Normal Faults and Their Hanging-Wall Deformation: an Experimental Study1

Total Page:16

File Type:pdf, Size:1020Kb

Normal Faults and Their Hanging-Wall Deformation: an Experimental Study1 Normal Faults and Their Hanging-Wall Deformation: An Experimental Study1 Martha Oliver Withjack,2 Quazi T. Islam,3 and Paul R. La Pointe4 ABSTRACT The observed particle paths, displacement distri- butions, bedding dips, and orientations of the prin- We have used clay models to study the effects of cipal-strain axes in our physical models with and fault shape and displacement distribution on defor- without a basal plastic sheet are compatible with mation patterns in the hanging wall of a master the assumption that homogeneous, inclined simple normal fault. The experimental results show that shear accommodates the hanging-wall deforma- fault shape influences the style of secondary fault- tion. Not all of our modeling observations, however, ing and folding. Mostly antithetic normal faults are consistent with this assumption. Specifically, form above concave-upward fault bends, whereas the observed variability with depth of the distribu- mostly synthetic normal faults form above low- tion and intensity of deformation is incompatible angle fault segments and convex-upward fault with homogeneous, inclined simple shear as the bends. Beds dip toward the master normal fault hanging-wall deformation mechanism. above concave-upward fault bends and away from the master normal fault above low-angle fault seg- ments and convex-upward fault bends. Generally, INTRODUCTION secondary faulting and folding are youngest at fault bends and become progressively older past fault For more than 60 yr, geologists have used physi- bends. cal models to simulate normal faults and their Hanging-wall deformation patterns differ signifi- hanging-wall deformation (Cloos, 1928; Cloos, cantly when a basal plastic sheet imposes a con- 1930; Cloos, 1968; McClay and Ellis, 1987a, b; Ellis stant-magnitude displacement distribution on the and McClay, 1988; McClay, 1989; Islam et al., 1991; master normal fault. In models without a plastic McClay and Scott, 1991; McClay et al., 1992; sheet, numerous secondary normal faults form in Withjack and Islam, 1993). These experimental the hanging wall of the master normal fault. Most studies have guided the structural interpretation of secondary normal faults propagate upward and, field, well, and seismic data. Additionally, they have consequently, have greater displacement at depth. provided data for testing and calibrating geometric In models with a plastic sheet, few visible sec- models of normal faults (Groshong, 1990; Dula, ondary normal faults develop. Most of these faults 1991; White and Yielding, 1991; Kerr and White, propagate downward and, consequently, have less 1992; White, 1992; Xiao and Suppe, 1992). displacement at depth. Hanging-wall folding is Physical models of normal faults differ in terms wider and bedding dips are gentler in models with- of modeling materials (wet clay vs. dry sand) and out a plastic sheet than in identical models with a experimental constraints placed on fault shape, plastic sheet. development, and displacement distribution. In physical models by Cloos (1968), the shape and development of the master normal fault and its dis- Copyright 1995. The American Association of Petroleum Geologists. All placement distribution are unconstrained (Table rights reserved. 1Manuscript received January 11, 1994; revised manuscript received 1). A master normal fault develops in clay or sand August 8, 1994; final acceptance September 7, 1994. above two diverging, overlapping metal sheets and 2Mobil Research and Development Corporation, P.O. Box 65032, Dallas, propagates upward. In physical models by McClay Texas 75265. 3Bureau of Land Management, 411 Briarwood Drive, Suite 404, Jackson, et al. (1992), the shape and development of the Mississippi 39206. master normal fault and its displacement distribu- 4Golder Associates Incorporated, 4104 148th Avenue NE, Redmond, tion are completely constrained (Table 1). A rigid Washington 98052. We thank ARCO Oil and Gas Company and Mobil Research and block and horizontal base act as the footwall of the Development Corporation for their support during the study. We also thank master normal fault, and sand represents the hang- William Brown, Sybil Callaway, Gloria Eisenstadt, Jack Howard, David Klepacki, and Eric Peterson for their careful and thoughtful reviews of the ing-wall strata. During modeling, a plastic sheet manuscript. carries the sand down the sloping surface of the AAPG Bulletin, V. 79, No. 1 (January 1995), P. 1–18. 