Pkr Dependent Upregulation of Immediate Early Genes And

Total Page:16

File Type:pdf, Size:1020Kb

Pkr Dependent Upregulation of Immediate Early Genes And PKR DEPENDENT UPREGULATION OF IMMEDIATE EARLY GENES AND ANTI-INFLAMMATORY CYTOKINE IL-10. A dissertation submitted to Kent State University in cooperation with the Cleveland Clinic in partial fulfillment of the requirements for the degree of Doctor of Philosophy By Arindam Chakrabarti May, 2007 Dissertation written by Arindam Chakrabarti M.S., University of Calcutta, 1999 Ph.D. Kent State University, 2007 Approved by ____________________ Chair, Doctoral Dissertation Committee Bryan R. G. Williams, Ph.D ____________________ Member, Doctoral Dissertation Committee Robert H. Silverman, Ph.D ____________________ Member, Doctoral Dissertation Committee Gail Fraizer, Ph.D ____________________ Member, Doctoral Dissertation Committee Jennifer Marcinkiewicz, Ph.D ____________________ Member, Doctoral Dissertation Committee Volodymyr Dvornyk, Ph.D ____________________ Graduate Faculty Representative Arne Gericke, Ph.D Accepted by ____________________ Director, School of Biomedical Sciences Robert V. Dorman, Ph.D ____________________ Dean, College of Arts and Sciences John R. D. Stalvey, Ph.D ii TABLE OF CONTENTS List of Figures ……………………………………………………………………………….v List of Tables………………………………………………………………………….……..vi Acknowledgements …………………………………………………………………..…….vii Chapter 1. Introduction ....…………………………………………………………..……...1 Chapter 2. PKR mediated uregulation of immediate early gene egr-1 Abstract………………………………………………………………………………..…42 Introduction ………………………………………………………………………..…….…..43 Materials and Methods ……………….…………………………………………..…...……..46 Results ………………………………………………………………………………..……...53 Discussion ……………………………………………………………………..……..……...73 Chapter 3. PKR mediated uregulation of immediate early gene c-Jun Abstract………………………………………………………………………………..…75 Introduction ……………………………………………………………………………...…..76 Materials and Methods ……………………………..……………………………..........……79 Results …………………………………………………………………………………….... 83 Discussion ………………………………………………………….…………..……..……103 Chapter 4. PKR mediated uregulation of anti-inflammatory cytokine IL-10 Abstract………………………………………………………………………..………..106 Introduction …………………………………………………………………..…………….107 Materials andMethods ……………………………………………….………………..…....110 Results …………………………………………………………………………………..….115 Discussion ………………………………………………………………………....……….136 Chapter 5. General discussion and Future Direction Summary ………………………………………………………….…………..…….…..….140 Future perspectives ………………………………………….………………………...……145 Appendix A. Abbreviations ………………….……………………..………………...……...158 References …………………………………………………….……………..…..…….163 iv LIST OF FIGURES Chapter 1: Fig 1.1 TLR7,8,9 mediated signaling………………………………………………..……7 Fig 1.2 TLR3 mediated signaling…………………………………………………..……..8 Fig 1.3 RIG-1 mediated signaling………………………………….……………….....…11 Fig 1.4 NFκB signaling pathway……………………………………………………..….35 Chapter 2: Fig 2.1 Characterization of wt and pkr-ko SM cells………………………...………..….54 Fig 2.2 Microarray analysis of pIC treated wt and pkr-ko SM cells….………………….58 Fig 2.3 Validation of microarray result by real time PCR…………………………….....64 Fig 2.4 Induction of Egr-1 protein expression is dependent on PKR…………….......…66 Fig 2.5 Egr-1 induction in response to pIC is dependent on NF-κB……………........….68 Fig 2.6 pIC mediated activation of Egr-1 promoter is dependent on NF-κB…….....…...71 Chapter 3: Fig 3.1 PKR dependent induction of c-Jun………………………………………..….…85 Fig 3.2 pIC mediated c-Jun induction is dependent on JNK and Erk1/2………………...89 Fig 3.3 pIC mediated activation of MAP kinases is impaired in absence of PKR…...….93 Fig 3.4 Impaired activation of MKK4 in absence of PKR……………………….