The Orbits of Stars

Total Page:16

File Type:pdf, Size:1020Kb

The Orbits of Stars 3 The Orbits of Stars In this chapter we examine the orbits of individual stars in gravitational fields such as those found in stellar systems. Thus we ask the questions, “What kinds of orbits are possible in a spherically symmetric, or an axially symmetric potential? How are these orbits modified if we distort the poten- tial into a bar-like form?” We shall obtain analytic results for the simpler potentials, and use these results to develop an intuitive understanding of how stars move in more general potentials. In 3.1 to 3.3 we examine orbits of growing complexity in force fields of decreasing§§ symmetry. The less symmetrical a potential is the less likely it is that we can obtain analytic results, so in 3.4 we review techniques for integrating orbits in both a given gravitational§ field, and the gravitational field of a system of orbiting masses. Even numerically integrated orbits in gravitational fields of low symmetry often display a high degree of regularity in their phase-space structures. In 3.5 we study this structure using ana- lytic models, and develop analytic to§ols of considerable power, including the idea of adiabatic invariance, which we apply to some astronomical problems in 3.6. In 3.7 we develop Hamiltonian perturbation theory, and use it to study§ the phenomenon§ of orbital resonance and the role it plays in generat- ing orbital chaos. In 3.8 we draw on techniques developed throughout the chapter to understand§how elliptical galaxies are affected by the existence of central stellar cusps and massive black holes at their centers. All of the work in this chapter is based on a fundamental approximation: 3.1 Orbits in spherical potentials 143 although galaxies are composed of stars, we shall neglect the forces from individual stars and consider only the large-scale forces from the overall mass distribution, which is made up of thousands of millions of stars. In other words, we assume that the gravitational fields of galaxies are smooth, neglecting small-scale irregularities due to individual stars or larger objects like globular clusters or molecular clouds. As we saw in 1.2, the gravitational fields of galaxies are sufficiently smooth that these irregularities§ can affect the orbits of stars only after many crossing times. Since we are dealing only with gravitational forces, the trajectory of a star in a given field does not depend on its mass. Hence, we examine the dynamics of a particle of unit mass, and quantities such as momentum, angular momentum, and energy, and functions such as the Lagrangian and Hamiltonian, are normally written per unit mass. 3.1 Orbits in static spherical potentials We first consider orbits in a static, spherically symmetric gravitational field. Such fields are appropriate for globular clusters, which are usually nearly spherical, but, more important, the results we obtain provide an indispens- able guide to the behavior of orbits in more general fields. The motion of a star in a centrally directed gravitational field is greatly simplified by the familiar law of conservation of angular momentum (see Appendix D.1). Thus if r = reˆr (3.1) denotes the position vector of the star with respect to the center, and the radial acceleration is g = g(r)eˆr, (3.2) the equation of motion of the star is d2r = g(r)eˆ . (3.3) dt2 r If we remember that the cross product of any vector with itself is zero, we have d dr dr dr d2r r = + r = g(r)r eˆ = 0. (3.4) dt × dt dt × dt × dt2 × r ! " Equation (3.4) says that r r˙ is some constant vector, say L: × dr r = L. (3.5) × dt Of course, L is simply the angular momentum per unit mass, a vector perpendicular to the plane defined by the star’s instantaneous position and 144 Chapter 3: The Orbits of Stars velocity vectors. Since this vector is constant, we conclude that the star moves in a plane, the orbital plane. This finding greatly simplifies the determination of the star’s orbit, for now that we have established that the star moves in a plane, we may simply use plane polar coordinates (r, ψ) in which the center of attraction is at r = 0 and ψ is the azimuthal angle in the orbital plane. In terms of these coordinates, the Lagrangian per unit mass (Appendix D.3) is = 1 r˙2 + (rψ˙)2 Φ(r), (3.6) L 2 − where Φ is the