A Computer Model of Field-Directed Morphogenesis Part I - Julia Sets

Total Page:16

File Type:pdf, Size:1020Kb

A Computer Model of Field-Directed Morphogenesis Part I - Julia Sets A Computer Model of Field-directed Morphogenesis Part I - Julia Sets Michael Levin Genetics Dept. Harvard Medical School (617) 432-7758 Inet: [email protected] Running title: "Julia set model of field-driven development" Summary One paradigm used in understanding the control of morphogenetic events is the concept of positional information, where sub-organismic components (such as cells) act in response to positional cues. It is important to determine what kinds of spatio-temporal patterns may be ob- tained by such a method, and what the characteristics of such a morphogenetic process might be. This paper presents a computer model of morphogenesis based on gene activity driven by interpreting a positional information field. In this model, the interactions of mutually-regulating developmental genes are viewed as a £¡ map from ¢¡ to , and are modeled by the complex number algebra. Functions in complex variables are used to simulate genetic interactions resulting in position-dependent differentia- tion. This is shown to be equivalent to computing modified Julia sets, and is seen to be suffi- cient to produce a very rich set of morphologies which are similar in appearance and several important characteristics to those of real organisms. The properties of this model can be used to study the potential role of fields and positional information as guiding factors in morphogene- sis, as the model facilitates the study of static images, time-series (movies), and experimental alterations of the developmental process. It is thus shown that gene interactions can be modeled as a multi-dimensional algebra, and that only two interacting genes are sufficient for 1) com- plex pattern formation, 2) chaotic differentiation behavior, and for 3) production of sharp edges from a continuous positional information field. This model is meant to elucidate the properties of the process of positional information- guided bio-morphogenesis, not to serve as a simulation of any particular organism’s develop- ment. Good quantitative data is not currently available on the interplay of gene products in mor- phogenesis. Thus, no attempt is made to link the images produced with actual pictures of any particular real organism. A brief introduction to top-down models and positional information is followed by the formal definition of the model. Then, the implications of the resulting mor- phologies to biological development are discussed, in terms of static shapes, parametrization studies, time series (movies made from individual frames), and behavior of the model in light of experimental perturbations. All figures (in grayscale1), formulas, and parameter values needed to re-create the figures and movies are included. 1 Color slides and videotapes are available from the author. Introduction The Biology of Artificial Life Computer models can serve as biological theories (as in Partridge and Lopez, 1984, Gar- finkel, 1984). The rapidly growing field of Artificial Life uses computer models to emphasize the common processes and characteristics of living things, rather than their physico-chemical implementation. The accent is on the role of bioinformation, cybernetic control processes, com- plexity and systems theory, rather than the study of specific instances of physicochemical proc- esses (Apter, 1966, Narendra and Thompson, 1986, Langton, 1990, Langton, 1991). "Computer simulations provide the experimental biologist with a much needed means for doing experiments on theories. We usually think of experiments as something performed on cells, to determine whether the cells’ responses will match predictions made by a theory. However, when dealing with complex phenomena and with correspondingly complex theories, what a given hypothesis predicts can be less than obvious. It can be even more difficult to perceive which components in the hypothesis give rise to a particular prediction, much less to know what alterna- tive classes of hypothesis would have predicted the same results. Lastly, anyone with sufficient insight to predict the consequences of a given theory may need ob- jective methods for proving it to others. Computer simulations can help solve all these problems." (Harris, 1990) This approach is at the intersection of biology, mathematics, physics, and computer science, and has mainly involved computer models of behavior or evolution. Some attempts