U.S. Geological Survey Professional Paper 1474

Total Page:16

File Type:pdf, Size:1020Kb

U.S. Geological Survey Professional Paper 1474 U.S. GEOLOGICAL SURVEY PROFESSIONAL PAPER 1474 Prepared in cooperation with the Arkansas Geological Commission Bouguer Gravity of Arkansas By JOHN D. HENDRICKS U.S. GEOLOGICAL SURVEY PROFESSIONAL PAPER 1474 Prepared in cooperation with the Arkansas Geological Commission A description and analysis of the Bouguer gravity anomalies of Arkansas, with emphasis on tectonic and igneous history of the region UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON : 1988 DEPARTMENT OF THE INTERIOR DONALD PAUL HODEL, Secretary U.S. GEOLOGICAL SURVEY Dallas L. Peck, Director Library of Congress Cataloging-in-Publication Data Hendricks, John D. Bouguer gravity of Arkansas. (U.S. Geological Survey professional paper ; 1474) "Prepared in cooperation with the Arkansas Geological Commission." Bibliography: p. Supt. of Docs, no.: I 19.16:1474 1. Gravity Arkansas. I. Arkansas Geological Commission. II. Title. III. Series. QB337.5.U5H46 1988 526'.709767 87-600212 For sale by the Books and Open-File Reports Section, U.S. Geological Survey, Federal Center, Box 25425, Denver, CO 80225 CONTENTS Abstract ........................................... 1 Gravity anomalies resulting from Phanerozoic igneous activity 17 Introduction ....................................... 1 Geophysical anomalies associated with exposed igneous Acknowledgments ................................. 1 rocks ..................................... 18 Physiographic divisions and gravity patterns ............ 2 Little Rock complex .......................... 18 Ozark Plateaus .................................. 2 Magnet Cove Complex ........................ 20 General geology .............................. 2 Potash Sulphur Springs intrusive body .......... 21 Gravity anomalies of the Arkansas Ozarks ....... 3 Peridotite of Pike County or kimberlite at Murfreesboro 21 Gravity anomalies and faulting ................. 4 Geophysical anomalies associated with igneous rocks in Ouachita Mountains and Arkansas Valley ........... 4 drill holes ................................. 21 Stratigraphy ................................ 4 Peridotite near Rison in Cleveland County ....... 21 Bouguer gravity of the Ouachita Mountains- Dumas anomaly .............................. 23 Arkansas Valley ............................ 6 Diabase(?) in Drew County ..................... 23 Tectonic model for the Ouachita system ......... 7 Chicot and Ashley Counties anomaly ............ 23 Mississippi embayment ........................... 13 Covington and Millington, Tennessee ............ 24 Geologic history ............................. 13 Suspected intrusive bodies ........................ 24 Tectonic history of the Mississippi embayment ... 14 Associated anomalies near Rison ............... 24 Gravity modeling ............................ 14 Newport anomaly ............................ 24 Ouachita structure at depth in the Mississippi Jonesboro, Marmaduke, Sedgwick, and Walnut Ridge 27 embayment ................................ 15 Piggott "Low" ............................... 27 West Gulf Coastal Plain .......................... 16 Relation of igneous intrusions to proposed tectonic model 27 Stratigraphy ................................ 16 Summary .......................................... 28 Gravity patterns ............................. 17 References cited ..................................... 29 ILLUSTRATIONS [Plates are in pocket] PLATE 1. Map showing Bouguer gravity and generalized geology of Arkansas. 2. Map showing interpreted Bouguer anomalies and tectonic elements of Arkansas. FIGURE 1. Histogram of implied sedimentation rates for exposed Paleozoic rocks in the Ouachita Mountains .............. 5 2. Regional Bouguer gravity map of the southeastern United States ......................................... 6 3. Graph and cross section of two-dimensional gravity model in western Arkansas ............................. 7 4. Maps and cross sections showing hypothetical tectonic evolution of the southern North American continent from late Precambrian to present .......................................................................... 9 5-8. Graphs and cross sections showing: 5. Two-dimensional gravity model from Yellville, Arkansas, to Scottsboro, Alabama ...................... 15 6. Gravity and magnetic model of the igneous complex at Little Rock .................................. 