1 2 Normal Faults and Their Hanging-Wall Deformation Table 1. Comparison of Modeling Parameters and Results Modeling Parameters Fault Modeling Fault Fault Displacement Material Shape Development Distribution Modeling Results* Wet clay Unconstrained; Unconstrained; Unconstrained sloping surface sloping surface along sloping of master of master surface; normal fault normal fault constant forms during the forms during the magnitude on experiment experiment flat surface Dry sand Dry sand Completely Completely Constant constrained: constrained magnitude 45°-, 30°-, and 0°-dipping segments Wet clay Initially Lower Unconstrained constrained: two-thirds along sloping 45°- and initially surface; 0°-dipping constrained constant segments; magnitude on 30°-, 45°–, flat surface and 0°-dipping segments; 45°-, 30°-, and 0°-dipping segments Wet clay Completely Completely Constant constrained: constrained magnitude 45°-, 30°-, and 0°-dipping footwall block and along the horizontal base. In surface of the footwall block is either planar or has these models, the rigid footwall block and horizon- a single concave-upward or convex-upward bend. tal base predetermine the shape of the master nor- Our models differ from those of Cloos (1968) in mal fault. The plastic sheet prevents the fault shape that the rigid footwall block and horizontal base from changing during modeling and imposes a define the initial shape of the master normal fault. constant-magnitude displacement distribution on Unlike the models of McClay et al. (1992), the the master normal fault. shape of the master normal fault can change dur- We have conducted our own physical models of ing modeling and the displacement distribution on normal faults to study how fault shape and dis- its sloping surface can vary in all but one of our placement distribution affect hanging-wall defor- experiments. In that experiment, a mylar sheet mation (Table 1). In our models, a rigid block and beneath the clay layer prevents the master normal horizontal base act as the footwall of the master fault from changing during the experiment and normal fault, and a layer of wet, homogeneous clay imposes a constant-magnitude displacement distri- represents the hanging-wall strata. The sloping bution on the master normal fault. Withjack et al. 3 Figure 1—Cross-sectional view of experimental apparatus. An aluminum block (black) and horizontal base (gray) act as the footwall of a master normal fault. Wet clay (white) represents the strata in its hanging wall. As shown on the right, the sloping side of the aluminum block is planar and dips 45° in experiment 1, has an upper 30˚-dipping segment and a lower 45°-dipping segment in experiment 2, and has an upper 45°-dipping segment and a lower 30°-dipping segment in experiments 3 and 4. During the experiments, the middle moveable wall and the attached aluminum sheet move toward the right, away from the aluminum block. MODELING PROCEDURE mylar sheets move away from the aluminum block. The clay, passively carried by the mylar sheet, The experimental apparatus has a horizontal moves away from the block and down its sloping base and three vertical walls (Figure 1). The outer side. The displacement rate of the moveable wall is walls are stationary, whereas the middle wall can 0.004 cm/s in all experiments. We repeat each move toward either outer wall. An aluminum experiment at least twice to verify the modeling sheet, attached to the moveable wall, covers the results. base. A 5-cm-high aluminum block overlies the To ensure geometric and kinematic similarity sheet and is attached to a fixed wall. The top sur- between physical models and actual rock deforma- face of the block is square, 25 cm wide and long. tion (assuming that inertial forces are negligible The sloping side of the block is planar and dips 45° and that the density of the modeling material and in experiment 1, has an upper 30°-dipping seg- rock are identical), the strength of the modeling ment and a lower 45°-dipping segment in experi- material and the model dimensions must be scaled ment 2, and has an upper 45°-dipping segment and down by the same factor (Hubbert, 1937). The a lower 30°-dipping segment in experiments 3 and cohesive strength of rock is about 105 times greater 4. In experiment 4, a mylar sheet, attached to the than the cohesive strength of the wet clay in the moveable wall, overlies the sloping side of the alu- physical models. The thickness of sedimentary minum block and the aluminum sheet. cover is also about 105 times greater than the clay A 7.5-cm-thick layer of clay directly overlies the thickness in the physical models. Although the cri- aluminum block and aluminum sheet in experi- teria for geometric and kinematic similarity have ments 1, 2, and 3. In experiment 4, a 5-cm-thick been satisfied, we emphasize that the physical layer of clay overlies the mylar sheet. In all experi- models are not exact scale models. Rock may ments, the clay density is 1.6 g/cm3, and its cohe- deform differently than the clay in the models. For sive strength is about 10–4 MPa (Sims, 1993). The example, rock with preexisting inhomogeneities top and sides of the clay layer are free surfaces. (e.g., faults, fractures, bedding) may behave very dif- Circular markings applied to the top and sides of ferently than the homogeneous clay in the models. the clay layer record strain during modeling. During experiments 1, 2, and 3, the moveable wall and the attached aluminum sheet move away from MODELING PARAMETERS the aluminum block. In response, the clay above the aluminum sheet moves away from the block The constraints on fault shape, development, and and down its sloping side.