to model various developmental phenomena (such as cell proliferation, cleavage, cell migration, specific pattern formation, etc.) by creating computer simulations of the behavior of the underlying components have been made (Ransom, 1981, and Meinhardt, 1982, are good summaries of such efforts). Interesting special cases are found in Düchting and Vogelsaenger, 1984 and 1985, and Thom, 1983. Good examples of the common "bottom-up" model (where the desired phenome- non emerges from a simulation of empirically-derived behaviors of lower-level components) can be found in Goel and Rogers, 1978, and Rogers and Goel, 1978. In the "top-down" model (sometimes termed "informal", Conrad, 1981), the researcher cre- ates a computer simulation which behaves like the system modeled (in some interesting way), without too much regard for the empirical validity of specific lower-level components; the model’s empirical fitness is tested at a higher level. This approach can be used to study charac- teristics of processes or general schemes. For example, one may create a well-fitting model of some animal’s social behavior based on general principles of cooperation, game theory, and in- formation theory, without any regard as to whether the components of the equations have any physical counterparts in the animal’s brain (for example, Krebs et al., 1978, Axelrod and Ham- ilton, 1981). These kinds of models usually precede bottom-up models, and are much more common in ethology, evolutionary theory, and the cognitive sciences than in developmental bi- ology. Excellent examples of top-down models are given in Raup and Michelson, 1965, Rozen- berg and Salomaa, 1986, and Slack, 1991. L-systems (Lindenmeyer, 1989, Prusinkiewicz and Lindenmeyer, 1990) are among the best examples of top-down models because they possess the appropriate higher-order behavior even though there is no known physical mechanism in plants -1- which explicitly implements the symbol manipulation rules used in an L-system. Kauffman’s work (1969, 1974, 1990) with dynamics of abstract logic elements networks is another good ex- ample, since these studies capture higher-order rules governing gene interactions without using characteristics of real genes. Whereas the bottom-up model tries to be as realistic and focused as possible, providing empirically-accurate data of some narrow and specific aspect of development (for example, Ransom et al., 1984, and Meinhardt, 1984), the top-down model attempts to derive the overall pattern of control, information flow, and higher-order characteristics at the cost of losing some lower-level realism. Bottom-up models are able to provide more concrete information about some narrowly-defined process; the benefit of the top-down model is that it allows insight into the higher-order properties of processes, and can be used when sufficient data and/or theory for a bottom-up model is not available. These models are useful in the study of developmental mor- phogenesis because embryonic development is very likely to involve general mechanisms of in- creasing complexity; at the same time, much low-level data (such as quantitative mechanisms of gene interactions) is currently unavailable. This paper presents a positional field-driven model of development which is intermediate between the bottom-up and top-down types. Positional information and field concepts in biology The basic problem of pattern formation can be viewed from one (or a combination) of two general perspectives. The developing organism’s resulting morphology can be seen as a product of subunits following a sort of master plan - a blueprint (at some level of detail) of the whole organism. Or, it may be an emergent phenomenon, where the overall pattern emerges as the re- sult of purely local interactions between subunits governed by rules which say nothing about the overall pattern (best exemplified by cellular automata systems, as in Gutowitz, 1991). An intermediate paradigm involves positional information (Wolpert, 1969, 1971, 1989). That is, each unit (usually thought of as a cell, but this could apply equally well to tissues, cell sheets, or sub-cellular components) is able to determine its position within the organism, and act (differentiate, migrate, proliferate, etc.) based upon that positional information. The posi- tional information is usually thought of as coordinates in a field, which then can be a mecha- nism for long-range control and information transfer (see Cooke, 1975 for a review of field theories in biology). The paradigm is thus a combination of the two approaches in that it in- cludes both purely local decision-making (with an emphasis on the distinction between the field itself, and various components’ responses to it), as well as a global entity (the positional infor- mation field itself). In this view, the overall morphology emerges from units following rules which specify actions based on the unit’s position; the process of morphogenesis can be "char- acterized as a series of solutions of the morphogenetic field whose superposition gives way to complex stable patterns." (Goodwin, 1988). The role of positional information in early develop- ment is reviewed
