Parental Investment Across an Altitudinal Gradient in Blue Tits (Cyanistes Caeruleus) Aisha Bründl

Total Page:16

File Type:pdf, Size:1020Kb

Parental Investment Across an Altitudinal Gradient in Blue Tits (Cyanistes Caeruleus) Aisha Bründl Parental investment across an altitudinal gradient in blue tits (Cyanistes caeruleus) Aisha Bründl To cite this version: Aisha Bründl. Parental investment across an altitudinal gradient in blue tits (Cyanistes caeruleus). Animal biology. Université Paul Sabatier - Toulouse III, 2018. English. NNT : 2018TOU30265. tel-02379770 HAL Id: tel-02379770 https://tel.archives-ouvertes.fr/tel-02379770 Submitted on 25 Nov 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. TH È S E En vue de l'obtention du DO CT O R AT DE L’ U N I V E R SI T É DE TO U L OU S E Délivré par l'Université Toulouse III - Paul Sabatier Discipline ou spécialité : Écologie et Évolution Présentée et soutenue par AI SHA COLLEEN BR Ü NDL Le 22 Mars 2018 Titre : Investissement parental le long d'un gradient altitudinal chez la mésange bleue (Cyanistes caeruleus) JURY Philipp Heeb (rapporteur) Nick Royle (examinateur) Stuart Sharp (examinateur) Ecole doctorale : SEVAB Unité de recherche : UMR 5321 - Station d'Écologie Théorique et Expérimentale Directeur(s) de Thèse : Andrew Russell / Alexis Chaine Rapporteurs : Philipp Heeb Investissement parental le long d'un gradient altitudinal chez la mésange bleue (Cyanistes caeruleus) 1 To Helen and Philip Hull 2 Acknowledgements “When the student is ready the teacher will appear.” (Buddhist proverb) First and foremost, I would like to thank my supervisors Andy and Alexis for showing me the ways of a scientist and enabling this unique experience of a between-country PhD at two very different, stimulating academic institutes. I am immensely grateful to both of you for believing in my abilities with your relentless support and patient encouragement throughout my PhD. How would I have survived without you teaching me everything; from the practicalities of field work (including changing flat tires on muddy Sunday afternoons) to statistics, writing and presentation skills, and generally keeping my brain from being a coach potato? At times you (and perhaps Andy’s time management) pushed me to my limits, but I would have never learnt as much without these challenges. Many thanks also to Camille for your pastoral care and encouragement. I am much indebted to NERC, the Midi-Pyrénées region and the Station d'Ecologie Théorique et Expérimentale of the CNRS (UMR5321), in particular to its director Dr Jean Clobert, in ensuring the funds for this PhD. I owe my gratitude to the Universities of Exeter and Toulouse (Paul Sabatier III) and all the people involved in drawing up this first ‘Cotutelle’ agreement between the two universities leading to a joint PhD award. I thank Dalila Booth for translating this agreement. I believe these programmes are imperative in broadening the academic horizon of young scientists, particularly in the current political climate, and I hope to see more of them in the future. 3 This thesis would not have been possible without the help and enthusiasm of all the students and volunteers that participated in the collection of field and lab data and the development of the project over the past few years. The same goes to all the blue tits involuntarily involved in this study. I’m grateful to each and every one of them. I would like to thank my amazing friends, house mates and office colleagues who have all inspired me in different academic and non-academic ways, taught me to speak French (and some more English), and given me many unforgettable PhD memories; among others those swims in the river, hikes in the mountains, weddings and crazy parties in Moulis and Falmouth. You are named in no particular order: Eleri, James, Rachel, Jeff, Beth, Mat, Cat, Alexis, Elvire, Julien, Lauranne, Feargus, Andrea, Allan, Julia, Jorge, Lisa, Jérémie, Alice, Hugo, Elise, Felix, Hannah, Oli, Ellie S, Josh, Miranda, Azenor, Durian, Jenny, Louis, Lili, Dom, Anne-Sophie, Pablo, Luz, David, Claire, Olivia, Jonathan, Paula, Johannes, Nuria, Martin, Léa, Matthieu, Kirsten, Yuval, Anne, Jérôme, Anika, Vinicius, Lucie, Jarad, Emily and Anja. I wish to express my deepest gratitude to my parents for nurturing my love for nature and letting me be the Öko. The same goes to Tara for being my partner in crime over the past, turbulent years. I know you have all shared this emotional rollercoaster ride from the very uncertain start, through the extended middle, all the way to the tight end of this PhD. I would never have managed this without your endless support. 