gravitational poten# tial and$ g(r) = dΦ/dr. The equations of motion are − d ∂ ∂ dΦ 0 = L L = r¨ rψ˙2 + , (3.7a) dt ∂r˙ − ∂r − dr d ∂ ∂ d 0 = L L = r2ψ˙ . (3.7b) dt ∂ψ˙ − ∂ψ dt % & The second of these equations implies that r2ψ˙ = constant L. (3.8) ≡ It is not hard to show that L is actually the length of the vector r r˙, and hence that (3.8) is just a restatement of the conservation of angular× momentum. Geometrically, L is equal to twice the rate at which the radius vector sweeps out area. To proceed further we use equation (3.8) to replace time t by angle ψ as the independent variable in equation (3.7a). Since (3.8) implies d L d = , (3.9) dt r2 dψ equation (3.7a) becomes L2 d 1 dr L2 dΦ = . (3.10) r2 dψ r2 dψ − r3 − dr ! " This equation can be simplified by the substitution 1 u , (3.11a) ≡ r which puts (3.10) into the form d2u 1 dΦ + u = 1/u . (3.11b) dψ2 L2u2 dr % & 3.1 Orbits in spherical potentials 145 The solutions of this equation are of two types: along unbound orbits r and hence u 0, while on bound orbits r and u oscillate between finite→ limits.∞ Thus eac→h bound orbit is associated with a periodic solution of this equation. We give several analytic examples later in this section, but in general the solutions of equation (3.11b) must be obtained numerically. Some additional insight is gained by deriving a “radial energy” equation from equation (3.11b) in much the same way as we derive the conservation of kinetic plus potential energy in Appendix D; we multiply (3.11b) by du/dψ and integrate over ψ to obtain du 2 2Φ 2E + + u2 = constant , (3.12) dψ L2 ≡ L2 ! " where we have used the relation dΦ/dr = u2(dΦ/du). − This result can also be derived using Hamiltonians (Appendix D.4). From (3.6) we have that the momenta are p = ∂ /∂r˙ = r˙ and p = r L ψ ∂ /∂ψ˙ = r2ψ˙, so with equation (D.50) we find that the Hamiltonian per unitL mass is H(r, p , p ) = p r˙ + p ψ˙ r ψ r ψ − L p2 = 1 p2 + ψ + Φ(r) 2 r r2 (3.13) ' dr 2 ( dψ 2 = 1 + 1 r + Φ(r). 2 dt 2 dt ! " ! " When we multiply (3.12) by L2/2 and exploit (3.9), we find that the constant E in equation (3.12) is simply the numerical value of the Hamiltonian, which we refer to as the energy of that orbit. For bound orbits the equation du/dψ = 0 or, from equation (3.12) 2[Φ(1/u) E] u2 + − = 0 (3.14) L2 will normally have two roots u1 and u2 between which the star oscillates radially as it revolves in ψ (see Problem 3.7). Thus the orbit is confined 1 between an inner radius r1 = u1− , known as the pericenter distance, and 1 an outer radius r2 = u2− , called the apocenter distance. The pericenter and apocenter are equal for a circular orbit. When the apocenter is nearly equal to the pericenter, we say that the orbit has small eccentricity, while if the apocenter is much larger than the pericenter, the eccentricity is said to be near unity. The term “eccentricity” also has a mathematical definition, but only for Kepler orbits—see equation (3.25a). 146 Chapter 3: The Orbits of Stars Figure 3.1 A typical orbit in a spherical potential (the isochrone, eq. 2.47) forms a rosette. The radial period Tr is the time required for the star to travel from apocenter to pericenter and back. To determine Tr we use equation (3.8) to eliminate ψ˙ from equation (3.13). We find dr 2 L2 = 2(E Φ) , (3.15) dt − − r2 ! " which may be rewritten dr L2 = 2[E Φ(r)] 2 . (3.16) dt ±) − − r The two possible signs arise because the star moves alternately in and out. Comparing (3.16) with (3.14) we see that r˙ = 0 at the pericenter and apocen- ter distances r1 and r2, as of course it must. From equation (3.16) it follows that the radial period is r2 dr Tr = 2 . (3.17) 2 2 r 2[E Φ(r)] L /r * 1 − − In traveling from pericenter+to apocenter and back, the azimuthal angle ψ increases by an amount r2 dψ r2 L dt ∆ψ = 2 dr = 2 dr. (3.18a) dr r2 dr *r1 *r1 Substituting for dt/dr from (3.16) this becomes r2 dr ∆ψ = 2L . (3.18b) 2 2 2 r r 2[E Φ(r)] L /r * 1 − − + 3.1 Orbits in spherical potentials 147 The azimuthal period is 2π T = T ; (3.19) ψ ∆ψ r | | in other words, the mean angular speed of the particle is 2π/Tψ. In general ∆ψ/2π will not be a rational number. Hence the orbit will not be closed: a typical orbit resembles a rosette and eventually passes close to every point in the annulus between the circles of radii r1 and r2 (see Figure 3.1 and Problem 3.13).