Recommended publications
  • Complexity” Makes a Difference: Lessons from Critical Systems Thinking and the Covid-19 Pandemic in the UK
    systems Article How We Understand “Complexity” Makes a Difference: Lessons from Critical Systems Thinking and the Covid-19 Pandemic in the UK Michael C. Jackson Centre for Systems Studies, University of Hull, Hull HU6 7TS, UK; [email protected]; Tel.: +44-7527-196400 Received: 11 November 2020; Accepted: 4 December 2020; Published: 7 December 2020 Abstract: Many authors have sought to summarize what they regard as the key features of “complexity”. Some concentrate on the complexity they see as existing in the world—on “ontological complexity”. Others highlight “cognitive complexity”—the complexity they see arising from the different interpretations of the world held by observers. Others recognize the added difficulties flowing from the interactions between “ontological” and “cognitive” complexity. Using the example of the Covid-19 pandemic in the UK, and the responses to it, the purpose of this paper is to show that the way we understand complexity makes a huge difference to how we respond to crises of this type. Inadequate conceptualizations of complexity lead to poor responses that can make matters worse. Different understandings of complexity are discussed and related to strategies proposed for combatting the pandemic. It is argued that a “critical systems thinking” approach to complexity provides the most appropriate understanding of the phenomenon and, at the same time, suggests which systems methodologies are best employed by decision makers in preparing for, and responding to, such crises. Keywords: complexity; Covid-19; critical systems thinking; systems methodologies 1. Introduction No one doubts that we are, in today’s world, entangled in complexity. At the global level, economic, social, technological, health and ecological factors have become interconnected in unprecedented ways, and the consequences are immense.
    [Show full text]
  • A Gentle Introduction to Dynamical Systems Theory for Researchers in Speech, Language, and Music
    A Gentle Introduction to Dynamical Systems Theory for Researchers in Speech, Language, and Music. Talk given at PoRT workshop, Glasgow, July 2012 Fred Cummins, University College Dublin [1] Dynamical Systems Theory (DST) is the lingua franca of Physics (both Newtonian and modern), Biology, Chemistry, and many other sciences and non-sciences, such as Economics. To employ the tools of DST is to take an explanatory stance with respect to observed phenomena. DST is thus not just another tool in the box. Its use is a different way of doing science. DST is increasingly used in non-computational, non-representational, non-cognitivist approaches to understanding behavior (and perhaps brains). (Embodied, embedded, ecological, enactive theories within cognitive science.) [2] DST originates in the science of mechanics, developed by the (co-)inventor of the calculus: Isaac Newton. This revolutionary science gave us the seductive concept of the mechanism. Mechanics seeks to provide a deterministic account of the relation between the motions of massive bodies and the forces that act upon them. A dynamical system comprises • A state description that indexes the components at time t, and • A dynamic, which is a rule governing state change over time The choice of variables defines the state space. The dynamic associates an instantaneous rate of change with each point in the state space. Any specific instance of a dynamical system will trace out a single trajectory in state space. (This is often, misleadingly, called a solution to the underlying equations.) Description of a specific system therefore also requires specification of the initial conditions. In the domain of mechanics, where we seek to account for the motion of massive bodies, we know which variables to choose (position and velocity).
