Materials for the Study of Reef-Building Corals (3)

Total Page:16

File Type:pdf, Size:1020Kb

Materials for the Study of Reef-Building Corals (3) 35 Materials for the Study of Reef-building Corals (3) from Science of the South Sea (Kagaku Nanyo) Volume 5, Number 1, pp. 95-106 (September, 1942) Cover page of the original issue (in Japanese) 37 19. Extended and contracted polyps in the praetorta, as reported previously. daytime There are three types of polyp shape in fungiid As described in Report no. 1 in this issue, in some corals. Fungia actiniformis, which has very dense reef-building coral species, there is a tendency for zooxanthellae in the tentacles, fully extends its body zooxanthellae to assemble within the tentacles of in the daytime (Fig. 5; Discriptions in Fig. 5 indi- polyps that extend in the daytime. I assumed that cates Pocillopora damicornis instead of Fungia ac­ coral polyps harboring dense zooxanthellae assem- tiniformis). Fungia repunda does not have many blages would exhibit positive phototaxis like many zooxanthellae in its tentacles, and it ex tends its other zooxanthellate animals. In fact, many coral tentacles moderately in the daytime (Fig. 6). Fungia species having dense zooxanthellae within their echinata has very few zooxanthellae in its tentacles. tentacles extend their polyps in the daytime. How- This species has dense zooxanthellae in the oral disk, ever, there are some exceptions. Galaxea (Report no. and it completely contracts its tentacles in the 16) and Acropora have few zooxanthellae in their daytime (Figs. 7, 8). polyp bodies or tentacles, but they extend their Lobophyllia usually contracts its tentacles in the polyps in the daytime. Lobophyllia does not need to daytime. Assemblages of zooxanthellae exist in the extend polyps in the daytime, because dense zoo- tentacle tips, which are always facing outward even xanthellae assemblages are located in the tentacle if polyps are contracted. As shown in Fig. 9, zoo- tips that always face the outside of the colony. xanthellae assemblages are also located on the tips Similarly, coral species that have thin coenosarcs or of projected tissues of the coenosarc and oral disks epithelia often contract their polyps in the daytime, with red and green colors. These assemblages can be as sufficient sunlight may penetrate through them to observed by the naked eye as small dots. Zooxan- reach the zooxanthellae. Therefore, I hypothesized thellae are believed to align so as to utilize light in that the shape of coral polyps is determined by the the most effective way. When a polyp receives light need to maximize light reception by zooxanthellae. while extending its tentacles, other parts of the polyp Corals containing dense zooxanthellae in either retract to uncover the coenosarc and oral disk. I their polyps or tentacles extend their polyps in the observed a colony of Lobophyllia that fully extended daytime. The specific characteristics of these coral its tentacles in the daytime. This colony had dense species are either a large coenosarc compared with zooxanthellae in its tentacles. the size of the polyps or very large polyps with wide Acropora and Galaxea have tentacles or polyps oral disks. These corals are Acropora, Montipora, containing few zooxanthellae extending dur ing day- Goniopora, Porites, Pavona decussata, Fungia ac­ time. The phototaxic reaction caused by zooxanthellae tiniformis, Hydnophora, Euphyllia, Plerogyra, may not fully transmitted between the coenosarc and Physogyra, Acrhelia, Pocillopora, Seriatopora, and polyps, because polyps of these species are relatively Stylophora. distant from each other. Al ternatively, their trans- Porites are often observed to contract their polyps parent tentacles and polyps may function as a light in the daytime, though the polyps have dense zoo- diffuser. For example, Galaxea has dark-colored xanthellae. The contraction may be due to some type zoo xanthellae, which are similar to those of other of extrinsic physical stimuli or negative phototaxis coral species occurring in deep or shaded habitats. from strong sunlight. Strong sunlight is also a