Volume 10 (2010) 1–6

Total Page:16

File Type:pdf, Size:1020Kb

Volume 10 (2010) 1–6 FORUM GEOMETRICORUM A Journal on Classical Euclidean Geometry and Related Areas published by Department of Mathematical Sciences Florida Atlantic University FORUM GEOM Volume 10 2010 http://forumgeom.fau.edu ISSN 1534-1178 Editorial Board Advisors: John H. Conway Princeton, New Jersey, USA Julio Gonzalez Cabillon Montevideo, Uruguay Richard Guy Calgary, Alberta, Canada Clark Kimberling Evansville, Indiana, USA Kee Yuen Lam Vancouver, British Columbia, Canada Tsit Yuen Lam Berkeley, California, USA Fred Richman Boca Raton, Florida, USA Editor-in-chief: Paul Yiu Boca Raton, Florida, USA Editors: Nikolaos Dergiades Thessaloniki, Greece Clayton Dodge Orono, Maine, USA Roland Eddy St. John’s, Newfoundland, Canada Jean-Pierre Ehrmann Paris, France Chris Fisher Regina, Saskatchewan, Canada Rudolf Fritsch Munich, Germany Bernard Gibert St Etiene, France Antreas P. Hatzipolakis Athens, Greece Michael Lambrou Crete, Greece Floor van Lamoen Goes, Netherlands Fred Pui Fai Leung Singapore, Singapore Daniel B. Shapiro Columbus, Ohio, USA Man Keung Siu Hong Kong, China Peter Woo La Mirada, California, USA Li Zhou Winter Haven, Florida, USA Technical Editors: Yuandan Lin Boca Raton, Florida, USA Aaron Meyerowitz Boca Raton, Florida, USA Xiao-Dong Zhang Boca Raton, Florida, USA Consultants: Frederick Hoffman Boca Raton, Floirda, USA Stephen Locke Boca Raton, Florida, USA Heinrich Niederhausen Boca Raton, Florida, USA Table of Contents Quang Tuan Bui, A triad of similar triangles associated with the perpendicular bisectors of the sides of a triangle,1 J. Marshall Unger, A new proof of a hard but important Sangaku problem,7 Roger C. Alperin, The Poncelet pencil of rectangular hyperbolas,15 Nicolae Anghel, A maximal parallelogram characterization of ovals having circles as orthoptic curves,21 Martin Josefsson, On the inradius of a tangential quadrilateral,27 Boris Odehnal, Some triangle centers associated with the circles tangent to the excircles,35 Nikolaos Dergiades, Conics tangent at the vertices to two sides of a triangle,41 Benedetto Scimemi, Simple relations regarding the Steiner inellipse of a triangle,55 Maria Flavia Mammana, Biagio Micale, and Mario Pennisi, Orthic quadrilaterals of a convex quadrilateral,79 Bojan Hvala, Diophantine Steiner triples and Pythagorean-type triangles,93 Paris Pamfilos, Three maximal cyclic quadrangles,99 Gotthard Weise, Iterates of Brocardian points and lines, 109 Martin Josefsson, Calculations concerning the tangent lengths and tangency chords of a tangential quadrilateral, 119 Giovanni Lucca, Generalized Fibonacci circle chains, 131 Clark Kimberling, Trilinear distance inequalities for the symmedian point, the centroid, and other triangle centers, 135 Nikolaos Dergiades, Connstruction with inscribed ellipses in a triangle, 141 Allan MacLeod, Integer triangles with R/r = N, 149 Cosmin Pohoata, On the Euler reflection point, 157 Martin Josefsson, Characterizations of bicentric quadrilaterals, 165 Paul Yiu, The circles of Lester, Evans, Parry, and their generalizations, 175 Author Index, 211 Cumulative Index, volumes 1–10, 212 Forum Geometricorum b Volume 10 (2010) 1–6. b b FORUM GEOM ISSN 1534-1178 On a Triad of Similar Triangles Associated With the Perpendicular Bisectors of the Sides of a Triangle Quang Tuan Bui Abstract. We prove some perspectivity and orthology results related to a triad of similar triangles associated with the perpendiculars bisectors of the sides of a given triangle. 