Least-Action Principle Applied to the Kepler Problem
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Celestial Mechanics of Newton
GENERAL I ARTICLE The Celestial Mechanics of Newton Dipankar Bhattacharya Newton's law of universal gravitation laid the physical foundation of celestial mechanics. This article reviews the steps towards the law of gravi tation, and highlights some applications to celes tial mechanics found in Newton's Principia. 1. Introduction Newton's Principia consists of three books; the third Dipankar Bhattacharya is at the Astrophysics Group dealing with the The System of the World puts forth of the Raman Research Newton's views on celestial mechanics. This third book Institute. His research is indeed the heart of Newton's "natural philosophy" interests cover all types of which draws heavily on the mathematical results derived cosmic explosions and in the first two books. Here he systematises his math their remnants. ematical findings and confronts them against a variety of observed phenomena culminating in a powerful and compelling development of the universal law of gravita tion. Newton lived in an era of exciting developments in Nat ural Philosophy. Some three decades before his birth J 0- hannes Kepler had announced his first two laws of plan etary motion (AD 1609), to be followed by the third law after a decade (AD 1619). These were empirical laws derived from accurate astronomical observations, and stirred the imagination of philosophers regarding their underlying cause. Mechanics of terrestrial bodies was also being developed around this time. Galileo's experiments were conducted in the early 17th century leading to the discovery of the Keywords laws of free fall and projectile motion. Galileo's Dialogue Celestial mechanics, astronomy, about the system of the world was published in 1632. -
Instructor's Guide for Virtual Astronomy Laboratories
Instructor’s Guide for Virtual Astronomy Laboratories Mike Guidry, University of Tennessee Kevin Lee, University of Nebraska The Brooks/Cole product Virtual Astronomy Laboratories consists of 20 virtual online astronomy laboratories (VLabs) representing a sampling of interactive exercises that illustrate some of the most important topics in introductory astronomy. The exercises are meant to be representative, not exhaustive, since introductory astronomy is too broad to be covered in only 20 laboratories. Material is approximately evenly divided between that commonly found in the Solar System part of an introductory course and that commonly associated with the stars, galaxies, and cosmology part of such a course. Intended Use This material was designed to serve two general functions: on the one hand it represents a set of virtual laboratories that can be used as part or all of an introductory astronomy laboratory sequence, either within a normal laboratory setting or in a distance learning environment. On the other hand, it is meant to serve as a tutorial supplement for standard textbooks. While this is an efficient use of the material, it presents some problems in organization since (as a rule of thumb) supplemental tutorial material is more concept oriented while astronomy laboratory material typically requires more hands-on problem-solving involving at least some basic mathematical manipulations. As a result, one will find material of varying levels of difficulty in these laboratories. Some sections are highly conceptual in nature, emphasizing more qualitative answers to questions that students may deduce without working through involved tasks. Other sections, even within the same virtual laboratory, may require students to carry out guided but non-trivial analysis in order to answer questions. -
The Search for Exomoons and the Characterization of Exoplanet Atmospheres
Corso di Laurea Specialistica in Astronomia e Astrofisica The search for exomoons and the characterization of exoplanet atmospheres Relatore interno : dott. Alessandro Melchiorri Relatore esterno : dott.ssa Giovanna Tinetti Candidato: Giammarco Campanella Anno Accademico 2008/2009 The search for exomoons and the characterization of exoplanet atmospheres Giammarco Campanella Dipartimento di Fisica Università degli studi di Roma “La Sapienza” Associate at Department of Physics & Astronomy University College London A thesis submitted for the MSc Degree in Astronomy and Astrophysics September 4th, 2009 Università degli Studi di Roma ―La Sapienza‖ Abstract THE SEARCH FOR EXOMOONS AND THE CHARACTERIZATION OF EXOPLANET ATMOSPHERES by Giammarco Campanella Since planets were first discovered outside our own Solar System in 1992 (around a pulsar) and in 1995 (around a main sequence star), extrasolar planet studies have become one of the most dynamic research fields in astronomy. Our knowledge of extrasolar planets has grown exponentially, from our understanding of their formation and evolution to the development of different methods to detect them. Now that more than 370 exoplanets have been discovered, focus has moved from finding planets to characterise these alien worlds. As well as detecting the atmospheres of these exoplanets, part of the characterisation process undoubtedly involves the search for extrasolar moons. The structure of the thesis is as follows. In Chapter 1 an historical background is provided and some general aspects about ongoing situation in the research field of extrasolar planets are shown. In Chapter 2, various detection techniques such as radial velocity, microlensing, astrometry, circumstellar disks, pulsar timing and magnetospheric emission are described. A special emphasis is given to the transit photometry technique and to the two already operational transit space missions, CoRoT and Kepler. -