Recommended publications
  • Deformation Mechanisms, Rheology and Tectonics Geological Society Special Publications Series Editor J
    Deformation Mechanisms, Rheology and Tectonics Geological Society Special Publications Series Editor J. BROOKS J/iLl THIS VOLUME IS DEDICATED TO THE WORK OF HENDRIK JAN ZWART GEOLOGICAL SOCIETY SPECIAL PUBLICATION NO. 54 Deformation Mechanisms, Rheology and Tectonics EDITED BY R. J. KNIPE Department of Earth Sciences Leeds University UK & E. H. RUTTER Department of Geology Manchester University UK ASSISTED BY S. M. AGAR R. D. LAW Department of Earth Sciences Department of Geological Sciences Leeds University Virginia University UK USA D. J. PRIOR R. L. M. VISSERS Department of Earth Sciences Institute of Earth Sciences Liverpool University University of Utrceht UK Netherlands 1990 Published by The Geological Society London THE GEOLOGICAL SOCIETY The Geological Society of London was founded in 1807 for the purposes of 'investigating the mineral structures of the earth'. It received its Royal Charter in 1825. The Society promotes all aspects of geological science by means of meetings, speeiat lectures and courses, discussions, specialist groups, publications and library services. It is expected that candidates for Fellowship will be graduates in geology or another earth science, or have equivalent qualifications or experience. Alt Fellows are entitled to receive for their subscription one of the Society's three journals: The Quarterly Journal of Engineering Geology, the Journal of the Geological Society or Marine and Petroleum Geology. On payment of an additional sum on the annual subscription, members may obtain copies of another journal. Membership of the specialist groups is open to all Fellows without additional charge. Enquiries concerning Fellowship of the Society and membership of the specialist groups should be directed to the Executive Secretary, The Geological Society, Burlington House, Piccadilly, London W1V 0JU.
    [Show full text]
  • Faults and Joints
    133 JOINTS Joints (also termed extensional fractures) are planes of separation on which no or undetectable shear displacement has taken place. The two walls of the resulting tiny opening typically remain in tight (matching) contact. Joints may result from regional tectonics (i.e. the compressive stresses in front of a mountain belt), folding (due to curvature of bedding), faulting, or internal stress release during uplift or cooling. They often form under high fluid pressure (i.e. low effective stress), perpendicular to the smallest principal stress. The aperture of a joint is the space between its two walls measured perpendicularly to the mean plane. Apertures can be open (resulting in permeability enhancement) or occluded by mineral cement (resulting in permeability reduction). A joint with a large aperture (> few mm) is a fissure. The mechanical layer thickness of the deforming rock controls joint growth. If present in sufficient number, open joints may provide adequate porosity and permeability such that an otherwise impermeable rock may become a productive fractured reservoir. In quarrying, the largest block size depends on joint frequency; abundant fractures are desirable for quarrying crushed rock and gravel. Joint sets and systems Joints are ubiquitous features of rock exposures and often form families of straight to curviplanar fractures typically perpendicular to the layer boundaries in sedimentary rocks. A set is a group of joints with similar orientation and morphology. Several sets usually occur at the same place with no apparent interaction, giving exposures a blocky or fragmented appearance. Two or more sets of joints present together in an exposure compose a joint system.
    [Show full text]
  • Deformation at the Microscale
    Deformation at the Microscale Deformation processes occur at the microscale and lead to changes in the internal structure, shape or volume of a rock. Brittle versus Plastic deformation mechanisms is a function of: • Pressure – increasing pressure favors plastic deformation • Temperature – increasing temperature favors plastic deformation • Rheology of the deforming minerals (for example quartz vs feldspar) • Availability of fluids – favors brittle deformation • Strain rate – lower strain rate favors plastic deformation Given the different rheology of different minerals, brittle and plastic deformation mechanisms can occur in the same sample under the same conditions. The controlling deformation mechanism determines whether the deformation belongs to the brittle or plastic regime. Brittle deformation mechanisms operative at shallow depths. Crystal-plastic Deformation Mechanisms Mechanical twining – mechanical bending or kinking of the crystal structure. Mechanical twins in calcite Deformation (glide) twins in a calcite crystal. Stress is ideally at 45o to the shear In the case of calcite, the 38o angle (glide plane). Dark lamellae turns the twin plane into a mirror have been sheared (simple plane. The amount of strain shear). associated with a single kink is fixed by this angle. Crystal Defects • Point defects – due to vacancies or impurities in the crystal structure. • Line defects (dislocations) – a mobile line defect that causes intracrystalline deformation via slip. The slip plane is usually the place in a crystal that has the highest density of atoms. • Plane defects – grain boundaries, subgrain boundaries, and twin planes. Migration of vacancies Types of defects – vacancy, through a crystal structure by substitution, interstitial diffusion. The movement of dislocations occurs in the plane or direction which requires the least energy.