1. A triad of triangles from the perpendicular bisectors Given a triangle ABC, let the perpendicular bisectors of the sides AB and AC intersect the sideline BC at Ab and Ac respectively. The angles of triangle AAbAc have measures π − 2A, π − 2B, π − 2C if ABC is acute angled, and 2A − π, 2B, 2C if angle A is obtuse (see Figure 1). A A O Ac B C Ab B Ab Ac C O (a) Acute angle case (b) Obtuse angle case Figure 1. Similarly, we consider the intersections Ba and Bc of CA with the perpendicular bisectors of BA and BC, yielding triangle BaBBc, and the intersections Ca and Cb of AB with the perpendicular bisectors of CA, CB yielding triangle CaCbC. It is clear that the triangles AAbAc, BaBBc and CaCbC are all similar (see Figure 2). We record the homogeneous barycentric coordinates of these points. Ab = (0 : −SA + SB : SA + SB), Ac = (0 : SC + SA : SC − SA); Bc = (SB + SC : 0 : −SB + SC ), Ba = (SA − SB : 0 : SA + SB); Ca = (−SC + SA : SC + SA : 0), Cb = (SB + SC : SB − SC : 0). Given a finite point P with homogeneous barycentric coordinates (x : y : z) relative to ABC, we consider the points with the same coordinates in the triangles AAbAc, BaBBc and CaCbC. These are the points Publication Date: January 25, 2010. Communicating Editor: Paul Yiu. 2 Q. T. Bui Cb A Bc O Ba B Ac C Ab Ca Figure 2. AP = (2SBC x : −SC (SA − SB )y + SB(SC + SA)z : SC (SA + SB)y − SB (SC − SA)z), BP = (SA(SB + SC )z − SC (SA − SB )x : 2SCAy : −SA(SB − SC )z + SC (SA + SB)x), CP = (−SB (SC − SA)x + SA(SB + SC )y : SB (SC + SA)x − SA(SB − SC )y : 2SAB z). with coordinates with respect to triangle ABC (see Figure 3). Cb A C P Bc P AP B P Ba B Ac C Ab Ca Figure 3. Proposition 1. Triangle AP BP CP is oppositely similar to ABC. A triad of similar triangles 3 Proof. The square lengths of the sides are 2 2 2 2 2 2 (BP CP ) = k · a , (CP AP ) = k · b , (AP BP ) = k · c , where 2 4 2 2 S a SAAyz − (x + y + z) b c SBBSCC x = cyclic cyclic k (2 ( + + ))2 . P SABC x y zP From this the similarity is clear. Note that the multiplier k is nonnegative. Now, the areas are related by ∆AP BP CP = −k · ∆ABC. It follows that the two triangles are oppositely oriented. 2. Perspectivity Proposition 2. Triangle AP BP CP is perspective with the medial triangle at x x y z − + + : · · · : · · · . (1) S S S S A A B C Proof. Let DEF be the medial triangle. The line joining DAP has equation SA(SC y − SBz)X + SBC xY − SBC xZ = 0, or y z x − X + (Y − Z) = 0. S S S B C A This clearly contains the point − x : y : z , which is a vertex of the an- SA SB SC ticevian triangle of Q = x : y : z . Similarly, the lines EB and FC SA SB SC P P contain the corresponding vertices of the same anticevian triangle. It follows that AP BP CP and DEF are perspective at the cevian quotient G/Q whose coordi- nates are given by (1) above. Proposition 3. Triangle AP BP CP is perspective with ABC if and only if P lies on the Jerabek hyperbola of ABC. In this case, the perspector traverses the Euler line. Proof. The lines AAP , BBP , CCP have equations (SC (SA + SB)y + SB(SC − SA)z)Y + (SC (SA − SB)y − SB(SC + SA)z)Z = 0, (SA(SB − SC )z − SC (SA + SB)x)X + (SA(SB + SC )z + SC(SA − SB)x)Z = 0, (SB (SC + SA)x + SA(SB − SC )y)X + (SB(SC − SA)x − SA(SB + SC)y)Y = 0. They are concurrent if and only if 2SABC (x + y + z) SA(SBB − SCC )yz = 0. cyclic X 4 Q. T. Bui Since P is a finite point, this is the case when P lies on the conic SA(SBB − SCC )yz = 0, cyclicX which is the Jerabek hyperbola, the isogonal conjugate of the Euler line. Now, if P is the isogonal conjugate of the point (SBC + t : SCA + t : SAB + t), then the perspector is the point 2 (a ((2SABC + t(SA + SB + SC )) · SA − t · SBC ) : · · · : · · · ). 