……...98 Fig 3.5 c-Jun promoter activity is induced in response to pIC……………………...…...99 Fig 3.6 CREB is involved in pIC driven c-Jun induction………………………….…...101 Chapter 4: Fig 4.1 PKR dependent IL-10 induction……………………………………………..…116 Fig 4.2 IL-10 induction is dependent on JNK and NF-κB………….………………..…119 Fig 4.3 Activation of JNK and NF-κB is dependent on PKR…………….………..…...125 Fig 4.4 Luciferase assay using a mouse IL-10 promoter fragment………………..……128 Fig 4.5 Binding of p65 and p50 to the IL-10 promoter in vivo…………………..……..130 Fig 4.6 IL-10 induction in response to viral infection…………………………….……132 Fig 4.7 pIC mediated IL-10 induction causes STAT3 activation.………………….…..134 Chapter 5: Fig 5.1 pIC mediated tristetraprolin induction is largely dependent on NF-κB and partly onp38……………………………………………………………………………..…..…151 Fig 5.2 pIC mediated activation of CREB is dependent on JNK………………...…..…152 Fig 5.3 PKR dependent upregulation of pro-inflammatory genes……………….…......153 Fig 5.4 Model………………………………………………………………...………....158 v LIST OF TABLES Table 1. PKR dependent upregulation of genes……………………………...…………..74 vi ACKNOWLEDGEMENT For the greater part of my work I have been encouraged and guided by many whose contribution it may not be possible to individually acknowledge here. But, even within that large list, it would be impossible not to mention those who have made an immense imprint. My parents have always been a constant source of encouragement, strength and support, and my dreams of becoming what I am today would have remained distant had they not, in turn, had their own dreams and vision on their son. Were I to single out one person for all that I achieved over the last few years, it would undoubtedly be Dr Bryan Williams, without whom, all my efforts would have been in vain. Extremely supportive, a great motivator and most generous in a student’s pursuit of knowledge he will, and always will remain, my ideal forever. I am deeply indebted to him. I sincerely thank my distinguished committee members Dr.Robert Silverman, Dr. Gail Fraizer, Dr. Jennifer Marcinkiewicz and Dr Volodomyr Dvornyk for their invaluable guidance at different stages of my work. Had it not been for them it would have been impossible to walk the last mile. vii During my research I have been privileged to have worked alongside Tony, Mark, Joao, Jeanna to name a few, who gave their abundant support unhesitatingly. It will never be easy to find that spontaneity elsewhere but I will continue to hope that I find such a group of excellent co-workers in future as well. Many of my friends and well-wishers, unnamed here but always a source of strength, have also been indulgent to me and I would like to thank them all for their selfless support. I would like to thank my wife Maupali, whose invaluable support in everything that I did or couldn’t, whose avid interest and eager inquisitions on my subject, whose never ending effort to free me so that I could fully engage myself in my work made all the difference between success and failure. I have to admit that, like all aspiring students, I have faced pangs of dejection and disappointments. Even during those phases, the mirth and endless chatter of a three year old child, with tiny hands extended in warmth, helped me quickly recover and get back to the task in hand. Love you son. viiixi Chapter 1 Introduction Vertebrates are constantly threatened by the invasion of microorganisms and have evolved systems of immune defense to effectively eliminate infective pathogens in the body. The mammalian immune system comprises of innate and acquired immunity. The innate immune system is the first line of host defense against pathogens and is mediated by phagocytes including macrophages and dendritic cells (DCs). Acquired