4000 Jahre Pionier-Arbeit in Den Exakten Wissenschaften

Total Page:16

File Type:pdf, Size:1020Kb

4000 Jahre Pionier-Arbeit in Den Exakten Wissenschaften ^ ^MSTAEDT rEYMOND 1 4000 JAHRE I PIONIER-ARBEIT EXAKTEN WISSENSCHAFTEN ACCESSION NUMBER \m6 PRESS MARK AD Digitized by the Internet Archive in 2015 https://archive.org/details/b24854256 1 fs tf-y-O' /, / 77 ^KMSTÄEDT^ V >^J|5^s_rEYM0ND >0 i 4000 JAHRE PIONIER-ARBEIT 1 L. DARMSTAEDTER UND R. DU BOIS-REYMOND 4000 JAHRE PIONIER-ARBEIT IN DEN EXAKTEN WISSENSCHAFTEN BERLIN J. A. STARGARDT 1904 / fiß /DA&- IM 15 Alle Rechte, insbesondere das der Uebersetzung in fremde Sprachen, Vorbehalten. ' ' HISTORtCaC ] [ V meoicav / ! Vergraben ist in ewige Nacht Der Erfinder grosser Name zu oft Was ihr Geist grübelnd entdeckt, nutzen wir, Aber belohnt Ehre sie auch? Klopshock, Vorwort. ar za oft hat die Weltgeschichte nur die äusseren Er- vj eignisse im Leben der Völker verzeichnet und sich mit einer Aufzählung und Beleuchtung der Kriegszüge, Thron- wechsel und politischen Verhandlungen begnügt. Viele dieser äusseren Vorgänge aber finden bei näherem Zusehen ihre hauptsächliche Begründung in den wirthschaftlichen Verhältnissen, d. i. in den Lebensbedin- gungen, unter denen die verschiedenen Völker sich be- funden haben. Und auf jene haben wiederum wesentlichen Einfluss einzelne Männer gehabt, welche die Völker lehrten, die ihnen zu Gebote stehenden Naturkräfte zu nutzen. Nur eine Geschichte, die diese Seite der Entwicklung mit berücksichtigt, darf sich eine „Weltgeschichte“ nennen. Einem solchen Geschichtswerke aber stehen unermess- liche Schwierigkeiten im Wege. Die Fortschritte der Wissenschaft und Technik voll- ziehen sich ohne äusseres Gepränge und oft in so unmerk- licher Abstufung, dass der Gang ihrer Entwicklung sich nach- träglich kaum mehr feststellen lässt. Während sich für die Thaten der Kriegshelden schon in der Urzeit Sänger fanden, fehlt es noch heute an berufenen Geschichtsschreibern der ’I baten auf dem Gebiete der exakten AVissenschaften und der Technik. i Diejenigen Forscher aus diesen Gebieten, die sich mit geschichtlichen Studien beschäftigten, haben meist nur ihr Specialgebiet behandelt. Die Folge davon war, dass ihre Studien, nur für Fach- genossen berechnet, sehr ins Einzelne gingen und deßhalb für die allgemeine Weltgeschichte nicht verwendet wurden. Dies hat in den Verfassern den Gedanken angeregt, die Entwicklung der exakten Wissenschaften und der Technik in Form einer Tabelle zu bringen, die in ihrer Kürze eine allgemeine Uebersicht gestattet, und vielleicht eine Grundlage abgeben kann für eine, später einmal von berufener Seite in Angriff zu nehmende Geschichte der exakten Wissenschaften und der Technik. Das von uns zusammengetragene Material erhält seinen natürlichen Zusammenhang durch die unserer Tabelle ge- gebene chronologische Reihenfolge, der wir als einer rein objektiven Darstellung vor der nach Fächern und Perioden eingetheilten Uebersicht den Vorzug gegeben haben. Es werden sich so manche interessante Schlussfolge- rungen auf die gemeinsamen Grundzüge der exakten Wissen- schaften, auf die Bedeutung der Entdeckungen in einer ein- zelnen Wissenschaft für die Entwicklung der übrigen und auf ihren Zustand in den verschiedenen