2 2 2 Since (a SBC : b SCA : c SAB) is the point X25 (the homothetic center of the tangential and orthic triangles) on the Euler line, the locus of the perspector is the Euler line. 3. Orthology Proposition 4. The triangles ABC and AP BP CP are orthologic. (a) The perpendiculars from A to BP CP , B to CP AP , and C to AP BP intersect at the point a2S b2S c2S Q = A : B : C . − x + y + z x − y + z x + y − z SABC b2SBB c2SCC a2SAA SABC c2SCC a2SAA b2SBB SABC ! (b) The perpendiculars from AP to BC, BP to CA, and CP to AB intersect at the point 1 2 ( 2 − ) ′ = x − S · S SAA x : · · · : · · · Q 2 2 2 2 . a SAA SA a b c SABC SAA cyclic X Remarks.(1) The orthology center Q lies on the circumcircle of triangle ABC. The orthology centers Q(P ) and Q(P ′) are the same if and only if the line P P ′ contains the circumcenter O. Here are some examples. P G I K Na X110 X69 X184 Q X1294 X1295 X1297 X2734 X2693 X98 X74 ′ (2) The coordinates of Q with respect to AP BP CP are the same as those of Q with respect to ABC. ′ (3) Therefore, Q lies on the circumcircle of triangle AP BP CP . 4. An example: Gergonne points of the triad We assume ABC to be acute angled, so that the triangles AAbAc, BaBBc and CaCbC have angles π − 2A, π − 2B and π − 2C and sidelengths in the proportion 2 2 2 of a SA : b SB : c SC . In this case, the Gergonne point Ag of AAbAc has homogeneous barycentric coordinates (SA : SB : SC ) with respect to the triangle. Therefore, with P = (SA : SB : SC ) (the triangle center X69, we have Ag = AP = (2SA : SB +SC : SB +SC ), and likewise Bg = (SC +SA : 2SB : SC +SA) and Cg = (SA + SB : SA + SB : 2SC ). From the table above, the orthology center A triad of similar triangles 5 Q is X = 1 : 1 : 1 , the Tarry point (see Figure 4).
Recommended publications
  • Properties of Equidiagonal Quadrilaterals (2014)
    Forum Geometricorum Volume 14 (2014) 129–144. FORUM GEOM ISSN 1534-1178 Properties of Equidiagonal Quadrilaterals Martin Josefsson Abstract. We prove eight necessary and sufficient conditions for a convex quadri- lateral to have congruent diagonals, and one dual connection between equidiag- onal and orthodiagonal quadrilaterals. Quadrilaterals with both congruent and perpendicular diagonals are also discussed, including a proposal for what they may be called and how to calculate their area in several ways. Finally we derive a cubic equation for calculating the lengths of the congruent diagonals. 1. Introduction One class of quadrilaterals that have received little interest in the geometrical literature are the equidiagonal quadrilaterals. They are defined to be quadrilat- erals with congruent diagonals. Three well known special cases of them are the isosceles trapezoid, the rectangle and the square, but there are other as well. Fur- thermore, there exists many equidiagonal quadrilaterals that besides congruent di- agonals have no special properties. Take any convex quadrilateral ABCD and move the vertex D along the line BD into a position D such that AC = BD. Then ABCD is an equidiagonal quadrilateral (see Figure 1). C D D A B Figure 1. An equidiagonal quadrilateral ABCD Before we begin to study equidiagonal quadrilaterals, let us define our notations. In a convex quadrilateral ABCD, the sides are labeled a = AB, b = BC, c = CD and d = DA, and the diagonals are p = AC and q = BD. We use θ for the angle between the diagonals. The line segments connecting the midpoints of opposite sides of a quadrilateral are called the bimedians and are denoted m and n, where m connects the midpoints of the sides a and c.