TOPICS in CELESTIAL MECHANICS 1. the Newtonian N-Body Problem
TOPICS IN CELESTIAL MECHANICS RICHARD MOECKEL 1. The Newtonian n-body Problem Celestial mechanics can be defined as the study of the solution of Newton's differ- ential equations formulated by Isaac Newton in 1686 in his Philosophiae Naturalis Principia Mathematica. The setting for celestial mechanics is three-dimensional space: 3 R = fq = (x; y; z): x; y; z 2 Rg with the Euclidean norm: p jqj = x2 + y2 + z2: A point particle is characterized by a position q 2 R3 and a mass m 2 R+. A motion of such a particle is described by a curve q(t) where t runs over some interval in R; the mass is assumed to be constant. Some remarks will be made below about why it is reasonable to model a celestial body by a point particle. For every motion of a point particle one can define: velocity: v(t) =q _(t) momentum: p(t) = mv(t): Newton formulated the following laws of motion: Lex.I. Corpus omne perservare in statu suo quiescendi vel movendi uniformiter in directum, nisi quatenus a viribus impressis cogitur statum illum mutare 1 Lex.II. Mutationem motus proportionem esse vi motrici impressae et fieri secundem lineam qua vis illa imprimitur. 2 Lex.III Actioni contrarium semper et aequalem esse reactionem: sive corporum duorum actiones in se mutuo semper esse aequales et in partes contrarias dirigi. 3 The first law is statement of the principle of inertia. The second law asserts the existence of a force function F : R4 ! R3 such that: p_ = F (q; t) or mq¨ = F (q; t): In celestial mechanics, the dependence of F (q; t) on t is usually indirect; the force on one body depends on the positions of the other massive bodies which in turn depend on t. -
Perturbation Theory in Celestial Mechanics
Perturbation Theory in Celestial Mechanics Alessandra Celletti Dipartimento di Matematica Universit`adi Roma Tor Vergata Via della Ricerca Scientifica 1, I-00133 Roma (Italy) ([email protected]) December 8, 2007 Contents 1 Glossary 2 2 Definition 2 3 Introduction 2 4 Classical perturbation theory 4 4.1 The classical theory . 4 4.2 The precession of the perihelion of Mercury . 6 4.2.1 Delaunay action–angle variables . 6 4.2.2 The restricted, planar, circular, three–body problem . 7 4.2.3 Expansion of the perturbing function . 7 4.2.4 Computation of the precession of the perihelion . 8 5 Resonant perturbation theory 9 5.1 The resonant theory . 9 5.2 Three–body resonance . 10 5.3 Degenerate perturbation theory . 11 5.4 The precession of the equinoxes . 12 6 Invariant tori 14 6.1 Invariant KAM surfaces . 14 6.2 Rotational tori for the spin–orbit problem . 15 6.3 Librational tori for the spin–orbit problem . 16 6.4 Rotational tori for the restricted three–body problem . 17 6.5 Planetary problem . 18 7 Periodic orbits 18 7.1 Construction of periodic orbits . 18 7.2 The libration in longitude of the Moon . 20 1 8 Future directions 20 9 Bibliography 21 9.1 Books and Reviews . 21 9.2 Primary Literature . 22 1 Glossary KAM theory: it provides the persistence of quasi–periodic motions under a small perturbation of an integrable system. KAM theory can be applied under quite general assumptions, i.e. a non– degeneracy of the integrable system and a diophantine condition of the frequency of motion. -
The Celestial Mechanics Approach: Theoretical Foundations
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by RERO DOC Digital Library J Geod (2010) 84:605–624 DOI 10.1007/s00190-010-0401-7 ORIGINAL ARTICLE The celestial mechanics approach: theoretical foundations Gerhard Beutler · Adrian Jäggi · Leoš Mervart · Ulrich Meyer Received: 31 October 2009 / Accepted: 29 July 2010 / Published online: 24 August 2010 © Springer-Verlag 2010 Abstract Gravity field determination using the measure- of the CMA, in particular to the GRACE mission, may be ments of Global Positioning receivers onboard low Earth found in Beutler et al. (2010) and Jäggi et al. (2010b). orbiters and inter-satellite measurements in a constellation of The determination of the Earth’s global gravity field using satellites is a generalized orbit determination problem involv- the data of space missions is nowadays either based on ing all satellites of the constellation. The celestial mechanics approach (CMA) is comprehensive in the sense that it encom- 1. the observations of spaceborne Global Positioning (GPS) passes many different methods currently in use, in particular receivers onboard low Earth orbiters (LEOs) (see so-called short-arc methods, reduced-dynamic methods, and Reigber et al. 2004), pure dynamic methods. The method is very flexible because 2. or precise inter-satellite distance monitoring of a close the actual solution type may be selected just prior to the com- satellite constellation using microwave links (combined bination of the satellite-, arc- and technique-specific normal with the measurements of the GPS receivers on all space- equation systems. It is thus possible to generate ensembles crafts involved) (see Tapley et al. -