Ländern und unter den wechselnden politischen Verhältnissen ergeben. Ein jeder Blick in die Tabelle wird sofort bei den Lesern den Gedanken anregen, wie die koincidenten Ent- deckungen und Erfindungen befruchtend auf einander gewirkt haben. Man denke z. B. an die Folgen der Magalhaes’schen Weltumsegelung, die sich nicht nur in der Geographie, sondern namentlich auch in der Astronomie geltend machten und durch die gesteigerten Bedürfnisse der Astronomen zur Erfindung feinerer Hülfsmittel für die Durchforschung des Himmels führten. Man denke ferner an die Erfindung des Mikroskops, die mit einem Schlage die Botanik, die Zoologie, die Medizin in völlig neue Bahnen brachte. Gewiss lässt sich die vorliegende Tabelle nicht mit einer vollendeten Geschichtsdarstellung vergleichen, doch hat auch sie sehr viele und mühsame Arbeit erfordert. ii Wir hätten kaum gewagt, diese Arbeit zu unternehmen, wäre sie nicht zum Theil schon dadurch geleistet gewesen, dass der eine von uns sich seit langer Zeit bemüht hat, eine Sammlung von Autographen derjenigen Männer der Wissen- schaft zusammenzubringen, die in ihren Fächern bahnbrechend gewesen sind. Diese Sammlung umfasst alle Wissenschaften seit Beginn des sechzehnten Jahrhunderts und weist gegen 6000 Nummern auf. Diesem Ursprung entsprechend haben wir die Tabelle auf solche Daten beschränkt, für die ein bestimmter Name nachweisbar war. Um unsere Zusammenstellung auch für diejenigen brauchbar zu machen, die nur Erfindung und Entdeckung oder nur den Namen der Urheber kennen, haben wir einen Namen- und einen Sachschlüssel beigefügt, die beide alphabetisch angeordnet sind. Ausser dem Katalog der obenerwähnten Autographen- Sammlung sind von uns sämmtliche uns zu Gebote stehenden Bibliographien, Lehrbücher und Werke, welche die Geschichte der einzelnen Wissenschaften, sowie auch einzelne Zweige derselben behandeln, benutzt worden. Ahm erheblicherem Nutzen sind uns die nachstehenden Werke gewesen: Dannemann, Geschichte der Naturwissenschaften. Embacher, Tabellen zu den Forschungsreisen. Geschichte der AVissenschaften in Deutschland, herausgegeben durch die historische Kommission bei der königl. (bairischen) Akademie der Wissenschaften. Griesbach, Physikalisch-chemische Propaedeutik. Günther, Geophysik. Günther, Geschichte der anorganischen AATssenschaften. Heller, Geschichte der Physik. Lodge, Pioneers of Science. Felix Müller, Zeittafeln zur Geschichte der Mathematik und Astronomie bis zum Jahre 1500. Mittheilungen zur Geschichte der Medizin und Naturwissen- schaften. in Poggendorff, Handwörterbuch. Poggendorff, Lebenslinien. Poppe, Alphabetisch -chronologische Uebersicht der Erfin- dungen, Entdeckungen u. s. w. Prometheus, herausgegeben von Dr. Otto N. Witt. Rosenberger, Geschichte der Physik. Bühlmann, Allgemeine Maschinenlehre. Spons, Dictionary of Engineering. Whewell, Geschichte der induktiven Wissenschaften. Wir möchten noch darauf hinweisen, dass ein solcher erster Versuch sicherlich unvollkommen sein wird. Wir hoffen indess bei der sich jetzt mehr und mehr bemerkbar machenden Tendenz, die historische Forschung in den exakten Wissenschaften zu beleben, auf eine milde Bcurtheilung unseres Versuchs, die vielfach zerstreuten Daten über die Entdeckungen und Erfindungen auf diesem Felde möglichst allgemein zugänglich zu machen. Jeder Nachweis von Fehlern oder Auslassungen wird uns hochwillkommen sein, wird er uns doch in unserem Streben unterstützen, eine eventuelle Neuauflage vollständiger und korrekter zu gestalten. Gütige Zuschriften erbitten wir unter der Adresse „Dr. Ludwig Darmstaedter, Berlin W.62, 18a Landgrafcn- Straße.