19 7. Gravity and magnetic model of the Magnet Cove, Arkansas, area .................................... 22 8. Gravity and magnetic model of the Newport, Arkansas, area ........................................ 25 9. Map of the Newport, Arkansas, area showing distribution of the hypothetical +0.2 g/cm3 body from figure 8 .... 26 10. Cross sections (north-south and east-west) from figure 9 .................................................. 27 TABLES Page TABLE 1. Drill holes referred to in text, with depths to Precambrian or igneous rocks ................................. 2 2. Physical properties of units used in gravity and magnetic models .......................................... 3 ill BOUGUER GRAVITY OF ARKANSAS By JOHN D. HENDRICKS ABSTRACT stations (ACIC, 1973) at Little Rock and Bald Knob, Ark., through a system of 41 supplemental base The Bouguer gravity anomaly patterns in Arkansas correspond very stations. Station density is highest in the east and well with the physiographic provinces and sections of the State. These provinces and sections are, in turn, defined by the limits of separate southern parts of the State, averaging about 1 station/ tectonic events that span the range in time from late Precambrian 6 km2, while in the northern and western parts of the to Tertiary. Bouguer gravity values range from +37 to -107 mGal State, it averages 1 station/20 km2. On plate 1 a rock within the State. The highest values are associated with ultrabasic density of 2.67 g/cm3 was assumed for the Bouguer alkalic igneous intrusions and the lowest values correspond to the correction. Ouachita Mountains and Arkansas Valley, which were formed dur­ ing the Ouachita orogeny. Variation in seismically determined crustal Corrections for instrumental drift, elevation changes, thickness from north to south is also reflected in the gravity anoma­ latitude differences, and Earth curvature were applied ly; that is, the higher gravity values in the southern part of the State to all readings. The resulting simple Bouguer gravity reflect a thinner crust than that in the northern part. values are accurate to greater than 0.5 mGal. Terrain Speculation on the tectonic history of the region has led to the pro­ corrections were not applied to these observations but posal of a model in which a series of tensional and compressional events (Wilson cycles) have formed the major structural features. These range from a maximum of about 4.0 mGal for stations elements, in turn, controlled the location of magmatic events. nearest major topographic features in the Ozark Regional profiles are constructed that will satisfy both the proposed Plateaus and Ouachita Mountains regions to 0 mGal tectonic model and observed gravity anomalies. Isolated gravity and in the Mississippi embayment. None of the gravity magnetic anomalies, thought to result from the presence of subsur­ anomalies discussed in this report result from the ef­ face igneous bodies, are also modeled and provide an estimate of the shape, density, and magnetic susceptibility of these bodies. fect of terrain differences. Published gravity maps that include all or parts of Arkansas, but are not included on plate 1, are those of INTRODUCTION Malamphy and Vallely (1944), Lyons (1961), Woollard and Joesting (1964), Phelan (1969), and the Society of Gravity measurements obtained within the State of Exploration Geophysicists (1982). In addition to the Arkansas have been compiled and plotted as a contour gravity maps, a total field aeromagnetic map covering map of the simple Bouguer anomaly (Hendricks and northeast and central Arkansas (Hildenbrand and others, 1981). The purpose of this report is to interpret others, 1981) is available, and data from that map are the major anomalies shown on this map and to relate used in this report to supplement interpretation of the anomalous patterns and trends to tectonic events. gravity anomalies. The Bouguer gravity map of Arkansas (pi. 1) is a direct reduction of the map of Hendricks and others (1981), which represents the compilation of more than ACKNOWLEDGMENTS 17,000 measurements obtained by the U.S. Geological This report was prepared in cooperation with the Survey and Brown Geophysical Company.1 The near­ Arkansas Geological Commission. I wish to thank Nor­ ly 14,000 gravity observations made by the U.S. man F. Williams, Director of the Commission, and all Geological Survey for this