4 Keoni - I’m extremely grateful for your astonishing patience with my peaks and troughs, for sharing the PhD experience and introducing me to the full beauty of the French Pyrenees. Last but not least, thanks to Carlos – with his soft, black paws - for being the best, most distracting writing companion I could wish for. 5 List of Contents Abstract ............................................................................................................ 3 Acknowledgements ......................................................................................... 5 Contents ........................................................................................................... 8 List of Tables and Figures ............................................................................ 12 Picture of Study species …………………….……………….………….….…… 21 Chapter 1: General introduction ................................................................... 22 1.1 General framework .................................................................................. 23 1.1.1 Reproductive investment .................................................................... 23 1.1.2 Parental care ....................................................................................... 24 1.1.3 Systems of parental care .................................................................... 27 1.1.4 Environmental variation ...................................................................... 29 1.2 PhD aims ................................................................................................... 34 1.3 Study species ........................................................................................... 35 1.4 Study system ............................................................................................ 36 1.5 Thesis outline ........................................................................................... 38 Chapter Two: Extreme plasticity in breeding phenology across an altitudinal gradient: implications for understanding phenological mismatch …………………………………………………………………………… 42 2.1 Abstract …………………………………………………………………..……. 43 2.2 Introduction ………………………………………………………………...…. 44 2.3 Methods …………………………………………………………...…………… 48 6 2.3.1 Study population and habitat …………………………….………………. 48 2.3.2 Phenology, investment and success ……………………………………. 48 2.3.3 Statistical analysis ………………………………...………………………. 50 2.4 Results …………………………………………………………….…………… 53 2.4.1 Breeding phenology ……………………………………..………..………. 53 2.4.2 Contributors to reproductive success: clutch size and hatching success ………………………………………………………………………………………… 56 2.4.3 Reproductive Output ………………………………………………..…….. 62 2.4.4 Nestling mass ……………………………………………………………… 68 2.5 Discussion …………………………………………………………………….. 71 Chapter Three: Testing the use of budburst as a reliable cue to breeding phenology in a population of blue tits breeding along an altitudinal gradient …………………………………………………………………..………… 76 3.1 Abstract ………………………………………………………………………… 77 3.2 Introduction ……………………………………………………...……………. 78 3.3 Methods …………………………………………………………...…………… 83 3.3.1 Statistical analysis ………………………………………………………… 84 3.4 Results …………………………………………………………….…………… 88 3.4.1 Phenology of budburst and lay date …………………………………..… 88 3.4.2 Timing parameters post-laying ………………..…………..………….….. 92 3.4.3 Reproductive success …………………………..…….………………… 100 3.5 Discussion ……………………………………………………….……………102 7 Chapter Four: Inducing females to lay more eggs leads to increased per capita provisioning rates of nestlings in blue tits ……………….…...…… 105 4.1 Abstract ………………………………………………………….…………… 106 4.2 Introduction …………………………………………………………..……… 107 4.3 Methods …………………………………………………………...………..… 110 4.3.1. Experimental design ……………………………………………………. 110 4.3.2 Treatment effects pre-provisioning …………...……………….……..… 112 4.3.3 Provisioning behaviour ……………………………………………..…… 112 4.3.4 Statistical analysis ……………………………………………………..… 113 4.4 Results ………………………………………………………………...……… 117 4.4.1 Treatment effects pre-provisioning …………………………………..… 117 4.4.2 Provisioning behaviour ……………………………………………..…… 121 4.4.3 Nestling mass ………………………………………………..…………… 127 4.5 Discussion …………………………………………………………………… 129 8 Chapter Five: Brood size manipulations across an altitudinal gradient shed new light on investment strategies in a bi-parental care system …….……………..………………………………………………………………….. 137 5.1 Abstract ……………………………………………………………….……… 138 5.2 Introduction …………………………………………………………….……. 140 5.3 Methods …………………………………………………………...………..… 144 5.3.1 Sex differences in provisioning natural brood sizes ……………….…. 147 5.3.2 Responses to brood size manipulations ……………………………… .147 5.3.3 Treatment