“ Wir haben endlich noch den folgenden Herren, die uns bei der Revision unseres Versuches aufs liebenswürdigste in den von ihnen vertretenen Fächern und sonst unterstützt haben, unseren ergebensten Dank abzustatten: Herrn Direktor F. S. Ar eben hold in Berlin. „ Dr. Arons in Berlin. in Stockholm. „ Professor Dr, Arrhenius Professor Dr. von Buchka „ Geheimen Regierungsrath in Berlin. in Berlin. „ Dr. Dinse Geheimen Medizinalrath Professor Dr. Ehrlich in Frankfurt a. M. in Berlin. „ Dr. Euting Dr. Adolph Frank in Charlottenburg. Professor Dr. Friedländer in Berlin. iv Herrn Baurath Dr. ing. Haack in Berlin. „ Geheimen Regierungsrath Professor Dr. Hell mann in Berlin. in Dillenburg. „ Dr. Heusler Ihering in Berlin. „ Regierungsrat Dr. von in Berlin. „ Professor Dr. Jacobson Berlin. „ Postrath Karrass in in Berlin. „ Professor Dr. C. Lehmann „ Professor Dr. Lummer in Berlin. „ Geheimen Regierungsrath Professor Dr. von Martens in Berlin. _ Dr. Morgenroth in Frankfurt a. M. „ Professor Dr. Neisser in Frankfurt a. M. Hofrath Dr. L. Petzendorfer in Stuttgart. ,, „ Professor Dr. Poske in Berlin. _ Professor Dr. E. Pringsheim in Berlin. „ Professor Dr. Raps in Berlin. „ Patentanwalt Alard du Bois-Reymond in Berlin. „ Privatdocent Dr. C 1 au d e d u B o i s - R ev mp n d in Berlin. ,. Professor Dr. Rubens in Berlin. „ Dr. H. Sachs in Frankfurt a. M. „ Zahnarzt S achtleben in Homburg a. d. Höhe. „ Oberstleutnant Schaefer in Berlin. r Dr. 0. Schwarzer in Breslau. „ Professor Dr. Steinitz in Berlin. „ Dr. F. Tob ler in Berlin. „ Direktor der städt. Webeschule Weber in Berlin. „ Geheimen Oberbaurath Dr. ing. Zimmermann in Berlin. Berlin, November 1903. Die Verfasser. V Vorchristliche Zeit. 2650 Dungi I., König von Ur, südbabylonischer Beherrscher des Zweistromlandes, wird von NebukadneZar II. (s. 570 v. Chr.) als Urheber einer Gewichtsnorm, und zwar der schweren babylonischen Mine gemeiner Norm zu 982,4 gr. genannt. Aus 2 Statuen, die Gudea, Priesterfürsten von Lagai, einen älteren Zeitgenossen des Dungi als Bauherrn sitzend darstellen und die genau übereinstimmende Massstäbe tragen, ergibt sich die babylonische Doppelelle zu 990—996 mm, fast genau gleich dem Sekundenpendel für den 30. Breitengrad, und daraus die schwere babylonische Mine zu 982,4 gr. als Wasser- gewicht des Kubus vom Zehntel der Doppelelle, so dass ein geschlossenes Mass- und Gewichtssystem vorliegt, dessen Einheiten die Grundlage für die gesammte metrologische Entwicklung des Alterthums gebildet haben. 1750 Der Aegypter Ahmes lehrt die Berechnung des Flächen- inhaltes von Feldstücken, deren einschliessende Seiten ge- geben sind. 1100 Der Chinese Tschu-Kong bestimmt die Schiefe der Ekliptik. 660 Terpandros von Lesbos begründet die diatonischen und chromatischen Tonleitern. 640 Der chaldaeische Astronom Berosus, angeblich der Lehrer des Thaies, soll die Sonnenuhr erfunden haben.