    [Show full text]
  • Self-Inverse Gemini Triangles
    INTERNATIONAL JOURNAL OF GEOMETRY Vol. 9 (2020), No. 1, 25 - 39 SELF-INVERSE GEMINI TRIANGLES CLARK KIMBERLING and PETER MOSES Abstract. In the plane of a triangle ABC, every triangle center U = u : v : w (barycentric coordinates) is associated with a central triangle having A-vertex AU = −u : v + w : v + w. The triangle AU BU CU is a self-inverse Gemini triangle. Let mU (X) be the image of a point X under the collineation that maps A; B; C; G respectively onto AU ;BU ;CU ;G, where G is the centroid of ABC. Then mU (mU (X)) = X: Properties of the self-inverse mapping mU are presented, with attention to associated conics (e.g., Jerabek, Kiepert, Feuerbach, Nagel, Steiner), as well as cubics of the types pK(Y; Y ) and pK(U ∗ Y; Y ). 1. Introduction The term Gemini triangle, introduced in the Encyclopedia of Triangle Centers (ETC [7], just before X(24537)), applies to certain triangles defined by barycentric coordinates. In keeping with the meaning of gemini, these triangles tend to occur in pairs. Specifically, for a given reference triangle ABC with sidelengths a; b; c, a Germini triangle A0B0C0 is a cen- tral triangle ([6], pp. 53-56) with A-vertex given by (1.1) A0 = f(a; b; c): g(b; c; a): g(b; a; c); where f and g are center functions ([6], p. 46). Because A0B0C0 is a central triangle, the vertices B0 and C0 can be read from (1.1) as B0 = g(c; b; a): f(b; c; a): g(c; a; b) C0 = g(a; b; c): g(a; c; b): f(c; a; b): Now suppose that U = u : v : w is a triangle center, and let 0 −u v + w v + w 1 MU = @ w + u −v w + u A : u + v u + v −w Keywords and phrases Triangle, Gemini triangle, barycentric coordinates, collineation, conic, cubic, circumcircle, Jerabek, Kiepert, Feuerbach, Nagel, Steiner (2010)Mathematics Subject Classification: 51N15, 51N20 Received: 13.10.2019.
    [Show full text]
  • Downloaded from Bookstore.Ams.Org 30-60-90 Triangle, 190, 233 36-72
    Index 30-60-90 triangle, 190, 233 intersects interior of a side, 144 36-72-72 triangle, 226 to the base of an isosceles triangle, 145 360 theorem, 96, 97 to the hypotenuse, 144 45-45-90 triangle, 190, 233 to the longest side, 144 60-60-60 triangle, 189 Amtrak model, 29 and (logical conjunction), 385 AA congruence theorem for asymptotic angle, 83 triangles, 353 acute, 88 AA similarity theorem, 216 included between two sides, 104 AAA congruence theorem in hyperbolic inscribed in a semicircle, 257 geometry, 338 inscribed in an arc, 257 AAA construction theorem, 191 obtuse, 88 AAASA congruence, 197, 354 of a polygon, 156 AAS congruence theorem, 119 of a triangle, 103 AASAS congruence, 179 of an asymptotic triangle, 351 ABCD property of rigid motions, 441 on a side of a line, 149 absolute value, 434 opposite a side, 104 acute angle, 88 proper, 84 acute triangle, 105 right, 88 adapted coordinate function, 72 straight, 84 adjacency lemma, 98 zero, 84 adjacent angles, 90, 91 angle addition theorem, 90 adjacent edges of a polygon, 156 angle bisector, 100, 147 adjacent interior angle, 113 angle bisector concurrence theorem, 268 admissible decomposition, 201 angle bisector proportion theorem, 219 algebraic number, 317 angle bisector theorem, 147 all-or-nothing theorem, 333 converse, 149 alternate interior angles, 150 angle construction theorem, 88 alternate interior angles postulate, 323 angle criterion for convexity, 160 alternate interior angles theorem, 150 angle measure, 54, 85 converse, 185, 323 between two lines, 357 altitude concurrence theorem,