    [Show full text]
  • Deformation Pattern During Normal Faulting: a Sequential Limit Analysis
    Originally published as: Yuan, X., Maillot, B., Leroy, Y. M. (2017): Deformation pattern during normal faulting: A sequential limit analysis. ‐ Journal of Geophysical Research, 122, 2, pp. 1496—1516. DOI: http://doi.org/10.1002/2016JB013430 Journal of Geophysical Research: Solid Earth RESEARCH ARTICLE Deformation pattern during normal faulting: 10.1002/2016JB013430 A sequential limit analysis Key Points: • New 2-D mechanically balanced X. P. Yuan1,2 , B. Maillot3, and Y. M. Leroy1,4 model of formation and evolution of half-grabens above low-angle normal 1Laboratoire de Géologie, CNRS UMR, École Normale Supérieure, Paris, France, 2Now at Helmholtz Centre Potsdam, detachment 3 • Tectonic extensional and gravitational German Research Center for Geosciences (GFZ), Potsdam, Germany, Laboratoire Géosciences et Environnement Cergy, 4 modes of deformation in frictional Université de Cergy-Pontoise, Cergy-Pontoise, France, Now at Total, CSTJF, Pau, France wedges are well captured • Fault weakening and sedimentation control number of fault-bounded Abstract We model in 2-D the formation and development of half-graben faults above a low-angle blocks in hanging wall normal detachment fault. The model, based on a “sequential limit analysis” accounting for mechanical equilibrium and energy dissipation, simulates the incremental deformation of a frictional, cohesive, and Supporting Information: fluid-saturated rock wedge above the detachment. Two modes of deformation, gravitational collapse and • Supporting Information S1 tectonic collapse, are revealed which compare well with the results of the critical Coulomb wedge theory. •MovieS1 •MovieS2 We additionally show that the fault and the axial surface of the half-graben rotate as topographic •MovieS3 subsidence increases. This progressive rotation makes some of the footwall material being sheared and •MovieS4 entering into the hanging wall, creating a specific region called foot-to-hanging wall (FHW).
    [Show full text]
  • Post-Seismic Deformation Mechanism of the July 2015 MW 6.5 Pishan
    www.nature.com/scientificreports OPEN Post‑seismic deformation mechanism of the July 2015 MW 6.5 Pishan earthquake revealed by Sentinel‑1A InSAR observation Sijia Wang1*, Yongzhi Zhang1,2*, Yipeng Wang1, Jiashuang Jiao 1, Zongtong Ji1 & Ming Han1 On 3 July 2015, the Mw 6.5 Pishan earthquake occurred at the junction of the southwestern margin of the Tarim Basin and the northwestern margin of the Tibetan Plateau. To understand the seismogenic mechanism and the post‑seismic deformation behavior, we investigated the characteristics of the post‑seismic deformation felds in the seismic area, using 9 Sentinel‑1A TOPS synthetic aperture radar (SAR) images acquired from 18 July 2015 to 22 September 2016 with the Small Baseline Subset Interferometric SAR (SBAS‑InSAR) technique. Postseismic LOS deformation displayed logarithmic behavior, and the temporal evolution of the post‑seismic deformation is consistent with the aftershock sequence. The main driving mechanism of near‑feld post‑seismic displacement was most likely to be afterslip on the fault and the entire creep process consists of three creeping stages. Afterward, we used the steepest descent method to invert the afterslip evolution process and analyzed the relationship between post‑seismic afterslip and co‑seismic slip. The results witness that 447 days after the mainshock (22 September 2016), the afterslip was concentrated within one principal slip center. It was located 5–25 km along the fault strike, 0–10 km along with the fault dip, with a cumulative peak slip of 0.18 m. The 447 days afterslip seismic moment was approximately 2.65 × 1017 N m, accounting for approximately 4.1% of the co‑seismic geodetic moment.