Recommended publications
  • Introduction to Plant Ecology
    Unit 1 Introduction to Plant Ecology Unit 1 INTRODUCTION TO PLANT ECOLOGYECOLOGYECOLOGY StructureStructureStructure 1.1 Introduction 1.6 Basic terms of Ecology Expected Learning Outcomes Environment 1.2 What is Ecology? Biosphere 1.3 History of Ecology Ecosystem 1.4 Subdivisions of Ecology Population 1.5 Relationship of Ecology Community with other Disciplines of 1.7 Summary Biology 1.8 Terminal Question 1.9 Answers 1.1 INTRODUCTION Organisms do not live in isolation. All organisms are linked to their surroundings. The survival of an organism thus depends upon its surroundings. These surroundings of an organism constitute its (are called as - delete) environment. Any change in the surroundings/environment affects the growth and survival of living organisms to a significant extent. Nutrients and energy get distributed among various living components present in a particular environment. Ecology is the study of the relationship of organisms i.e. plants, animals, microorganisms with their surroundings (environment). Ecological studies deal with the relationships of organisms with their environment. The present unit provides information about basic concepts in ecology. Expected Learning Outcomes After the study of this Unit, you should be able to define various terms used in ecology (environment, population, community, ecosystem and ecosphere), 7 Block 1 Ecology and Ecological Factors describe subdivisions of ecology, outline differences between natural and man-made environment, describe components of the ecosystem, enlist characteristics of the community, enumerate knowledge about recent developments in the field of ecology, and discuss the interrelationships between ecology and other disciplines of biology. 1.2 WHAT IS ECOLOGY? Hanns Reiter (1868) gave the concept of ecology.
    [Show full text]
  • E:\Teksty\2016 Teksty\PH 4 2015\Wersja Elektroniczna
    PRZEGLĄD HUMANISTYCZNY 4, 2015 Florian Krobb (National University of Ireland Maynooth) FROM TRACK TO TERRITORY: GERMAN CARTOGRAPHIC PENETRATION OF AFRICA, C. 1860–1900 I On page 130, the Cambridge History Atlas juxtaposes two maps of Africa. The larger, page-filling map shows the African continent’s political division in the first decade of the twentieth century: apart from Morocco, Liberia and Abyssinia, the entire landmass and all adjacent islands are shaded in the cha- racteristic colours of their European owners. Geographical features, mountains, rivers and the names of those features which do not lend themselves to graphic representation, such as the Kalahari Desert, appear very much subordinate to the bold reds, yellows and blues of the European nations. History, at the beginning of the twentieth century, is the development of nation states, and Africa had been integrated into its trajectory by being partitioned into dependencies of those very nation states. The Atlas integrates itself into, on the eve of the First World War even represents a pinnacle of, the European master narrative of the formation of nations, their expansion beyond domestic borders in the process of colonisation, the consolidation of these possessions into global empires, and the vying for strategic advantage and dominance on the global stage in imperialist fashion. On the inset in the bottom left corner, the same geographical region is depicted as it was in the year 1870. The smaller size leaves even less room for geographical information: some large rivers and lakes are marked in the white expanse that is only partly surrounded by thin strips of land shaded in the European nations’ identifying colours.