cause As described above, the difference between ex- of the decrease in the density of zooxanthellae in the tended and contracted polyps can be explained by cases of Pocillopora (Report no. 10) and Pavona positive phototaxis derived from symbiotic zooxanth- 38 Fig. 5 An extended polyp of Pocillopora dami­ Fig. 6 A part of a tentacle of Fungia repunda, cornis in the daytime. (a) The tentacle tips are which extends its tentacles in the daytime. The dark ened with dense zooxanthellae. (b) Assem- density of zooxanthellae in the tentacles of this blages of zooxanthellae can be observed on the species is intermediate between those of other coenosarc as dark bands, which are equivalent in species that fully extend tentacles in the daytime number to the tentacles (×65) and those that fully contract their tentacles. The round black dots are zooxanthellae. The long dots are nematocysts (×65) Fig. 7 Zooxanthellae are densely distributed on the oral disk of Fungia echinata, which does not extend its tentacles in the daytime. The black dots are zooxanthellae. A part of the oral disk is Fig. 8 Zooxanthellae are very scarce in the ten- darkened with zooxanthellae assemblages (lower tacles of Fungia echinata. The density of zoo xan- right) (×65) thellae is much lower in tentacles than in the coenosarc (see Fig. 7) (×65) ellae. There are a few similar examples in other zoo- xanthellate coelenterates. It is considered that many physiological processes are involved in the photo- taxic reactions of corals, although they are currently not well known. Based on his observations of Caulastraea furcata, AbeRef17 suggested that polyp extension at night is Fig. 9 A part of the oral disk of Lobophyllia caused by water absorption. He explained that the hemplichii, which does not extend its tentacles in osmotic pressure inside polyp tissues is decreased in the daytime. Zooxanthellae assemblages are lo- cated on the tips of projected tissues of (a) the oral the dark due to the low pH of the coelomic fluid, disks and (b) the coenosarc which dis solves unused carbon dioxide for assim- 39 ilation by zooxanthellae. Yonge was also interested digestion. The flatworms exhibit strong positive in this explanation; however, I find it rather ques­ phototaxis. When individual flatworms were placed tionable. approximately 50 cm away from a 60 W incandescent lamp in a Petri dish, they soon moved toward the Ref17 Abe N (1939) On the expansion and contraction of the light. They turned back in the opposite direction, at a polyp of a reef-coral, Caulastraea furcuta Dana. rate of 3 cm in 5-10 seconds, as soon as the Petri Palao Trop Biol Stn Stud 4: 651-670 dish was turned around. Eye-dependent phototaxis has been well studied in many other flatworm 20. Phototaxis in zooxanthellate animals species, but I was unable to find either eyes or Most reef-building corals harbor zooxanthellae eyespots in live specimens. The flatworm is and form colonies that face their polyps toward the commonly found on the colonies of reef-building light. Coral larvae also have zooxanthellae and settle corals in the genera Montipora, Lobophyllia, Stylo­ onto appropriate substrates according to their posi- phora, and Hydnophora. Based on my observations, tive photo taxic behavior (as I have reported pre- the flatworm appears to inhabit coral colonies with viouslyRef18). During the course of my studies on large co enosarcs and oral disks when the corals are zooxanthellate animals, all animals exhibited posi- in poor condition. A few other flatworm species are tive phototaxis. also found on coral colonies. These also have zooxanthellae and show weak positive phototaxis. i) Under laboratory conditions, reef-building corals iii) As previously reportedRef19, the upside-down jel- expelled zooxanthellae as their condition deter- lyfish Cassiopea harbors zooxanthellae and exhibits iorated. The expelled zooxanthellae initially settled positive phototaxis. Other zooxanthellate jellyfish evenly on the bottom surface of the container, but show similar phototactic behavior, as do soft corals after one or two days, they appeared to aggregate in and