Recommended publications
  • Instructor's Guide for Virtual Astronomy Laboratories
    Instructor’s Guide for Virtual Astronomy Laboratories Mike Guidry, University of Tennessee Kevin Lee, University of Nebraska The Brooks/Cole product Virtual Astronomy Laboratories consists of 20 virtual online astronomy laboratories (VLabs) representing a sampling of interactive exercises that illustrate some of the most important topics in introductory astronomy. The exercises are meant to be representative, not exhaustive, since introductory astronomy is too broad to be covered in only 20 laboratories. Material is approximately evenly divided between that commonly found in the Solar System part of an introductory course and that commonly associated with the stars, galaxies, and cosmology part of such a course. Intended Use This material was designed to serve two general functions: on the one hand it represents a set of virtual laboratories that can be used as part or all of an introductory astronomy laboratory sequence, either within a normal laboratory setting or in a distance learning environment. On the other hand, it is meant to serve as a tutorial supplement for standard textbooks. While this is an efficient use of the material, it presents some problems in organization since (as a rule of thumb) supplemental tutorial material is more concept oriented while astronomy laboratory material typically requires more hands-on problem-solving involving at least some basic mathematical manipulations. As a result, one will find material of varying levels of difficulty in these laboratories. Some sections are highly conceptual in nature, emphasizing more qualitative answers to questions that students may deduce without working through involved tasks. Other sections, even within the same virtual laboratory, may require students to carry out guided but non-trivial analysis in order to answer questions.
    [Show full text]
  • The Search for Exomoons and the Characterization of Exoplanet Atmospheres
    Corso di Laurea Specialistica in Astronomia e Astrofisica The search for exomoons and the characterization of exoplanet atmospheres Relatore interno : dott. Alessandro Melchiorri Relatore esterno : dott.ssa Giovanna Tinetti Candidato: Giammarco Campanella Anno Accademico 2008/2009 The search for exomoons and the characterization of exoplanet atmospheres Giammarco Campanella Dipartimento di Fisica Università degli studi di Roma “La Sapienza” Associate at Department of Physics & Astronomy University College London A thesis submitted for the MSc Degree in Astronomy and Astrophysics September 4th, 2009 Università degli Studi di Roma ―La Sapienza‖ Abstract THE SEARCH FOR EXOMOONS AND THE CHARACTERIZATION OF EXOPLANET ATMOSPHERES by Giammarco Campanella Since planets were first discovered outside our own Solar System in 1992 (around a pulsar) and in 1995 (around a main sequence star), extrasolar planet studies have become one of the most dynamic research fields in astronomy. Our knowledge of extrasolar planets has grown exponentially, from our understanding of their formation and evolution to the development of different methods to detect them. Now that more than 370 exoplanets have been discovered, focus has moved from finding planets to characterise these alien worlds. As well as detecting the atmospheres of these exoplanets, part of the characterisation process undoubtedly involves the search for extrasolar moons. The structure of the thesis is as follows. In Chapter 1 an historical background is provided and some general aspects about ongoing situation in the research field of extrasolar planets are shown. In Chapter 2, various detection techniques such as radial velocity, microlensing, astrometry, circumstellar disks, pulsar timing and magnetospheric emission are described. A special emphasis is given to the transit photometry technique and to the two already operational transit space missions, CoRoT and Kepler.