    [Show full text]
  • Anti-Duhring
    Friedrich Engels Herr Eugen Dühring’s Revolution in Science Written: September 1876 - June 1878; Published: in Vorwärts, Jan 3 1877-July 7 1878; Published: as a book, Leipzig 1878; Translated: by Emile Burns from 1894 edition; Source: Frederick Engels, Anti-Dühring. Herr Eugen Dühring’s Revolution in Science, Progress Publishers, 1947; Transcribed: [email protected], August 1996; Proofed and corrected: Mark Harris 2010. Formerly known as Herr Eugen Dühring's Revolution in Science, Engels’ Anti-Dühring is a popular and enduring work which, as Engels wrote to Marx, was an attempt “to produce an encyclopaedic survey of our conception of the philosophical, natural-science and historical problems.” Marx and Engels first became aware of Professor Dühring with his December 1867 review of Capital, published in Ergänzungsblätter. They exchanged a series of letters about him from January-March 1868. He was largely forgotten until the mid-1870s, at which time Dühring entered Germany's political foreground. German Social-Democrats were influenced by both his Kritische Geschichte der Nationalökonomie und des Sozialismus and Cursus der Philosophie als streng wissenschaftlicher Weltanschauung und Lebensgestaltung. Among his readers were included Johann Most, Friedrich Wilhelm Fritzsche, Eduard Bernstein – and even August Bebel for a brief period. In March 1874, the Social-Democratic Workers’ Party paper Volksstaat ran an anonymous article (actually penned by Bebel) favorably reviewing one of Dühring's books. On both February 1 and April 21, 1875, Liebknecht encouraged Engels to take Dühring head-on in the pages of the Volksstaat. In February 1876, Engels fired an opening salvo with his Volksstaat article “Prussian Vodka in the German Reichstag”.
    [Show full text]
  • Transfer of Islamic Science to the West
    Transfer of Islamic Science to the West IMPORTANT NOTICE: Author: Prof. Dr. Ahmed Y. Al-Hassan Chief Editor: Prof. Dr. Mohamed El-Gomati All rights, including copyright, in the content of this document are owned or controlled for these purposes by FSTC Limited. In Production: Savas Konur accessing these web pages, you agree that you may only download the content for your own personal non-commercial use. You are not permitted to copy, broadcast, download, store (in any medium), transmit, show or play in public, adapt or Release Date: December 2006 change in any way the content of this document for any other purpose whatsoever without the prior written permission of FSTC Publication ID: 625 Limited. Material may not be copied, reproduced, republished, Copyright: © FSTC Limited, 2006 downloaded, posted, broadcast or transmitted in any way except for your own personal non-commercial home use. Any other use requires the prior written permission of FSTC Limited. You agree not to adapt, alter or create a derivative work from any of the material contained in this document or use it for any other purpose other than for your personal non-commercial use. FSTC Limited has taken all reasonable care to ensure that pages published in this document and on the MuslimHeritage.com Web Site were accurate at the time of publication or last modification. Web sites are by nature experimental or constantly changing. Hence information published may be for test purposes only, may be out of date, or may be the personal opinion of the author. Readers should always verify information with the appropriate references before relying on it.
    [Show full text]
  • The Concept of Field in the History of Electromagnetism
    The concept of field in the history of electromagnetism Giovanni Miano Department of Electrical Engineering University of Naples Federico II ET2011-XXVII Riunione Annuale dei Ricercatori di Elettrotecnica Bologna 16-17 giugno 2011 Celebration of the 150th Birthday of Maxwell’s Equations 150 years ago (on March 1861) a young Maxwell (30 years old) published the first part of the paper On physical lines of force in which he wrote down the equations that, by bringing together the physics of electricity and magnetism, laid the foundations for electromagnetism and modern physics. Statue of Maxwell with its dog Toby. Plaque on E-side of the statue. Edinburgh, George Street. Talk Outline ! A brief survey of the birth of the electromagnetism: a long and intriguing story ! A rapid comparison of Weber’s electrodynamics and Maxwell’s theory: “direct action at distance” and “field theory” General References E. T. Wittaker, Theories of Aether and Electricity, Longam, Green and Co., London, 1910. O. Darrigol, Electrodynamics from Ampère to Einste in, Oxford University Press, 2000. O. M. Bucci, The Genesis of Maxwell’s Equations, in “History of Wireless”, T. K. Sarkar et al. Eds., Wiley-Interscience, 2006. Magnetism and Electricity In 1600 Gilbert published the “De Magnete, Magneticisque Corporibus, et de Magno Magnete Tellure” (On the Magnet and Magnetic Bodies, and on That Great Magnet the Earth). ! The Earth is magnetic ()*+(,-.*, Magnesia ad Sipylum) and this is why a compass points north. ! In a quite large class of bodies (glass, sulphur, …) the friction induces the same effect observed in the amber (!"#$%&'(, Elektron). Gilbert gave to it the name “electricus”.