immunity,on the other hand is involved in elimination of pathogens in the late phase of infection and in generation of immunological memory. Activation of antiviral innate immune response relies on detection of pathogen associated molecular patterns (PAMPS), which includes viral DNA, single-stranded RNA and double-stranded RNA (dsRNA). Members of Toll-like receptor family TLR9 and TLR7/8 recognizes unmethylated CpG DNA motifs, present in bacterial or viral DNA and viral single stranded RNA respectively. Whereas, double-stranded RNA (dsRNA), a well known molecular intermediate generated during viral replication of many viruses is recognized by a number of cellular proteins like, TLR3, PKR, RNA helicases like RIG-I and Mda-5. Cumulatively, these host components are called pattern recognition receptos (PRR). Following recognition of viral components the PRRs promote production of variety of cytokines, activation of several physiological processes and induction of innate 1 and adaptive immune responses critical for generating effective and appropriate antiviral response. Toll-like receptor dependent antiviral pathways : TLRs are evolutionarily conserved from the worm C. elegans to mammals (Akira and Takeda, 2004; Beutler, 2004; Hoffmann, 2003; Janeway and Medzhitov, 2002). 12 members of TLR family have been identified to date. Toll-like receptors are type I integral membrane glycoproteins which have variable numbers of leucine-rich-repeat (LRR) motifs in their extracellular domains and a conserved cytoplasmic signaling domain homologous to that of the interleukin 1 receptor (IL-1R), termed the Toll/IL-1R homology (TIR) domain (Bowie et al., 2000). TLRs are expressed on various immune cells, including macrophages, dendritic cells (DCs), B cells, specific types of T cells, and even on nonimmune cells such as fibroblasts and epithelial cells. Expression of TLRs is modulated rapidly in response to pathogens, a variety of cytokines, and environmental stresses. TLRs can reside at extracellular or intracellular locations. Interestingly, TLRs that are involved in recognition of different nucleic acid and observed to participate in recognition of viral infection (TLR3, TLR7/8 and TLR9) have been
Recommended publications
  • Feedback Regulation Between Initiation and Maturation Networks Orchestrates the Chromatin Dynamics of Epidermal Lineage
    bioRxiv preprint doi: https://doi.org/10.1101/349308; this version posted June 18, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Li et al., p. 1 Feedback Regulation between Initiation and Maturation Networks Orchestrates the Chromatin Dynamics of Epidermal Lineage Commitment Lingjie Li1,3,4, Yong Wang2,4,7,8*, Jessica L. Torkelson1,3*, Gautam Shankar1, Jillian M. Pattison1,3, Hanson H. Zhen1,3, Zhana Duren2,4,7, Fengqin Fang5, Sandra P. Melo1, Samantha N. Piekos1,3, Jiang Li1, Eric J. Liaw1, Lang Chen7, Rui Li1,4, Marius Wernig6, Wing H. Wong2,4, Howard Y. Chang1,4, Anthony E. Oro1,3,9 1 Program in Epithelial Biology and Department of Dermatology 2 Department of Statistics and Biomedical Data Science 3 Center for Definitive and Curative Medicine 4 Center for Personal Dynamic Regulome 5 Division of Immunology and Rheumatology, Department of Medicine, 6 Institute for Stem Cell Biology and Regenerative Medicine, Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA. 7 CEMS, NCMIS, MDIS, Academy of Mathematics & Systems Science, Chinese Academy of Sciences, Beijing,100080, China 8 Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, 650223, China *These authors made equal and independent contributions. 9 Correspondence to Lead Contact: Anthony E. Oro at [email protected] bioRxiv preprint doi: https://doi.org/10.1101/349308; this version posted June 18, 2018.