    [Show full text]
  • Control Point Based Representation of Inellipses of Triangles∗
    Annales Mathematicae et Informaticae 40 (2012) pp. 37–46 http://ami.ektf.hu Control point based representation of inellipses of triangles∗ Imre Juhász Department of Descriptive Geometry, University of Miskolc, Hungary [email protected] Submitted April 12, 2012 — Accepted May 20, 2012 Abstract We provide a control point based parametric description of inellipses of triangles, where the control points are the vertices of the triangle themselves. We also show, how to convert remarkable inellipses defined by their Brianchon point to control point based description. Keywords: inellipse, cyclic basis, rational trigonometric curve, Brianchon point MSC: 65D17, 68U07 1. Introduction It is well known from elementary projective geometry that there is a two-parameter family of ellipses that are within a given non-degenerate triangle and touch its three sides. Such ellipses can easily be constructed in the traditional way (by means of ruler and compasses), or their implicit equation can be determined. We provide a method using which one can determine the parametric form of these ellipses in a fairly simple way. Nowadays, in Computer Aided Geometric Design (CAGD) curves are repre- sented mainly in the form n g (u) = j=0 Fj (u) dj δ Fj :[a, b] R, u [a, b] R, dj R , δ 2 P→ ∈ ⊂ ∈ ≥ ∗This research was carried out as a part of the TAMOP-4.2.1.B-10/2/KONV-2010-0001 project with support by the European Union, co-financed by the European Social Fund. 37 38 I. Juhász where dj are called control points and Fj (u) are blending functions. (The most well-known blending functions are Bernstein polynomials and normalized B-spline basis functions, cf.
    [Show full text]
  • A Geometric Proof of the Siebeck–Marden Theorem Beniamin Bogosel
    A Geometric Proof of the Siebeck–Marden Theorem Beniamin Bogosel Abstract. The Siebeck–Marden theorem relates the roots of a third degree polynomial and the roots of its derivative in a geometrical way. A few geometric arguments imply that every inellipse for a triangle is uniquely related to a certain logarithmic potential via its focal points. This fact provides a new direct proof of a general form of the result of Siebeck and Marden. Given three noncollinear points a, b, c ∈ C, we can consider the cubic polynomial P(z) = (z − a)(z − b)(z − c), whose derivative P (z) has two roots f1, f2. The Gauss–Lucas theorem is a well-known result which states that given a polynomial Q with roots z1,...,zn, the roots of its derivative Q are in the convex hull of z1,...,zn. In the simple case where we have only three roots, there is a more precise result. The roots f1, f2 of the derivative polynomial are situated in the interior of the triangle abc and they have an interesting geometric property: f1 and f2 are the focal points of the unique ellipse that is tangent to the sides of the triangle abc at its midpoints. This ellipse is called the Steiner inellipse associated to the triangle abc. In the rest of this note, we use the term inellipse to denote an ellipse situated in a triangle that is tangent to all three of its sides. This geometric connection between the roots of P and the roots of P was first observed by Siebeck (1864) [12] and was reproved by Marden (1945) [8].