Recommended publications
  • Implications of Conspecific Background Noise for Features of Blue Tit, Cyanistes Caeruleus, Communication Networks at Dawn
    J Ornithol (2007) 148:123–128 DOI 10.1007/s10336-006-0116-y ORIGINAL ARTICLE Implications of conspecific background noise for features of blue tit, Cyanistes caeruleus, communication networks at dawn Angelika Poesel Æ Torben Dabelsteen Æ Simon Boel Pedersen Received: 3 January 2006 / Revised: 8 November 2006 / Accepted: 8 November 2006 / Published online: 5 December 2006 Ó Dt. Ornithologen-Gesellschaft e.V. 2006 Abstract Communication among animals often com- may potentially constrain the perception of singing prises several signallers and receivers within the sig- patterns and may constitute costs for eavesdroppers. nal’s transmission range. In such communication On the other hand, signallers may position themselves networks, individuals can extract information about strategically and privatise their interactions. differences in relative performance of conspecifics by eavesdropping on their signalling interactions. In Keywords Communication network Á Cyanistes songbirds, information can be encoded in the timing of caeruleus Á Singing interaction signals, which either alternate or overlap, and both male and female receivers may utilise this information when engaging in territorial interactions or making Introduction reproductive decisions, respectively. We investigated how conspecific background noise at dawn may overlay Territorial animals form neighbourhoods of several and possibly constrain the perception of such singing individuals within signalling and receiving range (see patterns. We simulated a small communication net- examples in McGregor 2005). In order to defend ter- work of blue tits, Cyanistes caeruleus, at dawn in ritorial space successfully, it may be advantageous to spring. Two loudspeakers simulated a singing interac- gather information about competitors and thus be able tion which was recorded from four different receiver to adjust responses to an opponent’s strength.
    [Show full text]
  • Social Relationships in a Small Habitat-Dependent Coral Reef Fish: an Ecological, Behavioural and Genetic Analysis
    ResearchOnline@JCU This file is part of the following reference: Rueger, Theresa (2016) Social relationships in a small habitat-dependent coral reef fish: an ecological, behavioural and genetic analysis. PhD thesis, James Cook University. Access to this file is available from: http://researchonline.jcu.edu.au/46690/ The author has certified to JCU that they have made a reasonable effort to gain permission and acknowledge the owner of any third party copyright material included in this document. If you believe that this is not the case, please contact [email protected] and quote http://researchonline.jcu.edu.au/46690/ Social relationships in a small habitat- dependent coral reef fish: an ecological, behavioural and genetic analysis Thesis submitted by Theresa Rueger, March 2016 for the degree of Doctor of Philosophy College of Marine and Environmental Science & ARC Centre of Excellence for Coral Reef Studies James Cook University Declaration of Ethics This research presented and reported in this thesis was conducted in compliance with the National Health and Medical Research Council (NHMRC) Australian Code of Practice for the Care and Use of Animals for Scientific Purposes, 7th Edition, 2004 and the Qld Animal Care and Protection Act, 2001. The proposed research study received animal ethics approval from the JCU Animal Ethics Committee Approval Number #A1847. Signature ___31/3/2016___ Date i Acknowledgement This thesis was no one-woman show. There is a huge number of people who contributed, directly or indirectly, to its existence. I had amazing support during my field work, by fellow students and good friends Tiffany Sih, James White, Patrick Smallhorn-West, and Mariana Alvarez-Noriega.