    [Show full text]
  • TINCR Inhibits the Proliferation and Invasion of Laryngeal Squamous Cell
    He et al. BMC Cancer (2021) 21:753 https://doi.org/10.1186/s12885-021-08513-0 RESEARCH ARTICLE Open Access TINCR inhibits the proliferation and invasion of laryngeal squamous cell carcinoma by regulating miR-210/BTG2 Guoqing He1†, Rui Pang2†, Jihua Han2, Jinliang Jia2, Zhaoming Ding2, Wen Bi2, Jiawei Yu2, Lili Chen2, Jiewu Zhang2* and Yanan Sun1* Abstract Background: Terminal differentiation-induced ncRNA (TINCR) plays an essential role in epidermal differentiation and is involved in the development of various cancers. Methods: qPCR was used to detect the expression level of TINCR in tissues and cell lines of laryngeal squamous cell carcinoma (LSCC). The potential targets of TINCR were predicted by the bioinformation website. The expression of miR-210 and BTG2 genes were detected by qPCR, and the protein levels of BTG2 and Ki-67 were evaluated by western blot. CCK-8 assay, scratch test, and transwell chamber were used to evaluate the proliferation, invasion, and metastasis ability of LSCC cells. The relationships among TINCR, miR-210, and BTG2 were investigated by bioinformatics software and luciferase reporter assay. The in vivo function of TINCR was accessed on survival rate and tumor growth in nude mice. Results: We used qRT-PCR to detect the expression of TINCR in laryngeal squamous cell carcinoma (LSCC) tissues and cells and found significantly lower levels in cancer tissues compared with adjacent tissues. Additionally, patients with high TINCR expression had a better prognosis. TINCR overexpression was observed to inhibit the proliferation and invasion of LSCC cells. TINCR was shown to exert its antiproliferation and invasion effects by adsorbing miR- 210, which significantly promoted the proliferation and invasion of laryngeal squamous cells.
    [Show full text]
  • BTG2: a Rising Star of Tumor Suppressors (Review)
    INTERNATIONAL JOURNAL OF ONCOLOGY 46: 459-464, 2015 BTG2: A rising star of tumor suppressors (Review) BIjING MAO1, ZHIMIN ZHANG1,2 and GE WANG1 1Cancer Center, Institute of Surgical Research, Daping Hospital, Third Military Medical University, Chongqing 400042; 2Department of Oncology, Wuhan General Hospital of Guangzhou Command, People's Liberation Army, Wuhan, Hubei 430070, P.R. China Received September 22, 2014; Accepted November 3, 2014 DOI: 10.3892/ijo.2014.2765 Abstract. B-cell translocation gene 2 (BTG2), the first 1. Discovery of BTG2 in TOB/BTG gene family gene identified in the BTG/TOB gene family, is involved in many biological activities in cancer cells acting as a tumor The TOB/BTG genes belong to the anti-proliferative gene suppressor. The BTG2 expression is downregulated in many family that includes six different genes in vertebrates: TOB1, human cancers. It is an instantaneous early response gene and TOB2, BTG1 BTG2/TIS21/PC3, BTG3 and BTG4 (Fig. 1). plays important roles in cell differentiation, proliferation, DNA The conserved domain of BTG N-terminal contains two damage repair, and apoptosis in cancer cells. Moreover, BTG2 regions, named box A and box B, which show a high level of is regulated by many factors involving different signal path- homology to the other domains (1-5). Box A has a major effect ways. However, the regulatory mechanism of BTG2 is largely on cell proliferation, while box B plays a role in combination unknown. Recently, the relationship between microRNAs and with many target molecules. Compared with other family BTG2 has attracted much attention. MicroRNA-21 (miR-21) members, BTG1 and BTG2 have an additional region named has been found to regulate BTG2 gene during carcinogenesis.
    [Show full text]
  • Integrative Differential Expression and Gene Set Enrichment Analysis Using Summary Statistics for Scrna-Seq Studies
    ARTICLE https://doi.org/10.1038/s41467-020-15298-6 OPEN Integrative differential expression and gene set enrichment analysis using summary statistics for scRNA-seq studies ✉ Ying Ma 1,7, Shiquan Sun 1,7, Xuequn Shang2, Evan T. Keller 3, Mengjie Chen 4,5 & Xiang Zhou 1,6 Differential expression (DE) analysis and gene set enrichment (GSE) analysis are commonly applied in single cell RNA sequencing (scRNA-seq) studies. Here, we develop an integrative 1234567890():,; and scalable computational method, iDEA, to perform joint DE and GSE analysis through a hierarchical Bayesian framework. By integrating DE and GSE analyses, iDEA can improve the power and consistency of DE analysis and the accuracy of GSE analysis. Importantly, iDEA uses only DE summary statistics as input, enabling effective data modeling through com- plementing and pairing with various existing DE methods. We illustrate the benefits of iDEA with extensive simulations. We also apply iDEA to analyze three scRNA-seq data sets, where iDEA achieves up to five-fold power gain over existing GSE methods and up to 64% power gain over existing DE methods. The power gain brought by iDEA allows us to identify many pathways that would not be identified by existing approaches in these data. 1 Department of Biostatistics, University of Michigan, Ann Arbor, MI 48109, USA. 2 School of Computer Science, Northwestern Polytechnical University, Xi’an, Shaanxi 710072, P.R. China. 3 Department of Urology, University of Michigan, Ann Arbor, MI 48109, USA. 4 Department of Human Genetics, University of Chicago, Chicago, IL 60637, USA. 5 Section of Genetic Medicine, Department of Medicine, University of Chicago, Chicago, IL 60637, USA.