    [Show full text]
  • Circles in Areals
    Circles in areals 23 December 2015 This paper has been accepted for publication in the Mathematical Gazette, and copyright is assigned to the Mathematical Association (UK). This preprint may be read or downloaded, and used for any non-profit making educational or research purpose. Introduction August M¨obiusintroduced the system of barycentric or areal co-ordinates in 1827[1, 2]. The idea is that one may attach weights to points, and that a system of weights determines a centre of mass. Given a triangle ABC, one obtains a co-ordinate system for the plane by placing weights x; y and z at the vertices (with x + y + z = 1) to describe the point which is the centre of mass. The vertices have co-ordinates A = (1; 0; 0), B = (0; 1; 0) and C = (0; 0; 1). By scaling so that triangle ABC has area [ABC] = 1, we can take the co-ordinates of P to be ([P BC]; [PCA]; [P AB]), provided that we take area to be signed. Our convention is that anticlockwise triangles have positive area. Points inside the triangle have strictly positive co-ordinates, and points outside the triangle must have at least one negative co-ordinate (we are allowed negative masses). The equation of a line looks like the equation of a plane in Cartesian co-ordinates, but note that the equation lx + ly + lz = 0 (with l 6= 0) is not satisfied by any point (x; y; z) of the Euclidean plane. We use such equations to describe the line at infinity when doing projective geometry.
    [Show full text]
  • The Vertex-Midpoint-Centroid Triangles
    Forum Geometricorum b Volume 4 (2004) 97–109. bbb FORUM GEOM ISSN 1534-1178 The Vertex-Midpoint-Centroid Triangles Zvonko Cerinˇ Abstract. This paper explores six triangles that have a vertex, a midpoint of a side, and the centroid of the base triangle ABC as vertices. They have many in- teresting properties and here we study how they monitor the shape of ABC. Our results show that certain geometric properties of these six triangles are equivalent to ABC being either equilateral or isosceles. Let A, B, C be midpoints of the sides BC, CA, AB of the triangle ABC and − let G be its centroid (i.e., the intersection of medians AA, BB , CC ). Let Ga , + − + − + Ga , Gb , Gb , Gc , Gc be triangles BGA , CGA , CGB , AGB , AGC , BGC (see Figure 1). C − + Gb Ga B A G + − Gb Ga − + Gc Gc ABC Figure 1. Six vertex–midpoint–centroid triangles of ABC. This set of six triangles associated to the triangle ABC is a special case of the cevasix configuration (see [5] and [7]) when the chosen point is the centroid G.It has the following peculiar property (see [1]). Theorem 1. The triangle ABC is equilateral if and only if any three of the trian- = { − + − + − +} gles from the set σG Ga ,Ga ,Gb ,Gb ,Gc ,Gc have the same either perime- ter or inradius. In this paper we wish to show several similar results. The idea is to replace perimeter and inradius with other geometric notions (like k-perimeter and Brocard angle) and to use various central points (like the circumcenter and the orthocenter – see [4]) of these six triangles.
    [Show full text]
  • On a Construction of Hagge
    Forum Geometricorum b Volume 7 (2007) 231–247. b b FORUM GEOM ISSN 1534-1178 On a Construction of Hagge Christopher J. Bradley and Geoff C. Smith Abstract. In 1907 Hagge constructed a circle associated with each cevian point P of triangle ABC. If P is on the circumcircle this circle degenerates to a straight line through the orthocenter which is parallel to the Wallace-Simson line of P . We give a new proof of Hagge’s result by a method based on reflections. We introduce an axis associated with the construction, and (via an areal anal- ysis) a conic which generalizes the nine-point circle. The precise locus of the orthocenter in a Brocard porism is identified by using Hagge’s theorem as a tool. Other natural loci associated with Hagge’s construction are discussed. 1. Introduction One hundred years ago, Karl Hagge wrote an article in Zeitschrift fur¨ Mathema- tischen und Naturwissenschaftliche Unterricht entitled (in loose translation) “The Fuhrmann and Brocard circles as special cases of a general circle construction” [5]. In this paper he managed to find an elegant extension of the Wallace-Simson theorem when the generating point is not on the circumcircle. Instead of creating a line, one makes a circle through seven important points. In 2 we give a new proof of the correctness of Hagge’s construction, extend and appl§ y the idea in various ways. As a tribute to Hagge’s beautiful insight, we present this work as a cente- nary celebration. Note that the name Hagge is also associated with other circles [6], but here we refer only to the construction just described.