gorgonians harboring zooxanthellae species. spots. I found that the spots were individual slipper The positive phototactic behavior observed in Eu­ animalcules ingesting zooxanthellae. All of the dendrium and Pennaria by LoebRef20 may be as a paramecia with zooxanthellae in their guts displayed result of the existence of zooxanthellae. positive phototaxis. iv) YongeRef21 reported that giant clams (Tridacnidae) ii) Small individual flatworms*10 are often found on have a well-developed, beautifully colored mantle the surface of reef-building corals. The size of the con taining large numbers of zooxanthellae, and they flatworms range between 0.5 and 3 mm. They have generally occur on sea bottoms with sufficient light. very thin, egg-like, round bodies with tapering heads. Heart cockles (Corculum cardissa) also have zooxan- There are no visible internal organs. The flatworms thellae, but differ from giant clams in that they in- are brown and hence, are easily overlooked on the habit sunny reef flats. coral surface. How ever, they may become obvious in v) Aeolid nudibranchs occurring near coral colonies the field when they aggregate and fully cover the have zooxanthellae in their cerata. They also show surface of a coral colony*. The surface of such a positive phototaxis. coral colony turns a pale color. There are numerous vi) Cultured zooxanthellae tend to aggregate in the zooxanthellae inside the flatworm bodies. Zooxanth­ light. ellae near the body surface have a normal shape, but those in deeper parts of the body have relatively As described above, zooxanthellate animals show large diameters and appear to be in the process of positive phototaxis. The biological/physiological 40 pro cesses involved in phototaxis are unclear at this 21. Phototaxis as a factor in determining the stage, but I can state that they are somehow related to life form of reef-building corals the presence of zooxanthellae. I previously hypoth- As described in the last paper (Kawaguti 1937)Ref24, esized that all reef-building corals harboring zoo- phototaxis is the major factor determining the life xanthellae exhibit positive phototaxis.
Recommended publications
  • Print This Article
    Journal of Coastal Development ISSN : 1410-5217 Volume 14, Number 1, October 2010 : 11 - 17 Accredited : 83/Dikti/Kep/2009 Original Paper NATURAL CORAL COLONIZATION OF A MARINA SEAWALL IN SINGAPORE Chou Loke Ming†, NG Chin Soon Lionel‡, Chan Sek Meng Jeremy†, and Seow Liyun Angie† † Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Blk S1, #02-05, Singapore 117543 ‡ Tropical Marine Science Institute, National University of Singapore, 18 Kent Ridge Road, Blk S2S, Singapore 119227 Received : June, 7, 2010 ; Accepted : July, 26, 2010 ABSTRACT Marinas require extensive modification of a natural coast. The resulting modified habitat is known to support changed biological communities but the ability of tropical marinas to function as a surrogate habitat for scleractinian corals has not been well investigated. An assessment of scleractinian corals naturally colonising a nine-year-old marina seawall in Singapore indicated 26 genera from 13 families, of which Pectinia and Turbinaria were the most dominant. Most colonies measured 10 – 25 cm in diameter. Reefs of adjacent islands provided the larval source while the marina’s environmental conditions favored larval recruitment and growth. Specific larval settlement preferences as well as sediment rejection capabilities of the two most common genera could have contributed to their dominance. The study showed that the seawall of a marina can support scleractinian coral communities and with relevant management, can significantly enhance marine biodiversity. Key words: Scleractinian diversity; seawall; Singapore; tropical marina Correspondence : Tel: +65 65166867 ; Fax: +65 67792486 ; Email: [email protected] INTRODUCTION Singapore’s coastline has been heavily modified have also demonstrated that biological by expanding infrastructure development assemblages on artificial marine structures and necessitated by the demands from multiple nearby natural habitats can be different (e.g.