report were obtained from staff members who provided laboratory, field, and 1973 to 1978. Readings were made on points of known logistical support for collection of the data presented elevation and position. The gravity meters used have herein. G.R. Keller, University of Texas at El Paso, pro­ accuracies greater than 0.1 mGal (milligal). All readings vided supplemental gravity data which allowed a were tied to the world relative gravity reference network composite gravity map of Arkansas to be made. The following U.S. Geological Survey personnel assisted in Any use of trade names is for descriptive purposes only and does not im­ production of the Bouguer gravity map of Arkansas: ply endorsement by the U.S. Geological Survey. Boyd R. Haley, who directed and provided critical 1 BOUGUER GRAVITY OF
Recommended publications
  • HCR1003 As Engrossed on 01-19-2017 09:28:34
    Stricken language would be deleted from and underlined language would be added to present law. 1 State of Arkansas As Engrossed: H1/19/17 2 91st General Assembly 3 Regular Session, 2017 HCR 1003 4 5 By: Representatives Leding, Vaught, C. Fite, Collins, D. Whitaker, Burch, Watson, Pilkington 6 By: Senators Teague, U. Lindsey 7 8 HOUSE CONCURRENT RESOLUTION 9 TO DESIGNATE THE ARKANSAURUS FRIDAYI AS THE OFFICIAL 10 STATE DINOSAUR. 11 12 13 Subtitle 14 TO DESIGNATE THE ARKANSAURUS FRIDAYI AS 15 THE OFFICIAL STATE DINOSAUR. 16 17 WHEREAS, for public and educational benefits, the Ninety-First General 18 Assembly of the State of Arkansas will select an official state dinosaur from 19 the known population of dinosaurs represented in Arkansas's fossil record: 20 Arkansaurus, sauropod dinosaur, and theropod dinosaur tracks of currently 21 uncertain taxonomic affiliation; and 22 23 WHEREAS, from these species, the Arkansaurus fridayi shall be selected, 24 since it is unique to the State of Arkansas, brings recognition to the State 25 of Arkansas, and promotes an interest paleontology in Arkansas; and 26 27 WHEREAS, by designating an official state dinosaur, Arkansas would join 28 nine (9) other states in the country with a unique designation of an official 29 state dinosaur; and 30 31 WHEREAS, the Arkansaurus fridayi was discovered in a gravel pit near 32 the community of Lockesburg, Arkansas, in August 1972 by Joe B. Friday and 33 studied by Professor James Harrison Quinn of the University of Arkansas in 34 1973 and by paleontologist ReBecca Hunt
    [Show full text]
  • Geology of the Saline County Xenolith and Surrounding Area
    A.G.E.S. Brochure Series 005 State of Arkansas Arkansas Geological Survey Bekki White, State Geologist Geology of the Saline County Xenolith and surrounding area By J. Michael Howard Illustrations and photos by Angela Chandler _______________________________________________________ _______________________________________________________ Xenolith – “ a foreign inclusion in an igneous rock.” Glossary of Geology American Geological Institute 1987 (from the Greek words Xenos, meaning guest or stranger, and Lithos, meaning stone.) _______________________________________________________ _______________________________________________________ Introduction Located in Saline County, Arkansas, at the south edge of the community of Bauxite, this natural outcrop of nepheline syenite contains several geologically interesting features, including a xenolith. Sloping west, the outcrop encompasses about one-quarter acre near the center of section 21, Township 2 South, Range 14 West. In early 1990, the Aluminum Company of America (ALCOA) donated the outcrop along with approximately five surrounding acres of land to the Arkansas Geological Commission so that the site can be preserved for educational purposes. Outcrop of nepheline syenite at xenolith locality. History of the site The outcrop and its geologic features were first described by J. Francis Williams in 1891 in The Igneous Rocks of Arkansas, Arkansas Geological Survey Annual Report for 1890, Volume II. Williams discussed the outcrop and xenolith in some detail and included a sketch of the xenolith (see title page). However, for many years the outcrop location remained unknown to most scientists. In the late 2 1960’s employees in the mining division of ALCOA, suspecting that the site was on their property, began a concerted search. Soon afterward the outcrop was rediscovered and was visited by a staff member of the Arkansas Geological Commission, who in turn told Dr.