    [Show full text]
  • LIBRO GEOLOGIA 30.Qxd:Maquetaciûn 1
    Trabajos de Geología, Universidad de Oviedo, 30 : 163-168 (2010) Peek inside the black box of calcite twinning paleostress analysis J. REZ1* AND R. MELICHAR1 1Department of Geological Sciences, Faculty of Science, Masaryk University, Kotlarska 2, 61137 Brno, Czech Republic. *e-mail: [email protected] Abstract: Calcite e-twinning has been used for stress inversion purposes since the fifties. The common- ly used technique is the Etchecopar method (e.g. Laurent et al., 1981), based on testing of 500-1000 randomly generated reduced stress tensors using a penalization function fL. A systematic search of all possible reduced stress tensors with a new penalization function fR double checked with a spatial dis- tribution plot is suggested. Keywords: stress inversion, paleostress analysis, calcite, mechanical twinning. Extensive research of the deformation mechanisms of sion is 10 MPa, which was experimentally determined τ calcite monocrystals and polycrystalline aggregates by Turner et al. (1954). The magnitude of c is inde- during the last century provided evidence of several pendent of normal stress σ, magnitude and tempera- glide and twinning systems present in calcite. Twelve ture (e.g. Turner et al., 1954; De Bresser and Spiers, different glide systems on five different crystallo- 1997; figure 1b). In order to cause twinning, the graphic planes and three different twinning systems stress tensor acting upon an e-plane must have appro- have been defined (Bestmann and Prior, 2003). Only priate principal direction orientation and sufficient twinning systems are suitable for stress inversion pur- differential component. The magnitude of the shear poses because they are easy to observe under an opti- stress is controlled by the Schmid criterion μ, which σ cal microscope, their orientation can be measured is a function of the orientation of the 1 vector σ using either a universal stage or EBSD and only one (Handin and Griggs, 1951; figure 1c).
    [Show full text]
  • Constraining the Tectonic Evolution of Extensional Fault Systems in the Cyclades (Greece) Using Low-Temperature Thermochronology Stephanie Brichau
    Constraining the tectonic evolution of extensional fault systems in the Cyclades (Greece) using low-temperature thermochronology Stephanie Brichau To cite this version: Stephanie Brichau. Constraining the tectonic evolution of extensional fault systems in the Cyclades (Greece) using low-temperature thermochronology. Applied geology. Université Montpellier II - Sciences et Techniques du Languedoc; Johannes Gutenberg Universität Mainz, 2004. English. tel- 00006814 HAL Id: tel-00006814 https://tel.archives-ouvertes.fr/tel-00006814 Submitted on 3 Sep 2004 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Universität Mainz “Johannes Gutenberg” and Université de Montpellier II “Sciences et techniques du Languedoc” Dissertation zur Erlangung des Grades “DOKTOR DER NATURWISSENSCHAFTEN” am Fachbereich Geowissenschaften der Johannes Gutenberg-Universität Mainz THESE Pour obtenir le grade de “DOCTEUR DE L’UNIVERSITÉ MONTPELLIER II” Discipline: Terre solide, géodynamique Formation Doctorale: Structure et Evolution de la Lithosphère Ecole Doctorale: Science de la Terre et de l’Eau Presented and publicly defended at Mainz by Stéphanie Brichau June 29th, 2004 Title: Constraining the tectonic evolution of extensional fault systems in the Cyclades (Greece) using low-temperature thermochronology JURY M. Stephen Foley GP, Mainz President M. Michel Faure IST, Orléans Reviewer M.
    [Show full text]
  • "Extension Layer-Parallel Shear and Normal Faulting."