    [Show full text]
  • Faraday's Law Da
    Faraday's Law dA B B r r Φ≡B •d A B ∫ dΦ ε= − B dt Faraday’s Law of Induction r r Recall the definition of magnetic flux is ΦB =B∫ ⋅ d A Faraday’s Law is the induced EMF in a closed loop equal the negative of the time derivative of magnetic flux change in the loop, d r r dΦ ε= −B∫ d ⋅= A − B dt dt Constant B field, changing B field, no induced EMF causes induced EMF in loop in loop Getting the sign EMF in Faraday’s Law of Induction Define the loop and an area vector, A, who magnitude is the Area and whose direction normal to the surface. A The choice of vector A direction defines the direction of EMF with a right hand rule. Your thumb in A direction and then your fingers point to positive EMF direction. Lenz’s Law – easier way! The direction of any magnetic induction effect is such as to oppose the cause of the effect. ⇒ Convenient method to determine I direction Heinrich Friedrich Example if an external magnetic field on a loop Emil Lenz is increasing, the induced current creates a field opposite that reduces the net field. (1804-1865) Example if an external magnetic field on a loop is decreasing, the induced current creates a field parallel to the that tends to increase the net field. Incredible shrinking loop: a circular loop of wire with a magnetic flux is shrinking with time. In which direction is the induced current? (a) There is none. (b) CW.
    [Show full text]
  • Faraday's Law Da
    Faraday's Law dA B B r r Φ≡B •d A B ∫ dΦ ε= − B dt Applications of Magnetic Induction • AC Generator – Water turns wheel Æ rotates magnet Æ changes flux Æ induces emf Æ drives current • “Dynamic” Microphones (E.g., some telephones) – Sound Æ oscillating pressure waves Æ oscillating [diaphragm + coil] Æ oscillating magnetic flux Æ oscillating induced emf Æ oscillating current in wire Question: Do dynamic microphones need a battery? More Applications of Magnetic Induction • Tape / Hard Drive / ZIP Readout – Tiny coil responds to change in flux as the magnetic domains (encoding 0’s or 1’s) go by. 2007 Nobel Prize!!!!!!!! Giant Magnetoresistance • Credit Card Reader – Must swipe card Æ generates changing flux – Faster swipe Æ bigger signal More Applications of Magnetic Induction • Magnetic Levitation (Maglev) Trains – Induced surface (“eddy”) currents produce field in opposite direction Æ Repels magnet Æ Levitates train S N rails “eddy” current – Maglev trains today can travel up to 310 mph Æ Twice the speed of Amtrak’s fastest conventional train! – May eventually use superconducting loops to produce B-field Æ No power dissipation in resistance of wires! Faraday’s Law of Induction r r Recall the definition of magnetic flux is ΦB =B∫ ⋅ d A Faraday’s Law is the induced EMF in a closed loop equal the negative of the time derivative of magnetic flux change in the loop, d r r dΦ ε= −B∫ d ⋅= A − B dt dt Constant B field, changing B field, no induced EMF causes induced EMF in loop in loop Getting the sign EMF in Faraday’s Law of Induction Define the loop and an area vector, A, who magnitude is the Area and whose direction normal to the surface.