    [Show full text]
  • DEEP SEA LEBANON RESULTS of the 2016 EXPEDITION EXPLORING SUBMARINE CANYONS Towards Deep-Sea Conservation in Lebanon Project
    DEEP SEA LEBANON RESULTS OF THE 2016 EXPEDITION EXPLORING SUBMARINE CANYONS Towards Deep-Sea Conservation in Lebanon Project March 2018 DEEP SEA LEBANON RESULTS OF THE 2016 EXPEDITION EXPLORING SUBMARINE CANYONS Towards Deep-Sea Conservation in Lebanon Project Citation: Aguilar, R., García, S., Perry, A.L., Alvarez, H., Blanco, J., Bitar, G. 2018. 2016 Deep-sea Lebanon Expedition: Exploring Submarine Canyons. Oceana, Madrid. 94 p. DOI: 10.31230/osf.io/34cb9 Based on an official request from Lebanon’s Ministry of Environment back in 2013, Oceana has planned and carried out an expedition to survey Lebanese deep-sea canyons and escarpments. Cover: Cerianthus membranaceus © OCEANA All photos are © OCEANA Index 06 Introduction 11 Methods 16 Results 44 Areas 12 Rov surveys 16 Habitat types 44 Tarablus/Batroun 14 Infaunal surveys 16 Coralligenous habitat 44 Jounieh 14 Oceanographic and rhodolith/maërl 45 St. George beds measurements 46 Beirut 19 Sandy bottoms 15 Data analyses 46 Sayniq 15 Collaborations 20 Sandy-muddy bottoms 20 Rocky bottoms 22 Canyon heads 22 Bathyal muds 24 Species 27 Fishes 29 Crustaceans 30 Echinoderms 31 Cnidarians 36 Sponges 38 Molluscs 40 Bryozoans 40 Brachiopods 42 Tunicates 42 Annelids 42 Foraminifera 42 Algae | Deep sea Lebanon OCEANA 47 Human 50 Discussion and 68 Annex 1 85 Annex 2 impacts conclusions 68 Table A1. List of 85 Methodology for 47 Marine litter 51 Main expedition species identified assesing relative 49 Fisheries findings 84 Table A2. List conservation interest of 49 Other observations 52 Key community of threatened types and their species identified survey areas ecological importanc 84 Figure A1.
    [Show full text]
  • Resurrecting a Subgenus to Genus: Molecular Phylogeny of Euphyllia and Fimbriaphyllia (Order Scleractinia; Family Euphylliidae; Clade V)
    Resurrecting a subgenus to genus: molecular phylogeny of Euphyllia and Fimbriaphyllia (order Scleractinia; family Euphylliidae; clade V) Katrina S. Luzon1,2,3,*, Mei-Fang Lin4,5,6,*, Ma. Carmen A. Ablan Lagman1,7, Wilfredo Roehl Y. Licuanan1,2,3 and Chaolun Allen Chen4,8,9,* 1 Biology Department, De La Salle University, Manila, Philippines 2 Shields Ocean Research (SHORE) Center, De La Salle University, Manila, Philippines 3 The Marine Science Institute, University of the Philippines, Quezon City, Philippines 4 Biodiversity Research Center, Academia Sinica, Taipei, Taiwan 5 Department of Molecular and Cell Biology, James Cook University, Townsville, Australia 6 Evolutionary Neurobiology Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan 7 Center for Natural Sciences and Environmental Research (CENSER), De La Salle University, Manila, Philippines 8 Taiwan International Graduate Program-Biodiversity, Academia Sinica, Taipei, Taiwan 9 Institute of Oceanography, National Taiwan University, Taipei, Taiwan * These authors contributed equally to this work. ABSTRACT Background. The corallum is crucial in building coral reefs and in diagnosing systematic relationships in the order Scleractinia. However, molecular phylogenetic analyses revealed a paraphyly in a majority of traditional families and genera among Scleractinia showing that other biological attributes of the coral, such as polyp morphology and reproductive traits, are underutilized. Among scleractinian genera, the Euphyllia, with nine nominal species in the Indo-Pacific region, is one of the groups Submitted 30 May 2017 that await phylogenetic resolution. Multiple genetic markers were used to construct Accepted 31 October 2017 Published 4 December 2017 the phylogeny of six Euphyllia species, namely E. ancora, E. divisa, E.
    [Show full text]
  • Hermatypic Coral Fauna of Subtropical Southeast Africa: a Checklist!