    [Show full text]
  • Best of the Baltic - Bird List - July 2019 Note: *Species Are Listed in Order of First Seeing Them ** H = Heard Only
    Best of the Baltic - Bird List - July 2019 Note: *Species are listed in order of first seeing them ** H = Heard Only July 6th 7th 8th 9th 10th 11th 12th 13th 14th 15th 16th 17th Mute Swan Cygnus olor X X X X X X X X Whopper Swan Cygnus cygnus X X X X Greylag Goose Anser anser X X X X X Barnacle Goose Branta leucopsis X X X Tufted Duck Aythya fuligula X X X X Common Eider Somateria mollissima X X X X X X X X Common Goldeneye Bucephala clangula X X X X X X Red-breasted Merganser Mergus serrator X X X X X Great Cormorant Phalacrocorax carbo X X X X X X X X X X Grey Heron Ardea cinerea X X X X X X X X X Western Marsh Harrier Circus aeruginosus X X X X White-tailed Eagle Haliaeetus albicilla X X X X Eurasian Coot Fulica atra X X X X X X X X Eurasian Oystercatcher Haematopus ostralegus X X X X X X X Black-headed Gull Chroicocephalus ridibundus X X X X X X X X X X X X European Herring Gull Larus argentatus X X X X X X X X X X X X Lesser Black-backed Gull Larus fuscus X X X X X X X X X X X X Great Black-backed Gull Larus marinus X X X X X X X X X X X X Common/Mew Gull Larus canus X X X X X X X X X X X X Common Tern Sterna hirundo X X X X X X X X X X X X Arctic Tern Sterna paradisaea X X X X X X X Feral Pigeon ( Rock) Columba livia X X X X X X X X X X X X Common Wood Pigeon Columba palumbus X X X X X X X X X X X Eurasian Collared Dove Streptopelia decaocto X X X Common Swift Apus apus X X X X X X X X X X X X Barn Swallow Hirundo rustica X X X X X X X X X X X Common House Martin Delichon urbicum X X X X X X X X White Wagtail Motacilla alba X X
    [Show full text]
  • Historical Biogeography of Tits (Aves: Paridae, Remizidae)
    Org Divers Evol (2012) 12:433–444 DOI 10.1007/s13127-012-0101-7 ORIGINAL ARTICLE Historical biogeography of tits (Aves: Paridae, Remizidae) Dieter Thomas Tietze & Udayan Borthakur Received: 29 March 2011 /Accepted: 7 June 2012 /Published online: 14 July 2012 # Gesellschaft für Biologische Systematik 2012 Abstract Tits (Aves: Paroidea) are distributed all over the reconstruction methods produced similar results, but those northern hemisphere and tropical Africa, with highest spe- which consider the likelihood of the transition from one cies numbers in China and the Afrotropic. In order to find area to another should be preferred. out if these areas are also the centers of origin, ancestral areas were reconstructed based on a molecular phylogeny. Keywords Lagrange . S-DIVA . Weighted ancestral area The Bayesian phylogenetic reconstruction was based on analysis . Mesquite ancestral states reconstruction package . sequences for three mitochondrial genes and one nuclear Passeriformes gene. This phylogeny confirmed most of the results of previous studies, but also indicated that the Remizidae are not monophyletic and that, in particular, Cephalopyrus Introduction flammiceps is sister to the Paridae. Four approaches, parsimony- and likelihood-based ones, were applied to How to determine where a given taxon originated has long derive the areas occupied by ancestors of 75 % of the extant been a problem. Darwin (1859) and his followers (e.g., species for which sequence data were available. The Matthew 1915) considered the center of origin to simulta- common ancestor of the Paridae and the Remizidae neously be the diversity hotspot and had the concept of mere inhabited tropical Africa and China. The Paridae, as well dispersal of species out of this area—even if long distances as most of its (sub)genera, originated in China, but had to be covered.
    [Show full text]
  • Comparing Detectability Patterns of Bird Species in Small Ponds Using
    bioRxiv preprint doi: https://doi.org/10.1101/675116; this version posted June 18, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. 1 Comparing detectability patterns of bird species in 2 small ponds using multi-method hierarchical 3 modelling 4 José M. Zamora-Marín1*, Antonio Zamora-López1, José F. Calvo2 & Francisco J. Oliva-Paterna1 5 1 Departamento de Zoología y Antropología Física, Facultad de Biología, Universidad de 6 Murcia, Murcia, Spain 7 2 Departamento de Ecología e Hidrología, Facultad de Biología, Universidad de Murcia, Murcia, 8 Spain 9 *[email protected] (JMZ-M) 10 11 Abstract 12 Robust knowledge of biodiversity distribution is essential for designing and developing 13 effective conservation actions. However, monitoring programmes have historically 14 assumed all species are detected equally with no spatial or temporal differences in 15 their detection rates. However, recently, interest in accounting for imperfect detection 16 has greatly increased in studies on animal diversity. In this respect, birds are the most 17 widely used group for hierarchical occupancy-detection modelling, mainly due to the 18 relative ease of sampling and the large number of bird datasets that are available. 19 Nevertheless, there are no studies that have tried to evaluate the effectiveness of 20 different bird sampling methods based on a hierarchical modelling approach. In an 21 attempt to remedy this situation, we conducted point transects (PT), point transects 22 plus video monitoring (PV) and mist netting (MN) in 19 small ponds located in the 23 province of Murcia, southeastern Spain, one of the most arid regions of Europe.