    * * A/H6 Extensional layer-parallel shear and normal faulting DAVID A. FERRILL Center for Nuclear Waste Regulatory Analyses, Southwest Research Institute, 6220 Culebra Road, San Antonio, Texas 78238 ALAN P. MORRIS Division of Earth and Physical Sciences, University of Texas at San Antonio, San Antonio, Texas 78249 SIDNEY M. JONES and JOHN A. STAMATAKOS Center for Nuclear Waste Regulatory Analyses, Southwest Research Institute, 6220 Culebra Road, San Antonio, Texas 78238 Abstract-An extensional fault system in Bare Mountain, Nevada, contains abundant evidence of layer-parallel shear deformation contemporaneous with faulting. Layer-parallel shear is manifest by deformation of pre-existing fabrics such as teeth on bedding-parallel stylolites and shape fabrics in fossiliferous and oolitic limestone that all indicate shear in the down-dip direction, perpendicular to fault-bedding intersections. Cleavage at a low angle to bedding has the same vergence, indicating development and/or modification during shear parallel to bedding with a down-dip sense. Localized layer-parallel shear along discrete bedding planes has locally offset normal faults, and shear distributed within layers has reoriented block-bounding normal faults. These observations of internal deformation within fault blocks indicate that layer-parallel shear contributes to fault block deformation. In simple rigid-block models of extension accommodated by normal faults above a low-angle detachment or decollement zone, extension causes faults to rotate to progressively lower dips, while originally horizontal beds rotate to steeper dips. These rotations reorient faults away from originally optimum conditions for slip 2 into orientations of a lower slip tendency, whereas bedding rotates to steeper dips with progressively higher slip tendency.
    [Show full text]
  • The Shumagin Seismic Gap Structure and Associated Tsunami Hazards, Alaska Convergent Margin GEOSPHERE, V
    Research Paper THEMED ISSUE: Subduction Top to Bottom 2 GEOSPHERE The Shumagin seismic gap structure and associated tsunami hazards, Alaska convergent margin GEOSPHERE, v. 15, no. 2 Roland von Huene1,*,†, John J. Miller2,*,†, and Anne Krabbenhoeft3 https://doi.org/10.1130/GES01657.1 1U.S. Geological Survey, 800 Blossom Hill Road, Los Gatos, California 95032, USA 2U.S. Geological Survey, Denver Federal Center, Denver, Colorado 80225, USA 3 14 figures; 1 set of supplemental files GEOMAR Helmholz Centre for Ocean Research, D-24148, Kiel, Germany CORRESPONDENCE: rhuene@ mindspring .com ABSTRACT ruptured in the 1964 great earthquake, the Semidi segment that broke in a CITATION: von Huene, R., Miller, J.J., and Krabben‑ 1938 earthquake, and the Unimak segment that ruptured in 1946. In contrast, hoeft, A., 2019, The Shumagin seismic gap structure and associated tsunami hazards, Alaska convergent The potential for a major earthquake in the Shumagin seismic gap, and the the Shumagin segment has no historic great earthquake and is constrained by margin: Geosphere, v. 15, no. 2, p. 324–341, https:// tsunami it could generate, was reported in 1971. However, while potentially its neighboring segments rather than its own aftershocks. Since Sykes (1971) doi .org /10 .1130 /GES01657.1. tsunamigenic splay faults in the adjacent Unimak and Semidi earthquake seg- first drew attention to the Shumagin segment, it has been a proposed seismic ments are known, such features along the Shumagin segment were undoc- gap. Earthquakes in the adjacent segments have produced tsunamis. To the Science Editor: Shanaka de Silva umented until recently. To investigate margin structure and search for splay southwest, during the 1946 M8.6 earthquake, the Unimak segment generated Associate Editor: Laura M.
    [Show full text]
  • Deformation Mechanism of Kink-Step Distorted Coherent Twin Boundaries in Copper Nanowire
    AIMS Materials Science, 4(1): 102-117. DOI: 10.3934/matersci.2017.1.102 Received: 08 November 2016 Accepted: 27 December 2016 Published: 05 January 2017 http://www.aimspress.com/journal/Materials Research article Deformation mechanism of kink-step distorted coherent twin boundaries in copper nanowire Bobin Xing 1, Shaohua Yan 1, Wugui Jiang 2, and Qing H. Qin 1,* 1 Research School of Engineering, Australian National University, Acton, ACT 2601, Australia 2 School of Aeronautical Manufacturing Engineering, Nanchang Hangkong University, Nanchang 330063, China * Correspondence: Email: [email protected]; Tel: +61-0261258274; Fax: +61-0261255476. Abstract: In the construction of nanotwinned (NT) copper, inherent kink-like steps are formed on growth twin boundaries (TBs). Such imperfections in TBs play a crucial role in the yielding mechanism and plastic deformation of NT copper. Here, we used the molecular dynamic (MD) method to examine the influence of kink-step characteristics in depth, including kink density and kink-step height, on mechanical behavior of copper nanowire (NW) in uniaxial tension. The results showed that the kink-step, a stress-concentrated region, is preferential in nucleating and emitting stress-induced partial dislocations. Mixed dislocation of hard mode I and II and hard mode II dislocation were nucleated from kink-step and surface atoms, respectively. Kink-step height and kink density substantially affected the yielding mechanism and plastic behavior, with the yielding stress functional-related to kink-step height. However, intense kink density (1 kink per 4.4 nm) encourages dislocation nucleation at kink-steps without any significant decline in tensile stress. Defective nanowires with low kink-step height or high kink density offered minimal resistance to kink migration, which has been identified as one of the primary mechanisms of plastic deformation.