    Pacific Science (1996), vol. 50, no. 4: 404-414 © 1996 by University of Hawai'i Press. All rights reserved Hermatypic Coral Fauna of Subtropical Southeast Africa: A Checklist! 2 BERNHARD RrnGL ABSTRACT: The South African hermatypic coral fauna consists of 96 species in 42 scleractinian genera, one stoloniferous octocoral genus (Tubipora), and one hermatypic hydrocoral genus (Millepora). There are more species in southern Mozambique, with 151 species in 49 scleractinian genera, one stolo­ niferous octocoral (Tubipora musica L.), and one hydrocoral (Millepora exaesa [Forskal)). The eastern African coral faunas of Somalia, Kenya, Tanzania, Mozambique, and South Africa are compared and Southeast Africa dis­ tinguished as a biogeographic subregion, with six endemic species. Patterns of attenuation and species composition are described and compared with those on the eastern boundaries of the Indo-Pacific in the Pacific Ocean. KNOWLEDGE OF CORAL BIODIVERSITY in the Mason 1990) or taxonomically inaccurate Indo-Pacific has increased greatly during (Boshoff 1981) lists of the corals of the high­ the past decade (Sheppard 1987, Rosen 1988, latitude reefs of Southeast Africa. Sheppard and Sheppard 1991 , Wallace and In this paper, a checklist ofthe hermatypic Pandolfi 1991, 1993, Veron 1993), but gaps coral fauna of subtropical Southeast Africa, in the record remain. In particular, tropical which includes the southernmost corals of and subtropical subsaharan Africa, with a Maputaland and northern Natal Province, is rich and diverse coral fauna (Hamilton and evaluated and compared with a checklist of Brakel 1984, Sheppard 1987, Lemmens 1993, the coral faunas of southern Mozambique Carbone et al. 1994) is inadequately docu­ (Boshoff 1981).
    [Show full text]
  • The Earliest Diverging Extant Scleractinian Corals Recovered by Mitochondrial Genomes Isabela G
    www.nature.com/scientificreports OPEN The earliest diverging extant scleractinian corals recovered by mitochondrial genomes Isabela G. L. Seiblitz1,2*, Kátia C. C. Capel2, Jarosław Stolarski3, Zheng Bin Randolph Quek4, Danwei Huang4,5 & Marcelo V. Kitahara1,2 Evolutionary reconstructions of scleractinian corals have a discrepant proportion of zooxanthellate reef-building species in relation to their azooxanthellate deep-sea counterparts. In particular, the earliest diverging “Basal” lineage remains poorly studied compared to “Robust” and “Complex” corals. The lack of data from corals other than reef-building species impairs a broader understanding of scleractinian evolution. Here, based on complete mitogenomes, the early onset of azooxanthellate corals is explored focusing on one of the most morphologically distinct families, Micrabaciidae. Sequenced on both Illumina and Sanger platforms, mitogenomes of four micrabaciids range from 19,048 to 19,542 bp and have gene content and order similar to the majority of scleractinians. Phylogenies containing all mitochondrial genes confrm the monophyly of Micrabaciidae as a sister group to the rest of Scleractinia. This topology not only corroborates the hypothesis of a solitary and azooxanthellate ancestor for the order, but also agrees with the unique skeletal microstructure previously found in the family. Moreover, the early-diverging position of micrabaciids followed by gardineriids reinforces the previously observed macromorphological similarities between micrabaciids and Corallimorpharia as
    [Show full text]
  • Coral Cover and Rubble Cryptofauna Abundance and Diversity at Outplanted Reefs in Okinawa, Japan
    Coral cover and rubble cryptofauna abundance and diversity at outplanted reefs in Okinawa, Japan Piera Biondi1, Giovanni Diego Masucci1 and James Davis Reimer1,2 1 Molecular Invertebrate Systematics and Ecology Laboratory, Graduate School of Engineering and Science, University of the Ryukyus, Nishihara, Okinawa, Japan 2 University of the Ryukyus, Tropical Biosphere Research Center, Okinawa, Japan ABSTRACT Global climate change is leading to damage and loss of coral reef ecosystems. On subtropical Okinawa Island in southwestern Japan, the prefectural government is working on coral reef restoration by outplanting coral colonies from family Acroporidae back to reefs after initially farming colonies inside protected nurseries. In order to establish a baseline for future comparisons, in this study we documented the current status of reefs undergoing outplanting at Okinawa Island, and nearby locations where no human manipulation has occurred. We examined three sites on the coast of Onna Village on the west coast of the island; each site included an outplanted and control location. We used (1) coral rubble sampling to measure and compare abundance and diversity of rubble cryptofauna; and (2) coral reef monitoring using Line Intercept Transects to track live coral coverage. Results showed that rubble shape had a positive correlation with the numbers of animals found within rubble themselves and may therefore constitute a reliable abundance predictor. Each outplanted location did not show differences with the corresponding control location in terms of rubble cryptofauna abundance, but outplanted locations had significantly lower coral coverage. Overall, differences between sites (Maeganeku1, Maeganeku2 and Manza, each including both outplanted and control locations) were significant, for both rubble cryptofauna and coral coverage.