    [Show full text]
  • The Unfolded Protein Response: an Overview
    biology Review The Unfolded Protein Response: An Overview Adam Read 1,2 and Martin Schröder 1,2,* 1 Department of Biosciences, Durham University, South Road, Durham DH1 3LE, UK; [email protected] 2 Biophysical Sciences Institute, Durham University, South Road, Durham DH1 3LE, UK * Correspondence: [email protected]; Tel.: +44-191-334-1316 Simple Summary: The unfolded protein response (UPR) is the cells’ way of maintaining the balance of protein folding in the endoplasmic reticulum, which is the section of the cell designated for folding proteins with specific destinations such as other organelles or to be secreted by the cell. The UPR is activated when unfolded proteins accumulate in the endoplasmic reticulum. This accumulation puts a greater load on the molecules in charge of folding the proteins, and therefore the UPR works to balance this by lowering the number of unfolded proteins present in the cell. This is done in multiple ways, such as lowering the number of proteins that need to be folded; increasing the folding ability of the endoplasmic reticulum and by removing some of the unfolded proteins which take longer to fold. If the UPR is successful at reducing the number of unfolded proteins, the UPR is inactivated and the cells protein folding balance is returned to normal. However, if the UPR is unsuccessful, then this can lead to cell death. Abstract: The unfolded protein response is the mechanism by which cells control endoplasmic reticulum (ER) protein homeostasis. Under normal conditions, the UPR is not activated; however, under certain stresses, such as hypoxia or altered glycosylation, the UPR can be activated due to an accumulation of unfolded proteins.
    [Show full text]
  • Combinatorial Bzip Dimers Display Complex DNA-Binding Specificity Landscapes
    Combinatorial bZIP dimers display complex DNA-binding specificity landscapes The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. Citation Rodriguez-Martinez, Jose A et al. “Combinatorial bZIP Dimers Display Complex DNA-Binding Specificity Landscapes.” eLife 6 (2017): n. pag. As Published http://dx.doi.org/10.7554/eLife.19272 Publisher eLife Sciences Publications, Ltd. Version Final published version Citable link http://hdl.handle.net/1721.1/110147 Terms of Use Creative Commons Attribution 4.0 International License Detailed Terms http://creativecommons.org/licenses/by-nc/4.0/ RESEARCH ARTICLE Combinatorial bZIP dimers display complex DNA-binding specificity landscapes Jose´ A Rodrı´guez-Martı´nez1†, Aaron W Reinke2†, Devesh Bhimsaria1,3†, Amy E Keating2,4, Aseem Z Ansari1,5* 1Department of Biochemistry, University of Wisconsin-Madison, Madison, United States; 2Department of Biology, Massachusetts Institute of Technology, Cambridge, United States; 3Department of Electrical and Computer Engineering, University of Wisconsin-Madison, Madison, Unites States; 4Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, United States; 5The Genome Center of Wisconsin, University of Wisconsin-Madison, Madison, United States Abstract How transcription factor dimerization impacts DNA-binding specificity is poorly understood. Guided by protein dimerization properties, we examined DNA binding specificities of 270 human bZIP pairs. DNA interactomes of 80 heterodimers and 22 homodimers revealed that 72% of heterodimer motifs correspond to conjoined half-sites preferred by partnering monomers. Remarkably, the remaining motifs are composed of variably-spaced half-sites (12%) or ‘emergent’ sites (16%) that cannot be readily inferred from half-site preferences of partnering monomers.