    [Show full text]
  • Volume 6 (2006) 1–16
    FORUM GEOMETRICORUM A Journal on Classical Euclidean Geometry and Related Areas published by Department of Mathematical Sciences Florida Atlantic University b bbb FORUM GEOM Volume 6 2006 http://forumgeom.fau.edu ISSN 1534-1178 Editorial Board Advisors: John H. Conway Princeton, New Jersey, USA Julio Gonzalez Cabillon Montevideo, Uruguay Richard Guy Calgary, Alberta, Canada Clark Kimberling Evansville, Indiana, USA Kee Yuen Lam Vancouver, British Columbia, Canada Tsit Yuen Lam Berkeley, California, USA Fred Richman Boca Raton, Florida, USA Editor-in-chief: Paul Yiu Boca Raton, Florida, USA Editors: Clayton Dodge Orono, Maine, USA Roland Eddy St. John’s, Newfoundland, Canada Jean-Pierre Ehrmann Paris, France Chris Fisher Regina, Saskatchewan, Canada Rudolf Fritsch Munich, Germany Bernard Gibert St Etiene, France Antreas P. Hatzipolakis Athens, Greece Michael Lambrou Crete, Greece Floor van Lamoen Goes, Netherlands Fred Pui Fai Leung Singapore, Singapore Daniel B. Shapiro Columbus, Ohio, USA Steve Sigur Atlanta, Georgia, USA Man Keung Siu Hong Kong, China Peter Woo La Mirada, California, USA Technical Editors: Yuandan Lin Boca Raton, Florida, USA Aaron Meyerowitz Boca Raton, Florida, USA Xiao-Dong Zhang Boca Raton, Florida, USA Consultants: Frederick Hoffman Boca Raton, Floirda, USA Stephen Locke Boca Raton, Florida, USA Heinrich Niederhausen Boca Raton, Florida, USA Table of Contents Khoa Lu Nguyen and Juan Carlos Salazar, On the mixtilinear incircles and excircles,1 Juan Rodr´ıguez, Paula Manuel and Paulo Semi˜ao, A conic associated with the Euler line,17 Charles Thas, A note on the Droz-Farny theorem,25 Paris Pamfilos, The cyclic complex of a cyclic quadrilateral,29 Bernard Gibert, Isocubics with concurrent normals,47 Mowaffaq Hajja and Margarita Spirova, A characterization of the centroid using June Lester’s shape function,53 Christopher J.
    [Show full text]
  • Meeting in Mathematics
    226159-CP-1-2005-1-AT-COMENIUS-C21 527269-LLP-1-2012-1-AT-COMENIUS-CAM Pavel Boytchev Hannes Hohenwarter Evgenia Sendova Neli Dimitrova Emil Kostadinov Andreas Ulovec Vladimir Georgiev Arne Mogensen Henning Westphael Oleg Mushkarov MEETING IN MATHEMATICS 2nd edition • Universität Wien • Dipartimento di Matematica, Universita' di Pisà • VIA University College – Læreruddannelsen i Århus • Институт по математика и информатика , Българска академия на науките Authors Pavel Boytchev, Neli Dimitrova, Vladimir Georgiev, Hannes Hohenwarter, Emil Kostadinov, Arne Mogensen, Oleg Mushkarov, Evgenia Sendova, Andreas Ulovec, Henning Westphael Editors Evgenia Sendova Andreas Ulovec Project Evaluator Jarmila Novotná, Charles University, Prague, Czech Republic Reviewers Jarmila Novotná, Charles University, Prague, Czech Republic Nicholas Mousoulides, University of Nicosia, Cyprus Cover design by Pavel Boytchev Cartoons by Yovko Kolarov All Rights Reserved © 2013 No part of this work may be reproduced, stored in a retrieval system, or transmitted in any form or by means, electronic, mechanical, photocopying, microfilming, recording or otherwise, without written permission from the authors. For educational purposes only (i.e. for use in schools, teaching, teacher training etc.), you may use this work or parts of it under the “Attribution Non-Commercial Share Alike” license according to Creative Commons, as detailed in http://creativecommons.org/licenses/by-nc-sa/3.0/legalcode. This project has been funded with support from the European Commission. This publication reflects the views only of the authors, and the Commission cannot be held responsible for any use which may be made of the information contained therein. Published by Demetra Publishing House, Sofia, Bulgaria ISBN 978-954-9526-49-3 iii Contents PREFACE..................................................................................................................