Classical and Celestial Mechanics, the Recife Lectures, Hildeberto Cabral and Florin Diacu (Editors), Princeton Univ
BULLETIN (New Series) OF THE AMERICAN MATHEMATICAL SOCIETY Volume 41, Number 1, Pages 121{125 S 0273-0979(03)00997-2 Article electronically published on October 2, 2003 Classical and celestial mechanics, the Recife lectures, Hildeberto Cabral and Florin Diacu (Editors), Princeton Univ. Press, Princeton, NJ, 2002, xviii+385 pp., $49.50, ISBN 0-691-05022-8 The photographs of Recife which are scattered throughout this book reveal an eclectic mix of old colonial buildings and sleek, modern towers. A clear hot sun shines alike on sixteenth century churches and glistening yachts riding the tides of the harbor. The city of 1.5 million inhabitants is the capital of the Pernambuco state in northeastern Brazil and home of the Federal University of Pernambuco, where the lectures which comprise the body of the book were delivered. Each lecturer presented a focused mini-course on some aspect of contemporary classical mechanics research at a level accessible to graduate students and later provided a written version for the book. The lectures are as varied as their authors. Taken together they constitute an album of snapshots of an old but beautiful subject. Perhaps the mathematical study of mechanics should also be dated to the six- teenth century, when Galileo discovered the principle of inertia and the laws gov- erning the motion of falling bodies. It took the genius of Newton to provide a mathematical formulation of general principles of mechanics valid for systems as diverse as spinning tops, tidal waves and planets. Subsequently, the attempt to work out the consequences of these principles in specific examples served as a catalyst for the development of the modern theory of differential equations and dynamical systems. -
A New Celestial Mechanics Dynamics of Accelerated Systems
Journal of Applied Mathematics and Physics, 2019, 7, 1732-1754 http://www.scirp.org/journal/jamp ISSN Online: 2327-4379 ISSN Print: 2327-4352 A New Celestial Mechanics Dynamics of Accelerated Systems Gabriel Barceló Dinamica Fundación, Madrid, Spain How to cite this paper: Barceló, G. (2019) Abstract A New Celestial Mechanics Dynamics of Accelerated Systems. Journal of Applied We present in this text the research carried out on the dynamic behavior of Mathematics and Physics, 7, 1732-1754. non-inertial systems, proposing new keys to better understand the mechanics https://doi.org/10.4236/jamp.2019.78119 of the universe. Applying the field theory to the dynamic magnitudes cir- Received: July 2, 2019 cumscribed to a body, our research has achieved a new conception of the Accepted: August 13, 2019 coupling of these magnitudes, to better understand the behavior of solid rigid Published: August 16, 2019 bodies, when subjected to multiple simultaneous, non-coaxial rotations. The results of the research are consistent with Einstein’s theories on rotation; Copyright © 2019 by author(s) and Scientific Research Publishing Inc. however, we propose a different mechanics and complementary to classical This work is licensed under the Creative mechanics, specifically for systems accelerated by rotations. These new con- Commons Attribution International cepts define the Theory of Dynamic Interactions (TDI), a new dynamic mod- License (CC BY 4.0). el for non-inertial systems with axial symmetry, which is based on the prin- http://creativecommons.org/licenses/by/4.0/ Open Access ciples of conservation of measurable quantities: the notion of quantity, total mass and total energy. -
Relativistic Corrections to the Central Force Problem in a Generalized
Relativistic corrections to the central force problem in a generalized potential approach Ashmeet Singh∗ and Binoy Krishna Patra† Department of Physics, Indian Institute of Technology Roorkee, India - 247667 We present a novel technique to obtain relativistic corrections to the central force problem in the Lagrangian formulation, using a generalized potential energy function. We derive a general expression for a generalized potential energy function for all powers of the velocity, which when made a part of the regular classical Lagrangian can reproduce the correct (relativistic) force equation. We then go on to derive the Hamiltonian and estimate the corrections to the total energy of the system up to the fourth power in |~v|/c. We found that our work is able to provide a more comprehensive understanding of relativistic corrections to the central force results and provides corrections to both the kinetic and potential energy of the system. We employ our methodology to calculate relativistic corrections to the circular orbit under the gravitational force and also the first-order corrections to the ground state energy of the hydrogen atom using a semi-classical approach. Our predictions in both problems give reasonable agreement with the known results. Thus we feel that this work has pedagogical value and can be used by undergraduate students to better understand the central force and the relativistic corrections to it. I. INTRODUCTION correct relativistic formulation which is Lorentz invari- ant, but it is seen that the complexity of the equations The central force problem, in which the ordinary po- is an issue, even for the simplest possible cases like that tential function depends only on the magnitude of the of a single particle. -