    [Show full text]
  • TOPICS in CELESTIAL MECHANICS 1. the Newtonian N-Body Problem
    TOPICS IN CELESTIAL MECHANICS RICHARD MOECKEL 1. The Newtonian n-body Problem Celestial mechanics can be defined as the study of the solution of Newton's differ- ential equations formulated by Isaac Newton in 1686 in his Philosophiae Naturalis Principia Mathematica. The setting for celestial mechanics is three-dimensional space: 3 R = fq = (x; y; z): x; y; z 2 Rg with the Euclidean norm: p jqj = x2 + y2 + z2: A point particle is characterized by a position q 2 R3 and a mass m 2 R+. A motion of such a particle is described by a curve q(t) where t runs over some interval in R; the mass is assumed to be constant. Some remarks will be made below about why it is reasonable to model a celestial body by a point particle. For every motion of a point particle one can define: velocity: v(t) =q _(t) momentum: p(t) = mv(t): Newton formulated the following laws of motion: Lex.I. Corpus omne perservare in statu suo quiescendi vel movendi uniformiter in directum, nisi quatenus a viribus impressis cogitur statum illum mutare 1 Lex.II. Mutationem motus proportionem esse vi motrici impressae et fieri secundem lineam qua vis illa imprimitur. 2 Lex.III Actioni contrarium semper et aequalem esse reactionem: sive corporum duorum actiones in se mutuo semper esse aequales et in partes contrarias dirigi. 3 The first law is statement of the principle of inertia. The second law asserts the existence of a force function F : R4 ! R3 such that: p_ = F (q; t) or mq¨ = F (q; t): In celestial mechanics, the dependence of F (q; t) on t is usually indirect; the force on one body depends on the positions of the other massive bodies which in turn depend on t.
    [Show full text]
  • Kepler Press
    National Aeronautics and Space Administration PRESS KIT/FEBRUARY 2009 Kepler: NASA’s First Mission Capable of Finding Earth-Size Planets www.nasa.gov Media Contacts J.D. Harrington Policy/Program Management 202-358-5241 NASA Headquarters [email protected] Washington 202-262-7048 (cell) Michael Mewhinney Science 650-604-3937 NASA Ames Research Center [email protected] Moffett Field, Calif. 650-207-1323 (cell) Whitney Clavin Spacecraft/Project Management 818-354-4673 Jet Propulsion Laboratory [email protected] Pasadena, Calif. 818-458-9008 (cell) George Diller Launch Operations 321-867-2468 Kennedy Space Center, Fla. [email protected] 321-431-4908 (cell) Roz Brown Spacecraft 303-533-6059. Ball Aerospace & Technologies Corp. [email protected] Boulder, Colo. 720-581-3135 (cell) Mike Rein Delta II Launch Vehicle 321-730-5646 United Launch Alliance [email protected] Cape Canaveral Air Force Station, Fla. 321-693-6250 (cell) Contents Media Services Information .......................................................................................................................... 5 Quick Facts ................................................................................................................................................... 7 NASA’s Search for Habitable Planets ............................................................................................................ 8 Scientific Goals and Objectives .................................................................................................................
    [Show full text]
  • Kepler's Laws of Planetary Motion
    Kepler's laws of planetary motion In astronomy, Kepler's laws of planetary motion are three scientific laws describing the motion ofplanets around the Sun. 1. The orbit of a planet is an ellipse with the Sun at one of the twofoci . 2. A line segment joining a planet and the Sun sweeps out equal areas during equal intervals of time.[1] 3. The square of the orbital period of a planet is directly proportional to the cube of the semi-major axis of its orbit. Most planetary orbits are nearly circular, and careful observation and calculation are required in order to establish that they are not perfectly circular. Calculations of the orbit of Mars[2] indicated an elliptical orbit. From this, Johannes Kepler inferred that other bodies in the Solar System, including those farther away from the Sun, also have elliptical orbits. Kepler's work (published between 1609 and 1619) improved the heliocentric theory of Nicolaus Copernicus, explaining how the planets' speeds varied, and using elliptical orbits rather than circular orbits withepicycles .[3] Figure 1: Illustration of Kepler's three laws with two planetary orbits. Isaac Newton showed in 1687 that relationships like Kepler's would apply in the 1. The orbits are ellipses, with focal Solar System to a good approximation, as a consequence of his own laws of motion points F1 and F2 for the first planet and law of universal gravitation. and F1 and F3 for the second planet. The Sun is placed in focal pointF 1. 2. The two shaded sectors A1 and A2 Contents have the same surface area and the time for planet 1 to cover segmentA 1 Comparison to Copernicus is equal to the time to cover segment A .