    [Show full text]
  • Distinct Roles of Jun : Fos and Jun : ATF Dimers in Oncogenesis
    Oncogene (2001) 20, 2453 ± 2464 ã 2001 Nature Publishing Group All rights reserved 0950 ± 9232/01 $15.00 www.nature.com/onc Distinct roles of Jun : Fos and Jun : ATF dimers in oncogenesis Hans van Dam*,1 and Marc Castellazzi2 1Department of Molecular Cell Biology, Leiden University Medical Center, Sylvius Laboratories, PO Box 9503, 2300 RA Leiden, The Netherlands; 2Unite de Virologie Humaine, Institut National de la Sante et de la Recherche MeÂdicale (INSERM-U412), Ecole Normale SupeÂrieure, 46 alleÂe d'Italie, 69364 Lyon Cedex 07, France Jun : Fos and Jun : ATF complexes represent two classes dimers with emphasis on their roles in oncogenic of AP-1 dimers that (1) preferentially bind to either transformation in avian model systems. Previous heptameric or octameric AP-1 binding sites, and (2) are reviews on AP-1 and cell transformation include dierently regulated by cellular signaling pathways and references: (Angel and Karin, 1991; Wisdom, 1999; oncogene products. To discriminate between the func- Vogt, 1994; Karin et al., 1997; van Dam and van der tions of Jun : Fos, Jun: ATF and Jun : Jun, mutants were Eb, 1994; Hagmeyer et al., 1995). developed that restrict the ability of Jun to dimerize either to itself, or to Fos(-like) or ATF(-like) partners. Introduction of these mutants in chicken embryo Jun : Fos and Jun : ATF transcription factors: dimeric ®broblasts shows that Jun : Fra2 and Jun : ATF2 dimers complexes with variable composition and activities play distinct, complementary roles in in vitro oncogenesis by inducing either anchorage independence or growth AP-1 sub-units: members of the bZip protein family factor independence, respectively.
    [Show full text]
  • Tgfβ-Regulated Gene Expression by Smads and Sp1/KLF-Like Transcription Factors in Cancer VOLKER ELLENRIEDER
    ANTICANCER RESEARCH 28 : 1531-1540 (2008) Review TGFβ-regulated Gene Expression by Smads and Sp1/KLF-like Transcription Factors in Cancer VOLKER ELLENRIEDER Signal Transduction Laboratory, Internal Medicine, Department of Gastroenterology and Endocrinology, University of Marburg, Marburg, Germany Abstract. Transforming growth factor beta (TGF β) controls complex induces the canonical Smad signaling molecules which vital cellular functions through its ability to regulate gene then translocate into the nucleus to regulate transcription (2). The expression. TGFβ binding to its transmembrane receptor cellular response to TGF β can be extremely variable depending kinases initiates distinct intracellular signalling cascades on the cell type and the activation status of a cell at a given time. including the Smad signalling and transcription factors and also For instance, TGF β induces growth arrest and apoptosis in Smad-independent pathways. In normal epithelial cells, TGF β healthy epithelial cells, whereas it can also promote tumor stimulation induces a cytostatic program which includes the progression through stimulation of cell proliferation and the transcriptional repression of the c-Myc oncogene and the later induction of an epithelial-to-mesenchymal transition of tumor induction of the cell cycle inhibitors p15 INK4b and p21 Cip1 . cells (1, 3). In the last decade it has become clear that both the During carcinogenesis, however, many tumor cells lose their tumor suppressing and the tumor promoting functions of TGF β ability to respond to TGF β with growth inhibition, and instead, are primarily regulated on the level of gene expression through activate genes involved in cell proliferation, invasion and Smad-dependent and -independent mechanisms (1, 2, 4).
