The fungus forms two pink coloration (Figure 1), which is very types of spores, ascospore and blastospore, in Figure 1.
    [Show full text]
  • <I>Kuehneola Warburgiana</I>
    ISSN (print) 0093-4666 © 2012. Mycotaxon, Ltd. ISSN (online) 2154-8889 MYCOTAXON http://dx.doi.org/10.5248/121.207 Volume 121, pp. 207–213 July–September 2012 Kuehneola warburgiana comb. nov. (Phragmidiaceae, Pucciniales), causing witches’ brooms on Rosa bracteata Yoshitaka Ono Faculty of Education, Ibaraki University, 2-1-1 Bunkyo, Mito, Ibaraki 310-8512 Japan Correspondence to: [email protected] Abstract—Caeomatoid rust infection has been observed on Rosa bracteata plants at a single site in Ishigaki Island, Okinawa, Japan, since 1995. The fungus (not previously known in Japan) was identified as Caeoma warburgiana by its characteristic systemic infection causing witches’ brooms and its spore morphology. Uredinial and telial sori were found on the leaves of the witches’ brooms of the infected rose plants at the same site in 2009. The urediniospores were pedicellate and echinulate. The teliospores were composed of two to four linearly arranged, thin-walled cells on a short pedicel. Caeoma-type aecia, Uredo-type uredinia and pedicellate teliospores with two to four linearly arranged cells are characteristic of the genus Kuehneola. Identical telia and teliospores were found in the lectotype of C. warburgiana. Caeoma warburgiana is recombined as Kuehneola warburgiana. Key words —Asia, life cycle, nomenclature, taxonomy Introduction Rosa bracteata is an evergreen perennial shrub, native of southern regions of China, growing in mixed forests, scrub, and sandy hills at low altitudes and seashores (Wu & Raven 2003). The plants also occur at coastal areas of Taiwan and adjacent islands of south Japan (Satake et al. 1989, Liu et al. 2000, Wu & Raven 2003).
    [Show full text]
  • Color Plates
    Color Plates Plate 1 (a) Lethal Yellowing on Coconut Palm caused by a Phytoplasma Pathogen. (b, c) Tulip Break on Tulip caused by Lily Latent Mosaic Virus. (d, e) Ringspot on Vanda Orchid caused by Vanda Ringspot Virus R.K. Horst, Westcott’s Plant Disease Handbook, DOI 10.1007/978-94-007-2141-8, 701 # Springer Science+Business Media Dordrecht 2013 702 Color Plates Plate 2 (a, b) Rust on Rose caused by Phragmidium mucronatum.(c) Cedar-Apple Rust on Apple caused by Gymnosporangium juniperi-virginianae Color Plates 703 Plate 3 (a) Cedar-Apple Rust on Cedar caused by Gymnosporangium juniperi.(b) Stunt on Chrysanthemum caused by Chrysanthemum Stunt Viroid. Var. Dark Pink Orchid Queen 704 Color Plates Plate 4 (a) Green Flowers on Chrysanthemum caused by Aster Yellows Phytoplasma. (b) Phyllody on Hydrangea caused by a Phytoplasma Pathogen Color Plates 705 Plate 5 (a, b) Mosaic on Rose caused by Prunus Necrotic Ringspot Virus. (c) Foliar Symptoms on Chrysanthemum (Variety Bonnie Jean) caused by (clockwise from upper left) Chrysanthemum Chlorotic Mottle Viroid, Healthy Leaf, Potato Spindle Tuber Viroid, Chrysanthemum Stunt Viroid, and Potato Spindle Tuber Viroid (Mild Strain) 706 Color Plates Plate 6 (a) Bacterial Leaf Rot on Dieffenbachia caused by Erwinia chrysanthemi.(b) Bacterial Leaf Rot on Philodendron caused by Erwinia chrysanthemi Color Plates 707 Plate 7 (a) Common Leafspot on Boston Ivy caused by Guignardia bidwellii.(b) Crown Gall on Chrysanthemum caused by Agrobacterium tumefaciens 708 Color Plates Plate 8 (a) Ringspot on Tomato Fruit caused by Cucumber Mosaic Virus. (b, c) Powdery Mildew on Rose caused by Podosphaera pannosa Color Plates 709 Plate 9 (a) Late Blight on Potato caused by Phytophthora infestans.(b) Powdery Mildew on Begonia caused by Erysiphe cichoracearum.(c) Mosaic on Squash caused by Cucumber Mosaic Virus 710 Color Plates Plate 10 (a) Dollar Spot on Turf caused by Sclerotinia homeocarpa.(b) Copper Injury on Rose caused by sprays containing Copper.