    [Show full text]
  • Orbital Mechanics Joe Spier, K6WAO – AMSAT Director for Education ARRL 100Th Centennial Educational Forum 1 History
    Orbital Mechanics Joe Spier, K6WAO – AMSAT Director for Education ARRL 100th Centennial Educational Forum 1 History Astrology » Pseudoscience based on several systems of divination based on the premise that there is a relationship between astronomical phenomena and events in the human world. » Many cultures have attached importance to astronomical events, and the Indians, Chinese, and Mayans developed elaborate systems for predicting terrestrial events from celestial observations. » In the West, astrology most often consists of a system of horoscopes purporting to explain aspects of a person's personality and predict future events in their life based on the positions of the sun, moon, and other celestial objects at the time of their birth. » The majority of professional astrologers rely on such systems. 2 History Astronomy » Astronomy is a natural science which is the study of celestial objects (such as stars, galaxies, planets, moons, and nebulae), the physics, chemistry, and evolution of such objects, and phenomena that originate outside the atmosphere of Earth, including supernovae explosions, gamma ray bursts, and cosmic microwave background radiation. » Astronomy is one of the oldest sciences. » Prehistoric cultures have left astronomical artifacts such as the Egyptian monuments and Nubian monuments, and early civilizations such as the Babylonians, Greeks, Chinese, Indians, Iranians and Maya performed methodical observations of the night sky. » The invention of the telescope was required before astronomy was able to develop into a modern science. » Historically, astronomy has included disciplines as diverse as astrometry, celestial navigation, observational astronomy and the making of calendars, but professional astronomy is nowadays often considered to be synonymous with astrophysics.
    [Show full text]
  • Discovering Exoplanets Transiting Bright and Unusual Stars with K2
    Discovering Exoplanets Transiting Bright and Unusual Stars with K2 ! ! PhD Thesis Proposal, Department of Astronomy, Harvard University ! ! Andrew Vanderburg! Advised by David! Latham ! ! ! April 18, 2015 After four years of surveying one field of view, the Kepler space telescope suffered a mechanical failure which ended its original planet-hunting mission, but has enabled a new mission (called K2) where Kepler surveys different fields across the sky. The K2 mission will survey 15 to 20 times more sky than the original Kepler mission, and in this wider field of view will be able to detect more planets orbiting rare objects. For my research exam, I developed a method to analyze K2 data that removes strong systematics from the light curves and enables planet detection. In my thesis, I propose to do the science enabled by my research exam work. I have already taken the work I completed for my research exam, upgraded and improved the method, and developed an automatic pipeline to search for transiting planets. I have searched K2 light curves for planets, produced a catalog of candidates, identified interesting planet candidates, and organized follow- up observations to confirm the discoveries. I propose to continue improving my software pipeline to detect even more planets, and produce a new catalog, and I propose to measure the mass of at least one of the resulting discoveries with the HARPS-N spectrograph. The resulting catalog will be a resource for astronomers studying these planets, and the investigations on interesting single objects will help us understand topics ranging from planet composition to the !evolution of planetary systems.