    [Show full text]
  • Vegetation Structure and Function at Multiple Spatial, Temporal and Conceptual Scales Geobotany Studies
    Geobotany Studies Basics, Methods and Case Studies Elgene Owen Box Editor Vegetation Structure and Function at Multiple Spatial, Temporal and Conceptual Scales Geobotany Studies Basics, Methods and Case Studies Editor Franco Pedrotti University of Camerino Via Pontoni 5 62032 Camerino Italy Editorial Board: S. Bartha, Va´cra´tot, Hungary F. Bioret, University of Brest, France E. O. Box, University of Georgia, Athens, Georgia, USA A. Cˇ arni, Slovenian Academy of Sciences, Ljubljana (Slovenia) K. Fujiwara, Yokohama City University, Japan D. Gafta, “Babes-Bolyai” University Cluj-Napoca (Romania) J. Loidi, University of Bilbao, Spain L. Mucina, University of Perth, Australia S. Pignatti, Universita degli Studi di Roma “La Sapienza”, Italy R. Pott, University of Hannover, Germany A. Vela´squez, Centro de Investigacion en Scie´ncias Ambientales, Morelia, Mexico R. Venanzoni, University of Perugia, Italy For further volumes: http://www.springer.com/series/10526 About the Series The series includes outstanding monographs and collections of papers on a given topic in the following fields: Phytogeography, Phytosociology, Plant Community Ecology, Biocoenology, Vegetation Science, Eco-informatics, Landscape Ecology, Vegetation Mapping, Plant Conservation Biology and Plant Diversity. Contributions are expected to reflect the latest theoretical and methodological developments or to present new applications at broad spatial or temporal scales that could reinforce our understanding of ecological processes acting at the phytocoenosis and landscape level.
    [Show full text]
  • Gunpowder - EB 1911
    gunpowder - EB 1911 Editor A.W.J Graham Kerr & picture editor C.H blackwood RESEARCH guide V. 2020 EncyclopÆdia BRITANNICA 1911 The Fortress Study Group is a registered charity (No.288790) founded in 1975. It is an international group whose aim is to advance the education of the public in all aspects of fortification and their armaments, especially works constructed to mount or resist artillery. Acknowledgements Each of these Research Guides come from a collection of Encyclopædia Britannica dated 1911, that I had inherited from my fathers library although somewhat out- dated today, the historical value is still of interest. They are a stand-alone booklets, available to members through the website for downloading. Hard copies are available at a cost for printing and postage and packing. We have been able to do this as a team and my thanks goes to Charles Blackwood who has edited the maps, diagrams and some photographs. A number of photo- graphs have been used from other sources all of which are copyrighted to their author. The editor apologises in advance for any mistakes or inadvertent breach of copyright, with thanks to Wikipedia, Wikisource and Google Earth, where we have used them. This publication ©AWJGK·FSG·2020 Contents GUNPOWDER page 3 Cover picture: Ballincollig Gunpowder Mill, Ireland—CHB 2013 Other Research Guides OS Research Guide I OS Research Guide VII Armour Plate Fortifications & Siegecraft OS Research Guide II OS Research Guide VIII Artillery Ordnance OS Research Guide III OS Research Guide IX Ammunition Ballistics OS Research Guide IV OS Research Guide X Explosives Castles I OS Research Guide V OS Research Guide XI Gunpowder Castles II OS Research Guide VI OS Research Guide XII Range Finding Castles III 2 GUNPOWDER Gunpowder, an explosive composed of saltpetre, charcoal and sulphur.