    [Show full text]
  • Sava Grozdev and Deko Dekov, the Lester Circle Is Orthogonal to The
    Journal of Computer-Generated Mathematics Problem 6 The Lester circle is orthogonal to the Orthocentroidal Circle of the Triangle of the Orthocenters of the Triangulation Triangles of the Tarry Point. Sava Grozdev and Deko Dekov Submitted on May 1, 2014 Publication Date: July 10, 2014 At the present time, there are seven notable circles known to be orthogonal to the Lester circle. See [1]. The below problem introduces a new notable circle which is orthogonal to the Lester circle. Prove the following problem, produced by the computer program “Discoverer”: Problem 6. Given ABC . The Lester circle of ABC is the circle passing through the circumcenter, nine-point center and the outer Fermat point. The Tarry point P is the intersection point of the circumcircle and the line passing through the centroid and the midpoint of the circumcenter and the Lemoine (Symmedian) point. Let D, E and F are the orthocenters of triangles PBC , PCA and PAB , respectively, G is the centroid of DEF and H is the orthocenter of DEF . Prove that the circle having as diameter the segment GH is orthogonal to the Lester circle. Short form of the problem: Problem 6. Prove that the Lester circle is orthogonal to the Orthocentroidal Circle of the Triangle of the Orthocenters of the Triangulation Triangles of the Tarry Point. The reader may find the definitions in [2-5]. Please submit the solution of the problem for publication in this journal to the editor of this journal: [email protected] See the figure: Journal of Computer-Generated Mathematics 2014 Problem no 4 Page 1 of 3 In the figure: c – Lester circle, P – Tarry Point, D – Orthocenter of Triangle PBC, E – Orthocenter of Triangle PCA, F – Orthocenter of Triangle PAB, c1 – Orthocentroidal Circle of Triangle DEF, Circle c1 is orthogonal to the Lester circle.
    [Show full text]
  • The Malfatti Problem
    Forum Geometricorum b Volume 1 (2001) 43–50. bbb FORUM GEOM ISSN 1534-1178 The Malfatti Problem Oene Bottema Abstract. A solution is given of Steiner’s variation of the classical Malfatti problem in which the triangle is replaced by three circles mutually tangent to each other externally. The two circles tangent to the three given ones, presently known as Soddy’s circles, are encountered as well. In this well known problem, construction is sought for three circles C1, C2 and C3, tangent to each other pairwise, and of which C1 is tangent to the sides A1A2 and A1A3 of a given triangle A1A2A3, while C2 is tangent to A2A3 and A2A1 and C3 to A3A1 and A3A2. The problem was posed by Malfatti in 1803 and solved by him with the help of an algebraic analysis. Very well known is the extraordinarily elegant geometric solution that Steiner announced without proof in 1826. This solution, together with the proof Hart gave in 1857, one can find in various textbooks.1 Steiner has also considered extensions of the problem and given solutions. The first is the one where the lines A2A3, A3A1 and A1A2 are replaced by circles. Further generalizations concern the figures of three circles on a sphere, and of three conic sections on a quadric surface. In the nineteenth century many mathematicians have worked on this problem. Among these were Cayley (1852) 2, Schellbach (who in 1853 published a very nice goniometric solution), and Clebsch (who in 1857 extended Schellbach’s solution to three conic sections on a quadric surface, and for that he made use of elliptic functions).
    [Show full text]