    [Show full text]
  • Global Journal of Science Frontier Research: a Physics & Space Science
    Online ISSN: 2249-4626 Print ISSN: 0975-5896 SK Box Manoeuvres Uhf Wave Propagation Optimization Control SK Box Oscillating Theory of The Universe VOLUME 15 ISSUE 7 VERSION 1.0 Global Journal of Science Frontier Research: A Physics & Space Science Global Journal of Science Frontier Research: A Physics & Space Science Volume 15 Issue 7 (Ver. 1.0) Open Association of Research Society © Global Journal of Science Global Journals Inc. Frontier Research. 2015 . (A Delaware USA Incorporation with “Good Standing”; Reg. Number: 0423089) Sponsors: Open Association of Research Society All rights reserved. Open Scientific Standards This is a special issue published in version 1.0 of “Global Journal of Science Frontier Publisher’s Headquarters office Research.” By Global Journals Inc. All articles are open access articles distributed Global Journals Headquarters under “Global Journal of Science Frontier 301st Edgewater Place Suite, 100 Edgewater Dr.-Pl, Research” Wakefield MASSACHUSETTS, Pin: 01880, Reading License, which permits restricted use. United States of America Entire contents are copyright by of “Global Journal of Science Frontier Research” unless USA Toll Free: +001-888-839-7392 otherwise noted on specific articles. USA Toll Free Fax: +001-888-839-7392 No part of this publication may be reproduced Offset Typesetting or transmitted in any form or by any means, electronic or mechanical, including photocopy, recording, or any information Global Journals Incorporated storage and retrieval system, without written 2nd, Lansdowne, Lansdowne Rd., Croydon-Surrey, permission. Pin: CR9 2ER, United Kingdom The opinions and statements made in this book are those of the authors concerned. Packaging & Continental Dispatching Ultraculture has not verified and neither confirms nor denies any of the foregoing and no warranty or fitness is implied.
    [Show full text]
  • A Benchmarking and Sensitivity Study of the Full Two-Body Gravitational
    A benchmarking and sensitivity study of the full two-body gravitational dynamics of the DART mission target, binary asteroid 65803 Didymos Harrison Agrusa, Derek Richardson, Alex Davis, Eugene Fahnestock, Masatoshi Hirabayashi, Nancy Chabot, Andrew Cheng, Andrew Rivkin, Patrick Michel To cite this version: Harrison Agrusa, Derek Richardson, Alex Davis, Eugene Fahnestock, Masatoshi Hirabayashi, et al.. A benchmarking and sensitivity study of the full two-body gravitational dynamics of the DART mission target, binary asteroid 65803 Didymos. Icarus, Elsevier, 2020, 349, pp.113849. 10.1016/j.icarus.2020.113849. hal-02986184 HAL Id: hal-02986184 https://hal.archives-ouvertes.fr/hal-02986184 Submitted on 22 Dec 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. A Benchmarking and Sensitivity Study of the Full Two-Body Gravitational Dynamics of the DART Mission Target, Binary Asteroid 65803 Didymos Harrison F. Agrusaa,∗, Derek C. Richardsona, Alex B. Davisb, Eugene Fahnestockc, Masatoshi Hirabayashid, Nancy L. Chabote, Andrew F. Chenge, Andrew S. Rivkine,
    [Show full text]
  • Positional Astronomy : Earth Orbit Around Sun
    www.myreaders.info www.myreaders.info Return to Website POSITIONAL ASTRONOMY : EARTH ORBIT AROUND SUN RC Chakraborty (Retd), Former Director, DRDO, Delhi & Visiting Professor, JUET, Guna, www.myreaders.info, [email protected], www.myreaders.info/html/orbital_mechanics.html, Revised Dec. 16, 2015 (This is Sec. 2, pp 33 - 56, of Orbital Mechanics - Model & Simulation Software (OM-MSS), Sec 1 to 10, pp 1 - 402.) OM-MSS Page 33 OM-MSS Section - 2 -------------------------------------------------------------------------------------------------------13 www.myreaders.info POSITIONAL ASTRONOMY : EARTH ORBIT AROUND SUN, ASTRONOMICAL EVENTS ANOMALIES, EQUINOXES, SOLSTICES, YEARS & SEASONS. Look at the Preliminaries about 'Positional Astronomy', before moving to the predictions of astronomical events. Definition : Positional Astronomy is measurement of Position and Motion of objects on celestial sphere seen at a particular time and location on Earth. Positional Astronomy, also called Spherical Astronomy, is a System of Coordinates. The Earth is our base from which we look into space. Earth orbits around Sun, counterclockwise, in an elliptical orbit once in every 365.26 days. Earth also spins in a counterclockwise direction on its axis once every day. This accounts for Sun, rise in East and set in West. Term 'Earth Rotation' refers to the spinning of planet earth on its axis. Term 'Earth Revolution' refers to orbital motion of the Earth around the Sun. Earth axis is tilted about 23.45 deg, with respect to the plane of its orbit, gives four seasons as Spring, Summer, Autumn and Winter. Moon and artificial Satellites also orbits around Earth, counterclockwise, in the same way as earth orbits around sun. Earth's Coordinate System : One way to describe a location on earth is Latitude & Longitude, which is fixed on the earth's surface.