    [Show full text]
  • Revision of Some of Girty's Invertebrate Fossils from the Fayetteville Shale (Mississippian) of Arkansas and Oklahoma Introduction by MACKENZIE GORDON, JR
    Revision of Some of Girty's Invertebrate Fossils from the Fayetteville Shale (Mississippian) of Arkansas and Oklahoma Introduction By MACKENZIE GORDON, JR. Corals By WILLIAM J. SANDO Pelecypods By JOHN POJETA, JR. Gastropods By ELLIS L. YOCHELSON Trilobites By MACKENZIE GORDON, JR. Ostracodes By I. G. SOHN GEOLOGICAL SURVEY PROFESSIONAL PAPER 606-A, B, C, D, E, F Papers illustrating and describing certain of G. H. Girty' s invertebrate fossils from the Fayetteville Shale UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON : 1969 UNITED STATES DEPARTMENT OF THE INTERIOR WALTER J. HICKEL, Secretary GEOLOGICAL SURVEY William T. Pecora, Director Library of Congress catalog-card No. 70-650224 For sale by the Superintendent of Documents, U.S. Government Printing Office Washing.ton, D.C. 20402 CONTENTS [The letters in parentheses preceding the titles are those used to designate the chapters] Page (A) Introduction, by Mackenzie Gordon, Jr _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 1 (B) Corals, by William J. Sando__________________________________________________________________________________ 9 (C) Pelecypods, by John Pojeta, Jr _____ _ _ _ _ _ _ _ _ _ _ _ _ _ __ _ _ _ _ _ _ _ _ _ _ _ _ _ __ _ _ _ _ _ _ _ _ _ _ __ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 15 (D) Gastropods, by Ellis L.
    [Show full text]
  • AGS Strategic Plan FY 2018-19
    ARKANSAS GEOLOGICAL SURVEY FY 2018 – FY 2019 STRATEGIC PLAN MISSION: The Arkansas Geological Survey (AGS) is a non-regulatory agency that is responsible for the collection and dissemination of unbiased and sound geologic data and information pertaining to the State of Arkansas for the public, private industry, academia, and government agencies as well as local, municipal, county, state, and federal officials, regulators, and decision makers for over 160 years. VISION: The AGS’s vision is to educate the citizens of Arkansas about the importance of geology and how it affects their everyday lives by providing accurate geological information by cost-effective methods to promote the development and effective management of the state’s rock, mineral, fossil fuel, and water resources while protecting the environment; all in a transparent manner. CORE VALUES: In order to achieve the AGS’s mission and vison statements of serving the geologic needs of the citizens of Arkansas, the AGS’s geologic staff and support personnel prescribe to the following core values: Results: research and provide our customers with geological information pertaining to the State’s groundwater, mineral, and energy resources in an efficient and responsive manner; Education: educate and provide geological expertise to the public, private industry and government agencies, identify rocks, minerals and fossils for the public, give educational and outreach presentations; Efficiency: provide in the most efficient and cost effective manner to the public and private industry
    [Show full text]
  • Noteworthy Records of the Seminole Bat, Lasiurus Seminolus (Chiroptera: Vespertilionidae), from Southwestern Arkansas and Northeastern Arkansas Chris T
    Journal of the Arkansas Academy of Science Volume 58 Article 25 2004 Noteworthy Records of the Seminole Bat, Lasiurus seminolus (Chiroptera: Vespertilionidae), from Southwestern Arkansas and Northeastern Arkansas Chris T. McAllister Texas A&M University-Texarkana Zachary D. Ramsey Texas A&M University-Texarkana Nancy E. Solley Texas A&M University-Texarkana Follow this and additional works at: http://scholarworks.uark.edu/jaas Part of the Zoology Commons Recommended Citation McAllister, Chris T.; Ramsey, Zachary D.; and Solley, Nancy E. (2004) "Noteworthy Records of the Seminole Bat, Lasiurus seminolus (Chiroptera: Vespertilionidae), from Southwestern Arkansas and Northeastern Arkansas," Journal of the Arkansas Academy of Science: Vol. 58 , Article 25. Available at: http://scholarworks.uark.edu/jaas/vol58/iss1/25 This article is available for use under the Creative Commons license: Attribution-NoDerivatives 4.0 International (CC BY-ND 4.0). Users are able to read, download, copy, print, distribute, search, link to the full texts of these articles, or use them for any other lawful purpose, without asking prior permission from the publisher or the author. This General Note is brought to you for free and open access by ScholarWorks@UARK. It has been accepted for inclusion in Journal of the Arkansas Academy of Science by an authorized editor of ScholarWorks@UARK. For more information, please contact [email protected], [email protected]. Journal of the Arkansas Academy of Science, Vol. 58 [2004], Art. 25 Noteworthy Records of the Seminole Bat, Lasiurus seminolus (Chiroptera: Vespertilionidae), from Southwestern Arkansas and Northeastern Texas Chris T. McAllister*,Zachary D.Ramsey and Nancy E. Solley Department of Biology Texas A&MUniversity-Texarkana Texarkana, TX75505 ""Corresponding Author The specimen was not weighed.