    [Show full text]
  • Gear for a Big Year
    APPENDIX 1 GEAR FOR A BIG YEAR 40-liter REI Vagabond Tour 40 Two passports Travel Pack Wallet Tumi luggage tag Two notebooks Leica 10x42 Ultravid HD-Plus Two Sharpie pens binoculars Oakley sunglasses Leica 65 mm Televid spotting scope with tripod Fossil watch Leica V-Lux camera Asics GEL-Enduro 7 trail running shoes GoPro Hero3 video camera with selfie stick Four Mountain Hardwear Wicked Lite short-sleeved T-shirts 11” MacBook Air laptop Columbia Sportswear rain shell iPhone 6 (and iPhone 4) with an international phone plan Marmot down jacket iPod nano and headphones Two pairs of ExOfficio field pants SureFire Fury LED flashlight Three pairs of ExOfficio Give- with rechargeable batteries N-Go boxer underwear Green laser pointer Two long-sleeved ExOfficio BugsAway insect-repelling Yalumi LED headlamp shirts with sun protection Sea to Summit silk sleeping bag Two pairs of SmartWool socks liner Two pairs of cotton Balega socks Set of adapter plugs for the world Birding Without Borders_F.indd 264 7/14/17 10:49 AM Gear for a Big Year • 265 Wildy Adventure anti-leech Antimalarial pills socks First-aid kit Two bandanas Assorted toiletries (comb, Plain black baseball cap lip balm, eye drops, toenail clippers, tweezers, toothbrush, REI Campware spoon toothpaste, floss, aspirin, Israeli water-purification tablets Imodium, sunscreen) Birding Without Borders_F.indd 265 7/14/17 10:49 AM APPENDIX 2 BIG YEAR SNAPSHOT New Unique per per % % Country Days Total New Unique Day Day New Unique Antarctica / Falklands 8 54 54 30 7 4 100% 56% Argentina 12 435
    [Show full text]
  • Niche Analysis and Conservation of Bird Species Using Urban Core Areas
    sustainability Article Niche Analysis and Conservation of Bird Species Using Urban Core Areas Vasilios Liordos 1,* , Jukka Jokimäki 2 , Marja-Liisa Kaisanlahti-Jokimäki 2, Evangelos Valsamidis 1 and Vasileios J. Kontsiotis 1 1 Department of Forest and Natural Environment Sciences, International Hellenic University, 66100 Drama, Greece; [email protected] (E.V.); [email protected] (V.J.K.) 2 Arctic Centre, University of Lapland, 96101 Rovaniemi, Finland; jukka.jokimaki@ulapland.fi (J.J.); marja-liisa.kaisanlahti@ulapland.fi (M.-L.K.-J.) * Correspondence: [email protected] Abstract: Knowing the ecological requirements of bird species is essential for their successful con- servation. We studied the niche characteristics of birds in managed small-sized green spaces in the urban core areas of southern (Kavala, Greece) and northern Europe (Rovaniemi, Finland), during the breeding season, based on a set of 16 environmental variables and using Outlying Mean Index, a multivariate ordination technique. Overall, 26 bird species in Kavala and 15 in Rovaniemi were recorded in more than 5% of the green spaces and were used in detailed analyses. In both areas, bird species occupied different niches of varying marginality and breadth, indicating varying responses to urban environmental conditions. Birds showed high specialization in niche position, with 12 species in Kavala (46.2%) and six species in Rovaniemi (40.0%) having marginal niches. Niche breadth was narrower in Rovaniemi than in Kavala. Species in both communities were more strongly associated either with large green spaces located further away from the city center and having a high vegetation cover (urban adapters; e.g., Common Chaffinch (Fringilla coelebs), European Greenfinch (Chloris Citation: Liordos, V.; Jokimäki, J.; chloris Cyanistes caeruleus Kaisanlahti-Jokimäki, M.-L.; ), Eurasian Blue Tit ( )) or with green spaces located closer to the city center Valsamidis, E.; Kontsiotis, V.J.