    [Show full text]
  • Dissipative Structures, Complexity and Strange Attractors: Keynotes for a New Eco-Aesthetics
    Dissipative structures, complexity and strange attractors: keynotes for a new eco-aesthetics 1 2 3 3 R. M. Pulselli , G. C. Magnoli , N. Marchettini & E. Tiezzi 1Department of Urban Studies and Planning, M.I.T, Cambridge, U.S.A. 2Faculty of Engineering, University of Bergamo, Italy and Research Affiliate, M.I.T, Cambridge, U.S.A. 3Department of Chemical and Biosystems Sciences, University of Siena, Italy Abstract There is a new branch of science strikingly at variance with the idea of knowledge just ended and deterministic. The complexity we observe in nature makes us aware of the limits of traditional reductive investigative tools and requires new comprehensive approaches to reality. Looking at the non-equilibrium thermodynamics reported by Ilya Prigogine as the key point to understanding the behaviour of living systems, the research on design practices takes into account the lot of dynamics occurring in nature and seeks to imagine living shapes suiting living contexts. When Edgar Morin speaks about the necessity of a method of complexity, considering the evolutive features of living systems, he probably means that a comprehensive method should be based on deep observations and flexible ordering laws. Actually designers and planners are engaged in a research field concerning fascinating theories coming from science and whose playground is made of cities, landscapes and human settlements. So, the concept of a dissipative structure and the theory of space organized by networks provide a new point of view to observe the dynamic behaviours of systems, finally bringing their flowing patterns into the practices of design and architecture. However, while science discovers the fashion of living systems, the question asked is how to develop methods to configure open shapes according to the theory of evolutionary physics.
    [Show full text]
  • A Cell Dynamical System Model for Simulation of Continuum Dynamics of Turbulent Fluid Flows A
    A Cell Dynamical System Model for Simulation of Continuum Dynamics of Turbulent Fluid Flows A. M. Selvam and S. Fadnavis Email: [email protected] Website: http://www.geocities.com/amselvam Trends in Continuum Physics, TRECOP ’98; Proceedings of the International Symposium on Trends in Continuum Physics, Poznan, Poland, August 17-20, 1998. Edited by Bogdan T. Maruszewski, Wolfgang Muschik, and Andrzej Radowicz. Singapore, World Scientific, 1999, 334(12). 1. INTRODUCTION Atmospheric flows exhibit long-range spatiotemporal correlations manifested as the fractal geometry to the global cloud cover pattern concomitant with inverse power-law form for power spectra of temporal fluctuations of all scales ranging from turbulence (millimeters-seconds) to climate (thousands of kilometers-years) (Tessier et. al., 1996) Long-range spatiotemporal correlations are ubiquitous to dynamical systems in nature and are identified as signatures of self-organized criticality (Bak et. al., 1988) Standard models for turbulent fluid flows in meteorological theory cannot explain satisfactorily the observed multifractal (space-time) structures in atmospheric flows. Numerical models for simulation and prediction of atmospheric flows are subject to deterministic chaos and give unrealistic solutions. Deterministic chaos is a direct consequence of round-off error growth in iterative computations. Round-off error of finite precision computations doubles on an average at each step of iterative computations (Mary Selvam, 1993). Round- off error will propagate to the mainstream computation and give unrealistic solutions in numerical weather prediction (NWP) and climate models which incorporate thousands of iterative computations in long-term numerical integration schemes. A recently developed non-deterministic cell dynamical system model for atmospheric flows (Mary Selvam, 1990; Mary Selvam et.
    [Show full text]
  • Rendering Hypercomplex Fractals Anthony Atella [email protected]
    Rhode Island College Digital Commons @ RIC Honors Projects Overview Honors Projects 2018 Rendering Hypercomplex Fractals Anthony Atella [email protected] Follow this and additional works at: https://digitalcommons.ric.edu/honors_projects Part of the Computer Sciences Commons, and the Other Mathematics Commons Recommended Citation Atella, Anthony, "Rendering Hypercomplex Fractals" (2018). Honors Projects Overview. 136. https://digitalcommons.ric.edu/honors_projects/136 This Honors is brought to you for free and open access by the Honors Projects at Digital Commons @ RIC. It has been accepted for inclusion in Honors Projects Overview by an authorized administrator of Digital Commons @ RIC. For more information, please contact [email protected]. Rendering Hypercomplex Fractals by Anthony Atella An Honors Project Submitted in Partial Fulfillment of the Requirements for Honors in The Department of Mathematics and Computer Science The School of Arts and Sciences Rhode Island College 2018 Abstract Fractal mathematics and geometry are useful for applications in science, engineering, and art, but acquiring the tools to explore and graph fractals can be frustrating. Tools available online have limited fractals, rendering methods, and shaders. They often fail to abstract these concepts in a reusable way. This means that multiple programs and interfaces must be learned and used to fully explore the topic. Chaos is an abstract fractal geometry rendering program created to solve this problem. This application builds off previous work done by myself and others [1] to create an extensible, abstract solution to rendering fractals. This paper covers what fractals are, how they are rendered and colored, implementation, issues that were encountered, and finally planned future improvements.