    [Show full text]
  • A Joint Local and Teleseismic Tomography Study Of
    PUBLICATIONS Journal of Geophysical Research: Solid Earth RESEARCH ARTICLE A joint local and teleseismic tomography study 10.1002/2015JB012761 of the Mississippi Embayment and New Madrid Key Points: Seismic Zone • We present detailed 3-D images of Vp 1 1 1 and Vs for the upper mantle below the Cecilia A. Nyamwandha , Christine A. Powell , and Charles A. Langston ME and NMSZ • A prominent low-velocity anomaly 1Center for Earthquake Research and Information, University of Memphis, Memphis, Tennessee, USA with similar Vp and Vs anomalies is imaged in the upper mantle • Regions of similar high Vp and Vs anomalies present above and to the Abstract Detailed, upper mantle P and S wave velocity (Vp and Vs) models are developed for the northern sides of the low-velocity anomaly Mississippi Embayment (ME), a major physiographic feature in the Central United States (U.S.) and the location of the active New Madrid Seismic Zone (NMSZ). This study incorporates local earthquake and teleseismic data from the New Madrid Seismic Network, the Earthscope Transportable Array, and the Correspondence to: FlexArray Northern Embayment Lithospheric Experiment stations. The Vp and Vs solutions contain anomalies C. A. Nyamwandha, with similar magnitudes and spatial distributions. High velocities are present in the lower crust beneath the [email protected] NMSZ. A pronounced low-velocity anomaly of ~ À3%–À5% is imaged at depths of 100–250 km. High-velocity anomalies of ~ +3%–+4% are observed at depths of 80–160 km and are located along the sides and top Citation: of the low-velocity anomaly. The low-velocity anomaly is attributed to the presence of hot fluids upwelling Nyamwandha, C.
    [Show full text]
  • Geology of Arkansas Arkansas Geology Commission
    Geology of Arkansas Arkansas Geology Commission Rocks are generally placed into 1 of 3 major categories: igneous, metamorphic, or sedimentary. Igneous rocks have solidified from molten or partly molten mineral matter. Metamorphic rocks have been altered in the solid state from some pre-existing condition in response to significant changes in temperature, pressure, or chemical environment. Sedimentary rocks are composed of particles of sediment, which are derived by the weathering and/or the erosion of pre-existing rock. Most surficial rocks in Arkansas are sedimentary, but there are some igneous rocks (with adjacent contact metamorphic rocks) and very low grade regional metamorphic rocks in Arkansas also. A sedimentary rock consists of two components: the particles and the cement that holds them together. However, the unconsolidated sediments of eastern Arkansas are considered sedimentary rocks. Sedimentary rocks are classified as clastic (rocks made up of grains of sand, silt, and clay) or chemical (rocks made up of shell fragments, saline water deposits, and other materials that are deposited from solution). The most common clastic sedimentary rocks are shales, siltstones, and sandstones. The most common chemical sedimentary rocks are limestone and dolostone. To understand how sedimentary rocks form, we must account for the processes that create the original particles of sediment, the mechanisms of sediment transport, the processes of deposition or precipitation of a given sediment, and what has happened to the sediment over time. By studying rocks and depositional systems (the processes by which sediments are deposited), geologists recognize that most of the sedimentary rocks in the Paleozoic Highlands of Arkansas are marine.