    [Show full text]
  • Federal Register/Vol. 85, No. 74/Thursday, April 16, 2020/Notices
    21262 Federal Register / Vol. 85, No. 74 / Thursday, April 16, 2020 / Notices acquisition were not included in the 5275 Leesburg Pike, Falls Church, VA Comment (1): We received one calculation for TDC, the TDC limit would not 22041–3803; (703) 358–2376. comment from the Western Energy have exceeded amongst other items. SUPPLEMENTARY INFORMATION: Alliance, which requested that we Contact: Robert E. Mulderig, Deputy include European starling (Sturnus Assistant Secretary, Office of Public Housing What is the purpose of this notice? vulgaris) and house sparrow (Passer Investments, Office of Public and Indian Housing, Department of Housing and Urban The purpose of this notice is to domesticus) on the list of bird species Development, 451 Seventh Street SW, Room provide the public an updated list of not protected by the MBTA. 4130, Washington, DC 20410, telephone (202) ‘‘all nonnative, human-introduced bird Response: The draft list of nonnative, 402–4780. species to which the Migratory Bird human-introduced species was [FR Doc. 2020–08052 Filed 4–15–20; 8:45 am]‘ Treaty Act (16 U.S.C. 703 et seq.) does restricted to species belonging to biological families of migratory birds BILLING CODE 4210–67–P not apply,’’ as described in the MBTRA of 2004 (Division E, Title I, Sec. 143 of covered under any of the migratory bird the Consolidated Appropriations Act, treaties with Great Britain (for Canada), Mexico, Russia, or Japan. We excluded DEPARTMENT OF THE INTERIOR 2005; Pub. L. 108–447). The MBTRA states that ‘‘[a]s necessary, the Secretary species not occurring in biological Fish and Wildlife Service may update and publish the list of families included in the treaties from species exempted from protection of the the draft list.
    [Show full text]
  • Life History and Environmental Influences on Avian Incubation and Parental Care in Songbirds
    AN ABSTRACT OF THE DISSERTATION OF Suzanne H. Austin-Bythell for the degree of Doctor of Philosophy in Wildlife Science presented on March 5, 2013. Title: Life History and Environmental Influences on Avian Incubation and Parental Care in Songbirds Abstract approved: __________________________________________________________________ William Douglas Robinson Patterns of nest attendance behavior by breeding birds represent a parent-offspring trade-off in which adults balance self-maintenance with parental care decisions. Incubation, in particular, is of interest because adults must provide an environment suitable for embryonic development through nest-building and contact-incubation. We evaluated how adult incubation constancy and nest visitation rates varied with life and natural history traits of temperate and tropical bird species. We found that constancy did not differ by latitude or with nest survival rate. A strong negative correlation between incubation constancy and egg mass relative to adult body mass was present. Birds with low constancy tended to have larger relative egg masses and higher basal metabolic rate. Because adult incubation constancy is relatively plastic (i.e., varies with ambient temperature), birds with larger relative eggs may respond to lower cooling rates rather than direct selection for higher or lower constancy. We then assessed if rates of nest visitation (trips to nests by adults during incubation and nestling phases) followed the predictions of the Skutch hypothesis. Skutch suggested that birds nesting in environments with high levels of nest predation would reduce numbers of trips to their nests so as to minimize the risk of visual detection by nest predators. We found support for the basic pattern predicted by Skutch.
    [Show full text]
  • Ringing Data and Occurrence of Blue Tits Cyanistes Caeruleus and Great Tits Parus Major in Sombor (NW Serbia) for the Period 1981–2013
    Acrocephalus 36 (164/165): 73–77 2015 10.1515/acro-2015-0006 Ringing data and occurrence of survival during the cold seasons in settlements than in rural habitats (Jokimäki & Kaisanlahti-Jokimäki of Blue Tits Cyanistes caeruleus 2012, Møller et al. 2013). The aim of the present study and Great Tits Parus major was (1) to present detailed ringing and recapture data in Sombor (NW Serbia) of the Great and Blue Tits in the town of Sombor, (2) to test the relationship between average maximum for the period 1981–2013 temperatures for autumn and winter and the number of ringed individuals for the study period in the two Obročkovalski podatki in pojavljanje species, and (3) to investigate the differences between plavčkov Cyanistes caeruleus in velikih sinic captures in parks and in gardens. Parus major v mestu Sombor (SZ Srbija) The study was conducted in the town of Sombor (city centre coordinates 45.78 N, 19.09 E) in north- med letoma 1981 in 2013 western Serbia. Bird ringing was performed at 21 sites within the town (Table 1). Detailed descriptions of the study area and of the distribution of the study sites are Thomas Oliver Mérő1, Antun Žuljević1 reported in Mérő & Žuljević (2014). Ringing of tits was conducted between 1981 and 1 Nature Protection and Study Society – NATURA, 2013 over the entire year, with greater intensity in Milana Rakića 20, RS–25000 Sombor, Serbia, autumn (October, November and December) and e–mail: [email protected] winter (January, February and March). Further details about ringing and circumstances have been reported Ringing and recapture data of Blue Tits Cyanistes by Mérő & Žuljević (2014).