    [Show full text]
  • Occurrence of Gymnoconia Peckiana in Turkey
    Pak. J. Bot., 36(4): 897-899, 2004. OCCURRENCE OF GYMNOCONIA PECKIANA IN TURKEY ELŞAD HÜSEYIN*, FARUK SELÇUK AND MAKBULE KARAHAN Department of Biology, Kırşehir Arts and Sciences Faculty, Gazi University, 40100 Kırşehir, Turkey Abstract Gymnoconia peckiana (Howe) Trott., a rust fungus belonging to the family Pucciniaceae collected during a field trip around Trabzon in 1999 is reported as a new record for Turkey. Introduction Higher plants of Turkey have been well studied but the mycobiota has not been extensively investigated and most of the studies deal with macromycetes generally Agaricoid fungi. Reports on micromycetes, including rust fungi, has been made (Bremer et al., 1947, 1952; Petrak, 1953). Data concerning the Uredinales are fragmentary which has been published as diseases of cultivated plants (Karel, 1958) and on mycoflora of Turkey (Göbelez, 1963). As a result of these and other studies (Henderson, 1957, 1959, 1961, 1964; Tamer et al., 1998; Kırbağ et al., 2001; Hüseyin & Kırbağ, 2003), about 290 species of rust fungi are recorded from Turkey. The present reports discribes the occurrence Gymnoconia peckiana from Turkey. Materials and Methods The plant material was collected from different localites of Trabzon province during July-August 1999. The host specimens were prepared according to established herbarium techniques. Microscopical examinations of fungi were performend using Nikon research microscopes. The specimens were identified after reference to related literature (Gäumann, 1959; Azbukina, 1974, 1975; Cummins & Hiratsuka, 2003; Bremer et al., 1952; Göbelez, 1963; Öner et al., 1974). The host specimen was identified using Flora of Turkey (Davis, 1965-1985). The collection is deposited at Gazi University, Kırşehir Sciences and Arts Faculty Herbarium in Kırşehir Province (KRFEF) of Turkey.
    [Show full text]
  • Country Report on the Implementation of the International Treaty on Plant Genetic Resources for Food and Agriculture (ITPGRFA)
    Country Report on the implementation of the International Treaty on Plant Genetic Resources for Food and Agriculture (ITPGRFA) ITALY 30/04/2019 First Report on Compliance of ITPGRFA Reporting System on Compliance of the International Treaty on Plant Genetic resources for Food and Agriculture Pursuant to Article 21 of the Treaty, the Governing Body approved, at its Fourth Session, the Compliance Procedures that include, among others, provisions on monitoring and reporting: Resolution 2/2011. According to the Compliance Procedures, each Contracting Party is to submit to the Compliance Committee, through the Secretary, a report on the measures it has taken to implement its obligations under the Treaty. This Reporting System facilitates the submission of such information. Should you need any additional information regarding the reporting on compliance or the Reporting System, please visit the Treaty’s website or contact the Secretariat at [email protected]. Additional Reporting Information Name and contact of the reporting officer Petra Engel Institution(s) of affiliation Council for Research in Agriculture and Economics Office for Institutional and International Cooperation Via Po, 14 00198 Rome, Italy http://www.crea.gov.it http://www.entecra.it email: [email protected] The report was finalized on 02/04/2019 International Treaty on Plant Genetic Resources for Food and Agriculture Standard Voluntary Reporting Format Article 4: General obligations 1. Are there any laws, regulations, procedures or policies in place in your country that implement the Treaty? YES 1A. If your answer is ‘yes’, please provide details of such laws, regulations, procedures or policies: Italy ratified the Treaty on 29 April 2004, under Law n.
    [Show full text]
  • Peach Leaf Curl and Plum Pockets
    report on RPD No. 821 PLANT December 2017 DEPARTMENT OF CROP SCIENCES DISEASE UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN PEACH LEAF CURL AND PLUM POCKETS Peach leaf curl, caused by the fungus Taphrina deformans, has been reported from most of production areas of peaches and nectarines in the world. It is an important disease of peaches and nectarines in Illinois. In home plantings, this is one of the most common diseases. Commercial peach orchards are sometimes seriously damaged when a dormant fungicide application has not been made. Plum pockets also occurs worldwide. This disease is caused by the fungi Taphrina communis and in some areas by T. Pruni. Plum pockets attacks a number of cultivated and wild species of plums. Neither peach leaf curl nor plum pockets normally kills trees, but both may leave them in a weakened condition and, thus, more susceptible to winter injury and infection by other disease-causing organisms. The fruit crop is reduced for the following year, or even longer. Both diseases are discussed here because their management and conditions for their development are the same. Disease development is favored by cool, moist weather (frequent light showers) during the buds break dormancy in early spring. Symptoms Leaves. Infected leaves are severely puckered, distorted, thickened, crisp in texture, and curled downward and inward within a month after full bloom (Figure 1). Usually the whole leaf is affected. Such leaves lose their normal green color, which is replaced by red and purple tints. Later, a grayish white “velvet” spore-producing layer of the Taphrina fungi covers the upper surface of diseased areas.