    [Show full text]
  • Article Is Available Ferrill, D
    Solid Earth, 10, 307–316, 2019 https://doi.org/10.5194/se-10-307-2019 © Author(s) 2019. This work is distributed under the Creative Commons Attribution 4.0 License. Uniaxial compression of calcite single crystals at room temperature: insights into twinning activation and development Camille Parlangeau1,2, Alexandre Dimanov1, Olivier Lacombe2, Simon Hallais1, and Jean-Marc Daniel3 1Laboratoire de Mécanique des Solides (LMS), Ecole Polytechnique, 91128 Palaiseau, France 2Institut des Sciences de la Terre de Paris, Sorbonne Université, CNRS-INSU, ISTeP UMR 7193, 75005 Paris, France 3IFREMER, 29280 Plouzané, France Correspondence: Camille Parlangeau ([email protected]) Received: 4 August 2018 – Discussion started: 27 August 2018 Revised: 4 January 2019 – Accepted: 16 January 2019 – Published: 7 February 2019 Abstract. E-twinning is a common plastic deformation 1 Introduction mechanism in calcite deformed at low temperature. Strain rate, temperature and confining pressure have negligible ef- Calcite is a common mineral in the Earth’s upper crust, form- fects on twinning activation which is mainly dependent on ing different types of sedimentary (carbonates) or metamor- differential stress. The critical resolved shear stress (CRSS) phic (marbles) rocks. Deformation modes of calcite aggre- required for twinning activation is dependent on grain size gates have been investigated experimentally since the early and strain hardening. This CRSS value may obey the Hall– 1950s (e.g., Turner, 1949; Griggs and Miller, 1951; Handin Petch relation, but due to sparse experimental data its actual and Griggs, 1951; Turner and Ch’ih, 1951; Griggs et al., evolution with grain size and strain still remains a matter of 1951, 1953; Friedman and Heard, 1974; Schmid and Pater- debate.
    [Show full text]
  • Styles of Positive Inversion Tectonics in the Central Apennines and in the Adriatic Foreland: Implications for the Evolution of the Apennine Chain (Italy)
    ARTICLE IN PRESS Journal of Structural Geology xxx (2009) 1–19 Contents lists available at ScienceDirect Journal of Structural Geology journal homepage: www.elsevier.com/locate/jsg Styles of positive inversion tectonics in the Central Apennines and in the Adriatic foreland: Implications for the evolution of the Apennine chain (Italy) Vittorio Scisciani* Dipartimento di Scienze della Terra, Universita` ‘‘G. D’Annunzio’’ Chieti-Pescara, Campus Universitario Madonna delle Piane, Via dei Vesini, 30, 68013 Chieti Scalo (CH), Italy article info abstract Article history: Integration of new field structural and geophysical data with existing information from the Apennines Received 22 February 2008 chain in Italy and its adjacent Adriatic foreland indicates that the styles of positive inversion tectonics Received in revised form and the modes of interaction between the extensional and the subsequent compressive structures vary. 19 February 2009 Starting from the Cretaceous, the contractional deformation induced by the mainly north-directed Accepted 27 February 2009 convergence of Africa/Adria with respect to the European plate promoted the closure of various arms of Available online xxx the Atlantic and the Neo-Tethys oceans, which opened in different times and with distinct orientations. The mosaic of continental blocks, carbonate platforms, rift basins and oceanic domains with several Keywords: Positive inversion tectonics geometries and orientations with respect to the axis of the subsequent compression, and the resulting Extensional and contractional deformation heterogeneities within the shallow sedimentary cover and the overall lithosphere, strongly influenced Thick-skinned tectonics both the structural evolution of the Apennine orogenic belt and the intra-continental deformation within Fault reactivation the Adriatic foreland.
    [Show full text]