    [Show full text]
  • Transcriptome Profiling of Galaxea Fascicularis and Its Endosymbiont Symbiodinium Reveals Chronic Eutrophication Tolerance Pathw
    www.nature.com/scientificreports OPEN Transcriptome profiling ofGalaxea fascicularis and its endosymbiont Symbiodinium reveals chronic Received: 23 September 2016 Accepted: 06 January 2017 eutrophication tolerance pathways Published: 09 February 2017 and metabolic mutualism between partners Zhenyue Lin1,2,*, Mingliang Chen2,*, Xu Dong3, Xinqing Zheng4, Haining Huang3, Xun Xu1,2 & Jianming Chen1,2 In the South China Sea, coastal eutrophication in the Beibu Gulf has seriously threatened reef habitats by subjecting corals to chronic physiological stress. To determine how coral holobionts may tolerate such conditions, we examined the transcriptomes of healthy colonies of the galaxy coral Galaxea fascicularis and its endosymbiont Symbiodinium from two reef sites experiencing pristine or eutrophied nutrient regimes. We identified 236 and 205 genes that were differentially expressed in eutrophied hosts and symbionts, respectively. Both gene sets included pathways related to stress responses and metabolic interactions. An analysis of genes originating from each partner revealed striking metabolic integration with respect to vitamins, cofactors, amino acids, fatty acids, and secondary metabolite biosynthesis. The expression levels of these genes supported the existence of a continuum of mutualism in this coral-algal symbiosis. Additionally, large sets of transcription factors, cell signal transduction molecules, biomineralization components, and galaxin-related proteins were expanded in G. fascicularis relative to other coral species. Due to the high risk of land-based sources of pollution, the most biodiverse coral reefs in Southeast Asia have so far been neglected1. Beibu Gulf is a semi-enclosed gulf located in the northwest of the South China Sea, which is surrounded by Vietnam, Guangxi, Leizhou Peninsula and Hainan Island.
    [Show full text]
  • The Role of Vertical Symbiont Transmission in Altering Cooperation and Fitness of Coral
    bioRxiv preprint doi: https://doi.org/10.1101/067322; this version posted August 2, 2016. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. The role of vertical symbiont transmission in altering cooperation and fitness of coral- Symbiodinium symbioses Carly D Kenkela,1 and Line K Baya,2 aAustralian Institute of Marine Science, PMB No 3, Townsville MC, Queensland 4810, Australia 1Corresponding author, email: [email protected] or [email protected]; phone: +61 07 4753 4268; fax: +61 07 4772 5852 2Email: [email protected] RUNNING TITLE: Vertical symbiont transmission in coral KEYWORDS: Symbiosis, transmission mode, reef corals, calcification, bleaching, metabolite transfer bioRxiv preprint doi: https://doi.org/10.1101/067322; this version posted August 2, 2016. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 ABSTRACT 2 Cooperation between species is regularly observed in nature, but understanding of 3 what promotes, maintains and strengthens these relationships is limited. We used a 4 phylogenetically controlled design to investigate one potential driver in reef-building corals: 5 variation in symbiont transmission mode. Two of three species pairs conformed to theoretical 6 predictions stating that vertical transmission (VT) should maximize whole-organism fitness.