    [Show full text]
  • Reader 19 05 19 V75 Timeline Pagination
    Plant Trivia TimeLine A Chronology of Plants and People The TimeLine presents world history from a botanical viewpoint. It includes brief stories of plant discovery and use that describe the roles of plants and plant science in human civilization. The Time- Line also provides you as an individual the opportunity to reflect on how the history of human interaction with the plant world has shaped and impacted your own life and heritage. Information included comes from secondary sources and compila- tions, which are cited. The author continues to chart events for the TimeLine and appreciates your critique of the many entries as well as suggestions for additions and improvements to the topics cov- ered. Send comments to planted[at]huntington.org 345 Million. This time marks the beginning of the Mississippian period. Together with the Pennsylvanian which followed (through to 225 million years BP), the two periods consti- BP tute the age of coal - often called the Carboniferous. 136 Million. With deposits from the Cretaceous period we see the first evidence of flower- 5-15 Billion+ 6 December. Carbon (the basis of organic life), oxygen, and other elements ing plants. (Bold, Alexopoulos, & Delevoryas, 1980) were created from hydrogen and helium in the fury of burning supernovae. Having arisen when the stars were formed, the elements of which life is built, and thus we ourselves, 49 Million. The Azolla Event (AE). Hypothetically, Earth experienced a melting of Arctic might be thought of as stardust. (Dauber & Muller, 1996) ice and consequent formation of a layered freshwater ocean which supported massive prolif- eration of the fern Azolla.
    [Show full text]
  • The Emergence of Ecology from Natural History Keith R
    The emergence of ecology from natural history Keith R. Benson The modern discipline of biology was formed in the 20th century from roots deep in the natural-history tradition, which dates from Aristotle. Not surprisingly, therefore, ecology can also be traced to natural history, especially its 19th-century tradition emphasizing the adaptive nature of organisms to their environment. During the 20th century, ecology has developed and matured from pioneering work on successional stages to mathematically rich work on ecosystem energetics. By the end of the century, ecology has made a return to its natural-history heritage, emphasizing the importance of the integrity of ecosystems in considering human interactions with the environment. Today, the field of biology includes a vast array of diver- like molecular biology, ecology emerged as a distinct gent and unique subdisciplines, ranging from molecular area in biology only at the turn of the century but very biology to comparative endocrinology. With very few quickly developed its own conventions of biological exceptions, most of these specialty areas were created by discourse. Unlike molecular biology and several other biologists during the 20th century, giving modern biology biological subsciplines, ecology’s roots are buried deep its distinctive and exciting character1. However, before within natural history, the descriptive and often romantic 1900, the field was much different because even the term tradition of studying the productions of nature. biology was seldom used2. Indeed, most of those who studied the plants and animals scattered over the earth’s Perspectives on the natural world before the surface referred to themselves as naturalists: students of 20th century natural history3.
    [Show full text]
  • Electromagnetic Induction Go Back in Time
    Electromagnetic Induction Many electrical or electronic devices rely on a principle called electromagnetic induction in order to function. The term refers to electricity being produced in a conductor by a changing magnetic field. To understand it better, it helps to go back in time. This phenomenon was first observed byMichael Faraday in 1831 A conductor is the term and, realizing that this was an important discovery, he carried given to a material whose electrons will out a number of experiments to determine exactly what was move easily from one happening. He noticed that: atom to another. • When the magnetic flux linking a conductor changes then an electromotive force is induced in the conductor. • The magnitude of the emf induced in the inductor is proportional to the rate of change of the flux linkage. The above relates to one of Faraday’s laws. In simple terms, it means that if a conductor is moved within a magnetic field then the force it experiences causes an electric current to flow through that conductor. Likewise, the faster the change in the magnetic field then the greater the emf produced. 47 The important thing to remember is that the electromotive force will only be produced in the conductor as long as the magnetic field is changing – therefore, no change, no current flow! A typical conductor is a Other experiments length of copper wire. Michael Faraday was not the only one to have observed the phenomenon. Working independently, the American scientist Joseph Henry also discovered electromagnetic induction at about the same time as Faraday. In recognition, the henry (symbol H) is now the SI unit of inductance.
    [Show full text]