    [Show full text]
  • Preliminary Phylogeny of Diplostephium (Asteraceae): Speciation Rate and Character Evolution
    NUMBER 15 VARGAS AND MADRIN˜ A´ N: SPECIATION AND CHARACTER EVOLUTION OF DIPLOSTEPHIUM 1 PRELIMINARY PHYLOGENY OF DIPLOSTEPHIUM (ASTERACEAE): SPECIATION RATE AND CHARACTER EVOLUTION Oscar M. Vargas1,2 and Santiago Madrin˜a´n2 1Section of Integrative Biology and the Plant Resources Center, The University of Texas, 205 W 24th St., Stop CO930, Austin, Texas 78712 U.S.A., email: [email protected] 2Laboratorio de Bota´nica y Sistema´tica Universidad de los Andes, Apartado Ae´reo 4976, Bogota´, D. C., Colombia Abstract: Diplostephium comprises 111 neotropical species that live in high elevation habitats from Costa Rica to Chile. Primarily Andean, the genus seems to have undergone an adaptive radiation indicated by its high number of species, broad morphological variation, and diversification primarily in an ecosystem (pa´ramo) that formed within the last 2–5 my. Internal transcriber spacer (ITS) sequences and several chloroplast markers, rpoB, rpoC1, and psbA-trnH were sequenced in order to infer a preliminary phylogeny of the genus. The chloroplast regions showed no significant variation within the genus. New ITS data were therefore analyzed together with published sequences for generating a topology. Results suggest that Diplostephium and other South American genera comprise a polytomy within which a previously described North American clade is nested. Monophyly of Diplostephium was neither supported nor rejected, but the formation of a main crown clade using different methods of analysis suggests that at least a good portion of the genus is monophyletic. A Shimodaira-Hasegawa test comparing the topology obtained and a constrained one forcing Diplostephium to be monophyletic showed no significant difference between them.
    [Show full text]
  • Nomen Novum), Preferred a Spelling, It Is a Case Touching the What Ticklish Question of Defining More Exactly Is a Different Name in the Nomenclatural
    The genus Lagenophora (Compositae) Angel+L. Cabrera Museo de la Plata, Argentina The under the genus Lagenophora was first described by Cassini name Lagenifera (in Bull. Soc. Philomat. 12, 1816, 199) withthe following diagnosis: la tribus le calendula ‘Ce genre, de des astérées, comprend magellanicá, Willd. et le bellis la stipitata, Labill. Son principal caractère reside dans cypsèle lagéniforme, com- au en col primée, prolongée sommet un qui ne porte point d’aigrette. Les fleurons sont mâles’. Two in the he the years later, same periodical (1818, p. 34) changed name Lagenifera without comment into Lagenophora, the latter being simply the latinized Greek equivalent of authors have the Lagenifera. Later unanimously accepted name Lagenophora, although Davis pointed out that Lagenifera has priority. Only recently Backer & Bakhuizen van Brink have the den Jr (Flora of Java 2, 1965, 381) accepted name Lagenifera, pointing that this the that be out is legitimate generic name, adding Lagenophora is to treated as an etymological variant. This would imply that under Lagenifera no new combinations are necessary. it is Cassini in Though perfectly true that 1818 not intended to give a new name but latinized Greek border (nomen novum), preferred a spelling, it is a case touching the what ticklish question of defining more exactly is a different name in the nomenclatural sense. and To settle this, to preserve customary usage, Bullock has recently proposed (Taxon the and is here 15, 1966, 75 —76) to conserve the name, at least spelling Lagenophora this adhered to. Davis in As to typification 1950 proposed as the type species Bellis stipitata Labill.
    [Show full text]
  • Phylogeny of Hinterhubera, Novenia and Related
    Louisiana State University LSU Digital Commons LSU Doctoral Dissertations Graduate School 2006 Phylogeny of Hinterhubera, Novenia and related genera based on the nuclear ribosomal (nr) DNA sequence data (Asteraceae: Astereae) Vesna Karaman Louisiana State University and Agricultural and Mechanical College, [email protected] Follow this and additional works at: https://digitalcommons.lsu.edu/gradschool_dissertations Recommended Citation Karaman, Vesna, "Phylogeny of Hinterhubera, Novenia and related genera based on the nuclear ribosomal (nr) DNA sequence data (Asteraceae: Astereae)" (2006). LSU Doctoral Dissertations. 2200. https://digitalcommons.lsu.edu/gradschool_dissertations/2200 This Dissertation is brought to you for free and open access by the Graduate School at LSU Digital Commons. It has been accepted for inclusion in LSU Doctoral Dissertations by an authorized graduate school editor of LSU Digital Commons. For more information, please [email protected]. PHYLOGENY OF HINTERHUBERA, NOVENIA AND RELATED GENERA BASED ON THE NUCLEAR RIBOSOMAL (nr) DNA SEQUENCE DATA (ASTERACEAE: ASTEREAE) A Dissertation Submitted to the Graduate Faculty of the Louisiana State University and Agricultural and Mechanical College in partial fulfillment of the requirements for the degree of Doctor of Philosophy in The Department of Biological Sciences by Vesna Karaman B.S., University of Kiril and Metodij, 1992 M.S., University of Belgrade, 1997 May 2006 "Treat the earth well: it was not given to you by your parents, it was loaned to you by your children. We do not inherit the Earth from our Ancestors, we borrow it from our Children." Ancient Indian Proverb ii ACKNOWLEDGMENTS I am indebted to many people who have contributed to the work of this dissertation.
    [Show full text]