    [Show full text]
  • Neaiiionnn A
    () neaiiionnn a ZJiA wzuxiwtitn rim iír'iVA ,IriVJ,ir,JrViQiri,t!r,4 !rtw,iimnrAiI!tFtkx,HriiItiY) UNEP Regional Seas Reports and Studies No. 116 Prepared in co-operation with , s1 4t Association of Sojtheast Asian Marine Scientists i1llaI1DI Note: This document was prepared for the United Nations Environment Progranme (UNEP) with the editorial assistance of the Association of Southeast Asian Marine Scientists (ASEAMS) under the project FP/5102-82--05 as a contribution to the development of the action plan for the protection and development of the marine and coastal areas of the East Asian Seas Region. The designations employed and the presentation of the material in this document do not imply the expression of any opinion whatsoever on the part of UNEP concerning the legal status of any State, Territory, city or area, or of its authorities, or concerning the delimitations of its frontiers or boundaries. For bibliographic purposes this document may be cited as: ASEAMS/UNEP: Proceedings of the First ASEAMS Symposium on Southeast Asian Marine Science and Environmental Protection. UNEP Regional Seas Reports and Studies No. 116. UNEP, 1990. p eoz-O®R iL V - : - I.-.-- - - A9A ZS UNITED NATIONS ENVIRONMENT PROGRAMME Proceedings of the Finil A SEA MS Symposium on Southeast Asian Marine Science and Environmental Protection UNEP Regional Seas Reports and Studies No. 116 Prepared in co—operation with C9 = Association of Southeast Asian Marine Scientists IJNEP 1990 PREFACE The United Nations Conference on the HtNnan Envirorinent (Stockholm, 5-16 June 1912) adopted the Action Plan for the Hisnan Environment, including the General Principles for Assessment and Control of Marine Pollution.
    [Show full text]
  • Review of Species Selected on the Basis of the Analysis of 2015 CITES Export Quotas
    UNEP-WCMC technical report Review of species selected on the basis of the Analysis of 2015 CITES export quotas (Version edited for public release) Review of species selected on the basis of the Analysis of 2015 CITES export quotas Prepared for The European Commission, Directorate General Environment, Directorate E - Global & Regional Challenges, LIFE ENV.E.2. – Global Sustainability, Trade & Multilateral Agreements, Brussels, Belgium Prepared November 2015 Copyright European Commission 2015 Citation UNEP-WCMC. 2015. Review of species selected on the basis of the Analysis of 2015 CITES export quotas. UNEP-WCMC, Cambridge. The UNEP World Conservation Monitoring Centre (UNEP-WCMC) is the specialist biodiversity assessment of the United Nations Environment Programme, the world’s foremost intergovernmental environmental organization. The Centre has been in operation for over 30 years, combining scientific research with policy advice and the development of decision tools. We are able to provide objective, scientifically rigorous products and services to help decision-makers recognize the value of biodiversity and apply this knowledge to all that they do. To do this, we collate and verify data on biodiversity and ecosystem services that we analyze and interpret in comprehensive assessments, making the results available in appropriate forms for national and international level decision-makers and businesses. To ensure that our work is both sustainable and equitable we seek to build the capacity of partners where needed, so that they can provide the same services at national and regional scales. The contents of this report do not necessarily reflect the views or policies of UNEP, contributory organisations or editors. The designations employed and the presentations do not imply the expressions of any opinion whatsoever on the part of UNEP, the European Commission or contributory organisations, editors or publishers concerning the legal status of any country, territory, city area or its authorities, or concerning the delimitation of its frontiers or boundaries.