    [Show full text]
  • Inactivation of Erk1 and Erk2 Disrupts Cortical
    INACTIVATION OF ERK1 AND ERK2 DISRUPTS CORTICAL PROGENITOR PROLIFERATION LEADING TO ABNORMAL CYTOARCHITECTURE, CIRCUITRY AND BEHAVIOR, MODELING HUMAN NCFC AND RELATED SYNDROMES. by JOANNA PUCILOWSKA Submitted in partial fulfillment of the requirements For the degree of Doctor of Philosophy Dissertation Advisor: Dr. Gary E. Landreth Department of Neurosciences CASE WESTERN RESERVE UNIVERSITY August 2012 CASE WESTERN RESERVE UNIVERSITY SCHOOL OF GRADUATE STUDIES We hereby approve the thesis/dissertation of Joanna Pucilowska candidate for the PhD degree*. (signed) Robert Miller (chair of the committee) Gary Landreth Jerry Silver Stephen Maricich (date) 5/29/2012 *We also certify that written approval has been obtained for any proprietary material contained within. 2 TABLE OF CONTENTS List of figures……...……………………………………………………………….….6 ABSTRACT…...………………………………………………………………….…..9 CHAPTER 1: INTRODUCTION………………………………………………………….11 MAP KINASE Signaling Pathway………………………………………………...11 MAPK Specificity: The Right Place at the Right Time………………………..…16 ERKs and Isoform Specificity………………..…………………………………….23 ERKs in Learning and Memory………………………..………………………….26 ERKs and their FGF Ligands………………………..…………………………….28 CORTICAL DEVELOPMENT: Forebrain Regionalization and Morphogenesis………..…………………31 The Role of Cell Cycle in Corticogenesis……..…………...………………33 ERKs and the Cell Cycle Progression…………………..…………………36 Progenitor Proliferation and Neurogenesis………………..……………...39 Migration…………………..………………………………………………..45 Gliogenesis…………………………………………………………..………47 Differentiation……………………………………………………..………..48
    [Show full text]
  • BTG2 Loss and Mir-21 Upregulation Contribute to Prostate Cell Transformation by Inducing Luminal Markers Expression and Epithelial–Mesenchymal Transition
    Oncogene (2013) 32, 1843–1853 & 2013 Macmillan Publishers Limited All rights reserved 0950-9232/13 www.nature.com/onc ORIGINAL ARTICLE BTG2 loss and miR-21 upregulation contribute to prostate cell transformation by inducing luminal markers expression and epithelial–mesenchymal transition V Coppola1,6, M Musumeci1,6, M Patrizii1, A Cannistraci1, A Addario1, M Maugeri-Sacca` 2, M Biffoni1, F Francescangeli1, M Cordenonsi3, S Piccolo3, L Memeo4, A Pagliuca1, G Muto5, A Zeuner1, R De Maria2,6 and D Bonci1,6 Prostate cancer is one of the leading causes of cancer-related death in men. Despite significant advances in prostate cancer diagnosis and management, the molecular events involved in the transformation of normal prostate cells into cancer cells have not been fully understood. It is generally accepted that prostate cancer derives from the basal compartment while expressing luminal markers. We investigated whether downregulation of the basal protein B-cell translocation gene 2 (BTG2) is implicated in prostate cancer transformation and progression. Here we show that BTG2 loss can shift normal prostate basal cells towards luminal markers expression, a phenotype also accompanied by the appearance of epithelial–mesenchymal transition (EMT) traits. We also show that the overexpression of microRNA (miR)-21 suppresses BTG2 levels and promotes the acquisition of luminal markers and EMT in prostate cells. Furthermore, by using an innovative lentiviral vector able to compete with endogenous mRNA through the overexpression of the 30-untranslated region of BTG2, we demonstrate that in prostate tumor cells, the levels of luminal and EMT markers can be reduced by derepression of BTG2 from microRNA-mediated control.