    [Show full text]
  • OCTOBER 14, 2005 BLM Eastern States, Milwaukee Field Office
    MISSISSIPPI NATIONAL FORESTS REASONABLE FORESEEABLE DEVELOPMENT SCENARIO FINAL REPORT: OCTOBER 14, 2005 BLM Eastern States, Milwaukee Field Office TABLE OF CONTENTS: A. Summary ....................................................................................................................................1 B. Introduction ................................................................................................................................1 C. Basis of Analysis ........................................................................................................................2 D. Description of Geology ..............................................................................................................2 E. Past and Present Fluid Mineral Exploration Activity .................................................................7 F. Past and Present Fluid Mineral Development Activity ...............................................................7 G. Future Fluid Mineral Development Potential .............................................................................8 H. Reasonable Foreseeable Development Scenario Assumptions & Discussion ............................10 I. Selected Bibliography .................................................................................................................14 J. Appendices ..................................................................................................................................15 K. Accompanying Maps .................................................................................................................15
    [Show full text]
  • Paleozoic 3: Alabama in the Paleozoic
    UNIVERSITY OF SOUTH ALABAMA GY 112: Earth History Paleozoic 3: Alabama in the Paleozoic Instructor: Dr. Douglas W. Haywick Last Time The Paleozoic Part 2 1) Back to Newfoundland 2) Eastern Laurentian Orogenies (Appalachians) 3) Other Laurentian Orogenies (Antler, Ouachita) (web notes 25) Laurentia (Paleozoic North America) Even though this coastline of Laurentia was a passive continental margin, a plate tectonic boundary was rapidly approaching… A B A B Laurentia (Paleozoic North America) The resulting Taconic Orogeny first depressed the seafloor Laurentia (localized transgression) and A Island arc then pushed previously deposited passive continental B margin sediments up into thrust fault mountains. Baltica There was only minimal metamorphism and igneous A intrusions. B Middle Ordovician Laurentia (Paleozoic North America) Laurentia Baltica Middle Ordovician Laurentia (Paleozoic North America) Laurentia Baltica Middle Ordovician Laurentia (Paleozoic North America) The next tectonic event (the Acadian Orogeny) was caused Laurentia by the approach of Baltica A B Baltica A B Baltica Baltica Late Ordovician Laurentia (Paleozoic North America) The Acadian Orogeny was more extensive and more intense (metamorphism and A lots of igneous intrusions) B A B Early Devonian Laurentia (Paleozoic North America) The Acadian Orogeny was more extensive and more intense (metamorphism and lots of igneous intrusions) Early Devonian Laurentia (Paleozoic North America) Lastly, along comes Gondwanna and…. …well you get the idea. A B B A B Mississippian Laurentia (Paleozoic North America) Lastly, along comes Gondwanna and…. …well you get the idea. A B B A B Pennsylvannian Suture zone Laurentia (Paleozoic North America) Lastly, along comes Gondwanna and…. …well you get the idea.