    [Show full text]
  • Azure Tits and Hybrids Azure X European Blue Tit in Europe
    Azure Tits and hybrids Azure x European Blue Tit in Europe Łukasz Ławicki he ‘blue tit complex’ currently comprises up to Blue Tit (western Canary Islands). In addition, Teight (or even nine) species (depending on flavi pectus was formerly often considered a sub- taxonomic treatment): Azure Tit Cyanistes cyanus, species of Azure Tit (cf del Hoyo et al 2007). The Yellow-breasted Tit C flavipectus (with the isolated mitochondrial phylogeny of these taxa has been subspecies C f berezowskii of north-central China previously studied and it was found that Azure Tit possibly deserving species status), Tenerife Blue Tit is phylogenetically placed within the European C teneriffae, Palma Blue Tit C palmensis, Hierro Blue Tit clade (Kvist et al 2005, Illera et al 2011; cf Blue Tit C ombriosus, Gran Canaria Blue Tit C hed- Sangster 2006, del Hoyo et al 2007). Their com- wigae, Ultramarine Tit C ultramarinus (with the bined ranges extend across the entire Palearctic, little known Libyan Blue Tit C u cyrenaicae) and with European Blue Tit mainly breeding in Europe, European Blue Tit C caeruleus (cf Harrap & Quinn and Azure Tit in Asia (Martin 1991, del Hoyo et al 1996, Redactie Dutch Birding 2002, 2004, 2006, 2007). Kvist et al 2005, Sangster 2006). Note that many Hybrids Azure Tit x European Blue Tit C cyanus authors combine teneriffae, palmensis, ombriosus, x caeruleus have been known since the early 20th hedwigae and ultramarinus in one species, North century under the name ‘Pleske’s Tit’ (Pleske 1912; African Blue Tit, or two species: Ultra marine Tit cf Frank & Voous 1969, McCarthy 2006).
    [Show full text]
  • News and Notes
    Birding 08-06 News & Notes 6/12/06 1:36 PM Page 26 NEWS AND NOTES by Paul Hess Forest Birds Face without standing water is not yet understood. Mercury levels in Bicknell’s Thrushes sampled at seven Risk of Mercury wintering sites in Cuba and on Hispaniola were unexpect- edly high: two to three times greater than in those sampled Think about toxic mercury in avian food chains. What at the breeding sites. Significant industrial sources of mer- species come to mind? Surely Common Loon, probably Bald cury are unknown in the winter range, which suggests that Eagle and Osprey, and possibly marsh birds and kingfishers. increasing levels of mercury in the global atmosphere may All specialize on a diet of fish, which provide a well-known be a factor in the contamination. The authors emphasized pathway for bioaccumulation of mercury. But Bicknell’s that chronic, year-round exposure to mercury heightens Thrush? An insectivorous and strictly terrestrial songbird concern about potentially damaging effects on Bicknell’s with no orientation to aquatic habitat? Yes, it joined the list Thrushes. in 2005 when Christopher C. Rimmer and six coauthors an- Because of its small population (estimated at only nounced that they had found mercury contamination in 40,000), its geographically limited breeding and winter Bicknell’s Thrushes on both ranges, and its threatened boreal and tropical their breeding and their win- habitats, Bicknell’s Thrush is ranked by Part- tering grounds (Ecotoxicol- ners in Flight in the highest-priority category ogy 14:223–240). As the first for conservation action.
    [Show full text]