    [Show full text]
  • Up-Regulation of the BTG2 Gene in TPA- Or RA-Treated HL-60 Cell Lines
    633-637 6/2/08 15:51 Page 633 ONCOLOGY REPORTS 19: 633-637, 2008 633 Up-regulation of the BTG2 gene in TPA- or RA-treated HL-60 cell lines BYOUNG-OK CHO1, YONG-WOOK JEONG2, SEOUNG-HOON KIM3, KUN PARK4, JI-HYE LEE5, GI RYANG KWEON6 and JONG-CHUN PARK2 1Department of Pharmacology, College of Medicine, Chosun University, 375 Seosuk-Dong, Dong-ku, Gwangju 501-759; Departments of 2Microbiology and 3Pharmacology, College of Medicine, Seonam University, Kwangchi-Dong 720, Namwon, Chunpook 590-711; Departments of 4Dermatology and 5Internal Medicine and College of Medicine Eulji University, Hagye 1-dong, Nowon-gu, Seoul 139-711; 6Department of Biochemistry, School of Medicine, Chungnam National University, Joong-ku, Taejon 301-721, Korea Received August 9, 2007; Accepted October 8, 2007 Abstract. The key pathogenesis of leukemia is the defection Introduction of the differentiation processes of hematopoietic stem cells. There are five APRO (anti-proliferative) genes, BTG1, The human leukemia HL-60 cell line was derived from a BTG2, BTG3, TOB and TOB2, and it was reported that female patient diagnosed with acute promyelocytic leukemia. certain APRO genes are associated with cell differentiation. The HL-60 cells are differentiated into monocyte/macrophage- However, it is still unknown whether APRO genes are related like lineages by 12-O-tetradecanoylphorbol-13-acetate (TPA) with the differentiation process of blood cells. In this study, or granulocyte-like lineages by RA treatment (1,2). The TPA- we investigated the expression of APRO genes in 12-O-tetra- or RA-induced differentiation of HL-60 cells is characterized decanoylphorbol-13-acetate (TPA) or retinoic acid (RA)- by cell cycle arrest through the up-regulation of a cell cycle treated HL-60 cell lines.
    [Show full text]
  • Epigenetic Silencing of the Candidatetumor Suppressor Gene Per1 in Non ^ Small Cell Lung Cancer Sigal Gery,1Naoki Komatsu,1Norihiko Kawamata,1Carlw
    Human Cancer Biology Epigenetic Silencing of the CandidateTumor Suppressor Gene Per1 in Non ^ Small Cell Lung Cancer Sigal Gery,1Naoki Komatsu,1Norihiko Kawamata,1CarlW. Miller,1Julian Desmond,1Renu K.Virk,1 Alberto Marchevsky,2 Robert Mckenna,3 Hirokuni Taguchi,4 and H. Phillip Koeffler1 Abstract Purpose: Epigenetic events are a critical factor contributing to cancer development.The purpose of this study was to identify tumor suppressor genes silenced by DNAmethylation and histone deacetylation in non ^ small cell lung cancer (NSCLC). Experimental Design: We used microarray analysis to screen for tumor suppressor genes. Results: We identified Per1, a core circadian gene, as a candidate tumor suppressor in lung cancer. Although Per1levels were high in normal lung, its expression was low in a large panel of NSCLC patient samples and cell lines. Forced expression of Per1in NSCLC cell lines led to signif- icant growth reduction and loss of clonogenic survival. Recent studies showed that epigenetic regulation, particularly histone H3 acetylation, is essential for circadian function. Using bisulfite sequencing and chromatin immunoprecipitation, we found that DNAhypermethylation and histone H3 acetylation are potential mechanisms for silencing Per1expression NSCLC. Conclusions:These results support the hypothesis that disruption of circadian rhythms plays an important role in lung tumorigenesis. Moreover, our findings suggest a novel link between circa- dian epigenetic regulation and cancer development. Lung caner is the leading cause of cancer-related death in the and early diagnosis. These recognitions have prompted United States (1, 2). Prevention, screening, and treatment of extensive research aimed at discovering silenced tumor sup- this cancer are all problematic, emphasizing the need for the pressors.
    [Show full text]