    [Show full text]
  • Kepler's Laws
    Kepler’s Laws I. The equation of motion We consider the motion of a point mass under the influence of a gravitational field created by point mass that is fixed at the origin. Newton’s laws give the basic equation of motion for such a system. We denote by q(t) the position of the movable point mass at time t, by m the mass of the movable point mass, and by M the mass of the point mass fixed at the origin. By Newton’s law on gravition, the force exerted by the fixed mass on the movable mass is in the direction of the vector q(t). It is proportional to the product of the two masses and the inverse of the square of − the distances between the two masses. The proportionality constant is the gravitational constant G. In formuli q force = G mM − q 3 k k Newton’s second law states that force = mass acceleration = m q¨ × From these two equation one gets q m q¨ = G mM − q 3 k k Dividing by m, q q¨ = µ (1) − q 3 k k with µ = GM. This is the basic equation of motion. It is an ordinary differential equation, so the motion is uniquely determined by initial point and initial velocity. In particular q(t) will always lie in the linear subspace of IR3 spanned by the initial position and initial velocity. This linear subspace will in general have dimension two, and in any case has dimension at most two. II. Statement of Kepler’s Laws Johannes Kepler (1571-1630) had stated three laws about planetary motion.
    [Show full text]
  • Dynamics of Collisionless Systems Summer Semester 2005, ETH Zürich
    Dynamics of Collisionless Systems Summer Semester 2005, ETH Zürich Frank C. van den Bosch Useful Information TEXTBOOK: Galactic Dynamics, Binney & Tremaine Princeton University Press Highly Recommended WEBPAGE: http://www.exp-astro.phys.ethz.ch/ vdbosch/galdyn.html LECTURES: Wed, 14.45-16.30, HPP H2. Lectures will be in English EXERSIZE CLASSES: to be determined HOMEWORK ASSIGNMENTS: every other week EXAM: Verbal (German possible), July/August 2005 GRADING: exam (2=3) plus homework assignments (1=3) TEACHER: Frank van den Bosch ([email protected]), HPT G6 SUBSTITUTE TEACHERS: Peder Norberg ([email protected]), HPF G3.1 Savvas Koushiappas ([email protected]), HPT G3 Outline Lecture 1: Introduction & General Overview Lecture 2: Cancelled Lecture 3: Potential Theory Lecture 4: Orbits I (Introduction to Orbit Theory) Lecture 5: Orbits II (Resonances) Lecture 6: Orbits III (Phase-Space Structure of Orbits) Lecture 7: Equilibrium Systems I (Jeans Equations) Lecture 8: Equilibrium Systems II (Jeans Theorem in Spherical Systems) Lecture 9: Equilibrium Systems III (Jeans Theorem in Spheroidal Systems) Lecture 10: Relaxation & Virialization (Violent Relaxation & Phase Mixing) Lecture 11: Wave Mechanics of Disks (Spiral Structure & Bars) Lecture 12: Collisions between Collisionless Systems (Dynamical Friction) Lecture 13: Kinetic Theory (Fokker-Planck Eq. & Core Collapse) Lecture 14: Cancelled Summary of Vector Calculus I A~ B~ = scalar = A~ B~ cos = A B (summation convention) · j j j j i i A~ B~ = vector = ~e A B (with the Levi-Civita
    [Show full text]