An Elementary Introduction to Celestial Mechanics 1. Lagrangian And
An elementary introduction to celestial mechanics 1. Lagrangian and Hamiltonian equations. In this note we review, starting from elementary notions in classicalmechanics,several problems in celestial mechanics, showing how they may be solved at first order in pertur- bation theory, obtaining quantitative results already in reasonably good agreement with the observed data. In this and in the following sections 2-7 we summarize very briefly a few prerequisites. We suppose the reader familiar with the notion of ideal constraint,andwiththedescrip- tion of the mechanical problems by means of generalized coordinates, using the classical Lagrange equations ∂ d ∂ L = L (1.1) 1.1 ∂q dt ∂q˙ where (q, q˙ ,t)=T (q, q˙ ) V (q,t)(1.2) 1.2 L − It is useful to allow the t–dependence because in several problems such dependence appears explicitly (and periodic in time). The equivalent Hamilton equations are ∂H ∂H q˙ = p˙ = (1.3) 1.3 ∂p − ∂q where, by definition ∂ p = L (1.4) 1.4 ∂q˙ and 1.5 H(p, q)=T (p, q)+V (q,t)(1.5) The notion of canonical transformation q, p Q, P is also needed. A canonical trans- formation can be characterized by the property←→ p dq + Q dP = dF (1.6) 1.6 · · which is implied by the existence of a “generating function” F (q, P,t)suchthat ∂F(q, P,t) ∂F(q, P,t) ∂F(q, P,t) p = , Q = ,H!(Q, P,t)=H(q, p)+ (1.7) 1.7 ∂q ∂P ∂t which is a sufficient condition for the canonicity of the map. -
Kepler Press
National Aeronautics and Space Administration PRESS KIT/FEBRUARY 2009 Kepler: NASA’s First Mission Capable of Finding Earth-Size Planets www.nasa.gov Media Contacts J.D. Harrington Policy/Program Management 202-358-5241 NASA Headquarters [email protected] Washington 202-262-7048 (cell) Michael Mewhinney Science 650-604-3937 NASA Ames Research Center [email protected] Moffett Field, Calif. 650-207-1323 (cell) Whitney Clavin Spacecraft/Project Management 818-354-4673 Jet Propulsion Laboratory [email protected] Pasadena, Calif. 818-458-9008 (cell) George Diller Launch Operations 321-867-2468 Kennedy Space Center, Fla. [email protected] 321-431-4908 (cell) Roz Brown Spacecraft 303-533-6059. Ball Aerospace & Technologies Corp. [email protected] Boulder, Colo. 720-581-3135 (cell) Mike Rein Delta II Launch Vehicle 321-730-5646 United Launch Alliance [email protected] Cape Canaveral Air Force Station, Fla. 321-693-6250 (cell) Contents Media Services Information .......................................................................................................................... 5 Quick Facts ................................................................................................................................................... 7 NASA’s Search for Habitable Planets ............................................................................................................ 8 Scientific Goals and Objectives ................................................................................................................. -
Strong Forces in Celestial Mechanics
Annals of the Tiberiu Popoviciu Seminar of Functional Equations, Approximation and Convexity vol 2, 2004, pp. 3-9 Strong forces in celestial mechanics MIRA-CRISTIANA ANISIU VALERIU ANISIU (CLUJ-NAPOCA) (CLUJ-NAPOCA) Abstract Strong forces in celestial mechanics have the property that the particle moving under their action can describe periodic orbits, whose existence follows in a natural way from variational principles. The Newtonian potential does not give rise to strong forces; we prove that potentials of the form 1=r produce strong forces if and only if 2. Perturbations of the Newtonian potential with this property are also examined. KEY WORDS: celestial mechanics; force function MSC 2000: 70F05, 70F15 1 Introduction Strong forces were considered in 1975 by Gordon [2], when he tried to obtain existence results of periodic solutions in the two-body problem by means of variational methods. As it is well-known, the planar motion of a body (e. g. the Earth) around a much bigger one (e. g. the Sun) is classically modelled by the system x1 x•1 = r3 (1) x2 x•2 = r3 1 2 2 with r = x1 + x2, or, alternatively p x• = V; (2) r with the Newtonian potential 1 V = (3) r 2 and x = (x1; x2) R (0; 0) . The potential V has a singularity at the origin of the plane.2 Evenn f if oneg works in a class of `noncollisional' loops (x(t) = (0; 0); t R), the extremal o ered by a variational principle will be the limit6 of a sequence8 2 of such loops, hence we have no guarantee that it will avoid the origin.