    [Show full text]
  • Ouachita Mountains Ecoregional Assessment December 2003
    Ouachita Mountains Ecoregional Assessment December 2003 Ouachita Ecoregional Assessment Team Arkansas Field Office 601 North University Ave. Little Rock, AR 72205 Oklahoma Field Office 2727 East 21st Street Tulsa, OK 74114 Ouachita Mountains Ecoregional Assessment ii 12/2003 Table of Contents Ouachita Mountains Ecoregional Assessment............................................................................................................................i Table of Contents ........................................................................................................................................................................iii EXECUTIVE SUMMARY..............................................................................................................1 INTRODUCTION..........................................................................................................................3 BACKGROUND ...........................................................................................................................4 Ecoregional Boundary Delineation.............................................................................................................................................4 Geology..........................................................................................................................................................................................5 Soils................................................................................................................................................................................................6
    [Show full text]
  • Jason P. Schein
    Curriculum Vitae JASON P. SCHEIN EXECUTIVE DIRECTOR BIGHORN BASIN PALEONTOLOGICAL INSTITUTE 3959 Welsh Road, Ste. 208 Willow Grove, Pennsylvania 19090 Office: (406) 998-1390 Cell: (610) 996-1055 ​ ​ [email protected] EDUCATION Ph.D. Student Drexel University, Department of Biology, Earth and Environmental Science, 2005-2013 M.Sc., Auburn University, Department of Geology and Geography, 2004 B.Sc., Auburn University, Department of Geology and Geography, 2000 RESEARCH AND PROFESSIONAL INTERESTS Mesozoic vertebrate marine and terrestrial faunas, paleoecology, paleobiogeography, faunistics, taphonomy, biostratigraphy, functional morphology, sedimentology, general natural history, education and outreach, paleontological resource assessment, and entrepreneurial academic paleontology. ACADEMIC, PROFESSIONAL, & BOARD POSITIONS 2019-Present Member of the Board, Yellowstone-Bighorn Research Association ​ 2017-Present Founding Executive Director, Bighorn Basin Paleontological Institute ​ 2017-Present Member of the Board, Delaware Valley Paleontological Society ​ 2016-Present Scientific and Educational Consultant, Field Station: Dinosaurs ​ 2015-Present Graduate Research Associate, Academy of Natural Sciences of Drexel University ​ 2007-2017 Assistant Curator of Natural History Collections and Exhibits, New Jersey State Museum ​ 2015-2017 Co-founder, Co-leader, Bighorn Basin Dinosaur Project ​ 2010-2015 International Research Associate, Palaeontology Research Team, University of Manchester ​ 2010-2014 Co-leader, New Jersey State Museum’s Paleontology Field Camp ​ 2007-2009 Interim Assistant Curator of Natural History, New Jersey State Museum ​ 2006-2007 Manager, Dinosaur Hall Fossil Preparation Laboratory ​ 2004-2005 Staff Environmental Geologist, Cobb Environmental and Technical Services, Inc. ​ 1 FIELD EXPERIENCE 2010-2019 Beartooth Butte, Morrison, Lance, and Fort Union formations, Bighorn Basin, Wyoming and Montana, U.S.A. (Devonian, Jurassic, Late Cretaceous, and earliest Paleocene, respectively) 2010 Hell Creek Formation, South Dakota, U.S.A.
    [Show full text]
  • Pre-Atoka Rocks of Northern Arkansas
    Pre-Atoka Rocks of Northern Arkansas GEOLOGICAL SURVEY PROFESSIONAL PAPER 314-H Pre-Atoka Rocks of Northern Arkansas By SHERWOOD E. FREZON and ERNEST E. CLICK SHORTER CONTRIBUTIONS TO GENERAL GEOLOGY GEOLOGICAL SURVEY PROFESSIONAL PAPER 314-H Thickness, lithofacies, and geologic history of potential oil and gas producing rocks of Paleozoic age in northern Arkansas UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON : 1959 UNITED STATES DEPARTMENT OF THE INTERIOR FRED A. SEATON, Secretary GEOLOGICAL SURVEY Thomas B. Nolan, Director The U. S. Geological Survey Library has cataloged this publication as follows: Frezon, Sherwood Earl, 1921- Pre-Atoka rocks of northern Arkansas, by Sherwood E. Frezon and Ernest E. Glick. Washington, U. S. Govt. Print. Off., 1959. iii, 171-189 p. maps, diagrs., table. 30 cm. (U. S. Geological Sur­ vey. Professional paper 314-H. Shorter contributions to general geology) Part of illustrative matter fold, col., in pocket. Bibliography: p. 186-187. 1. Geology Arkansas. 2. Rocks, Sedimentary. 3. Geology, Strati- graphic Paleozoic. i. Glick, Ernest Earwood, 1922- joint author, n. Title. (Series: U. S. Geological Survey. Professional paper 314-H. Series: U. S. Geological Survey. Shorter contribu­ tions to general geology) 551.7209767 For sale by the Superintendent of Documents, U. S. Government Printing Office Washington 25, D. C. CONTENTS Page Abstract .__----_ ---_-_._--._---__-_-____ 171 Stratigraphy Continued Page Introduction. ___ ___________________________________ 171 Probable latest Mississippian and early
    [Show full text]