    [Show full text]
  • Marine Biodiversity in India
    MARINEMARINE BIODIVERSITYBIODIVERSITY ININ INDIAINDIA MARINE BIODIVERSITY IN INDIA Venkataraman K, Raghunathan C, Raghuraman R, Sreeraj CR Zoological Survey of India CITATION Venkataraman K, Raghunathan C, Raghuraman R, Sreeraj CR; 2012. Marine Biodiversity : 1-164 (Published by the Director, Zool. Surv. India, Kolkata) Published : May, 2012 ISBN 978-81-8171-307-0 © Govt. of India, 2012 Printing of Publication Supported by NBA Published at the Publication Division by the Director, Zoological Survey of India, M-Block, New Alipore, Kolkata-700 053 Printed at Calcutta Repro Graphics, Kolkata-700 006. ht³[eg siJ rJrJ";t Œtr"fUhK NATIONAL BIODIVERSITY AUTHORITY Cth;Govt. ofmhfUth India ztp. ctÖtf]UíK rvmwvtxe yÆgG Dr. Balakrishna Pisupati Chairman FOREWORD The marine ecosystem is home to the richest and most diverse faunal and floral communities. India has a coastline of 8,118 km, with an exclusive economic zone (EEZ) of 2.02 million sq km and a continental shelf area of 468,000 sq km, spread across 10 coastal States and seven Union Territories, including the islands of Andaman and Nicobar and Lakshadweep. Indian coastal waters are extremely diverse attributing to the geomorphologic and climatic variations along the coast. The coastal and marine habitat includes near shore, gulf waters, creeks, tidal flats, mud flats, coastal dunes, mangroves, marshes, wetlands, seaweed and seagrass beds, deltaic plains, estuaries, lagoons and coral reefs. There are four major coral reef areas in India-along the coasts of the Andaman and Nicobar group of islands, the Lakshadweep group of islands, the Gulf of Mannar and the Gulf of Kachchh . The Andaman and Nicobar group is the richest in terms of diversity.
    [Show full text]
  • The Alcyonacea (Soft Corals and Sea Fans) of Antsiranana Bay, Northern Madagascar
    MADAGASCAR CONSERVATION & DEVELOPMENT VOLUME 6 | ISSUE 1 — JUNE 2011 PAGE 29 ARTICLE The Alcyonacea (soft corals and sea fans) of Antsiranana Bay, northern Madagascar Alison J. EvansI, Mark D. SteerI and Elise M. S. BelleI Correspondence: Alison J. Evans The Society for Environmental Exploration/Frontier - 50 - 52 Rivington Street, London EC2A 3QP, U.K. E - mail: [email protected] ABSTRACT essentielles sur la région pour le développement éventuel de During the past two decades, the Alcyonacea (soft corals and stratégies de conservation. Les Octocoralliaires représentent sea fans) of the western Indian Ocean have been the subject of entre 1 et 16 % de la couverture benthique des récifs étudiés ; numerous studies investigating their ecology and distribution. onze genres d’Alcyonacea, appartenant à quatre familles, et Comparatively, Madagascar remains understudied. This article de nombreuses espèces de Gorgonacea (coraux cornés) ont provides the first record of the distribution of Alcyonacea on été enregistrés. Il a été observé que les récifs les plus exposés the shallow fringing reefs around Antsiranana Bay, northern avec les eaux les moins turbides étaient favorables à une bio- Madagascar. Alcyonacea accounted for between one and 16 % of diversité d’Octocoralliaires plus élevée. Toutefois, des commu- the reef benthos surveyed; 11 genera belonging to four families, nautés abondantes et diverses d’Octocoralliaires ont également and several unidentified gorgonians (sea fans) were recorded. été observées sur des récifs protégés aux eaux relativement Abundant and diverse Alcyonacea assemblages were recorded turbides avec des niveaux de sédimentation et une présence on reefs that were exposed with high water clarity. However, d’algues élevés, mais avec une faible couverture de coraux durs abundant and diverse communities were also observed on (Scléractiniaires) ; ceci pourrait impliquer un certain avantage sheltered reefs with low water clarity, high sediment cover and compétitif des Octocoralliaires dans de telles conditions.
    [Show full text]