    [Show full text]
  • Generating Fractals Using Complex Functions
    Generating Fractals Using Complex Functions Avery Wengler and Eric Wasser What is a Fractal? ● Fractals are infinitely complex patterns that are self-similar across different scales. ● Created by repeating simple processes over and over in a feedback loop. ● Often represented on the complex plane as 2-dimensional images Where do we find fractals? Fractals in Nature Lungs Neurons from the Oak Tree human cortex Regardless of scale, these patterns are all formed by repeating a simple branching process. Geometric Fractals “A rough or fragmented geometric shape that can be split into parts, each of which is (at least approximately) a reduced-size copy of the whole.” Mandelbrot (1983) The Sierpinski Triangle Algebraic Fractals ● Fractals created by repeatedly calculating a simple equation over and over. ● Were discovered later because computers were needed to explore them ● Examples: ○ Mandelbrot Set ○ Julia Set ○ Burning Ship Fractal Mandelbrot Set ● Benoit Mandelbrot discovered this set in 1980, shortly after the invention of the personal computer 2 ● zn+1=zn + c ● That is, a complex number c is part of the Mandelbrot set if, when starting with z0 = 0 and applying the iteration repeatedly, the absolute value of zn remains bounded however large n gets. Animation based on a static number of iterations per pixel. The Mandelbrot set is the complex numbers c for which the sequence ( c, c² + c, (c²+c)² + c, ((c²+c)²+c)² + c, (((c²+c)²+c)²+c)² + c, ...) does not approach infinity. Julia Set ● Closely related to the Mandelbrot fractal ● Complementary to the Fatou Set Featherino Fractal Newton’s method for the roots of a real valued function Burning Ship Fractal z2 Mandelbrot Render Generic Mandelbrot set.
    [Show full text]
  • Thermodynamic Properties of Coupled Map Lattices 1 Introduction
    Thermodynamic properties of coupled map lattices J´erˆome Losson and Michael C. Mackey Abstract This chapter presents an overview of the literature which deals with appli- cations of models framed as coupled map lattices (CML’s), and some recent results on the spectral properties of the transfer operators induced by various deterministic and stochastic CML’s. These operators (one of which is the well- known Perron-Frobenius operator) govern the temporal evolution of ensemble statistics. As such, they lie at the heart of any thermodynamic description of CML’s, and they provide some interesting insight into the origins of nontrivial collective behavior in these models. 1 Introduction This chapter describes the statistical properties of networks of chaotic, interacting el- ements, whose evolution in time is discrete. Such systems can be profitably modeled by networks of coupled iterative maps, usually referred to as coupled map lattices (CML’s for short). The description of CML’s has been the subject of intense scrutiny in the past decade, and most (though by no means all) investigations have been pri- marily numerical rather than analytical. Investigators have often been concerned with the statistical properties of CML’s, because a deterministic description of the motion of all the individual elements of the lattice is either out of reach or uninteresting, un- less the behavior can somehow be described with a few degrees of freedom. However there is still no consistent framework, analogous to equilibrium statistical mechanics, within which one can describe the probabilistic properties of CML’s possessing a large but finite number of elements.
    [Show full text]
  • Fractal Curves and Complexity
    Perception & Psychophysics 1987, 42 (4), 365-370 Fractal curves and complexity JAMES E. CUTI'ING and JEFFREY J. GARVIN Cornell University, Ithaca, New York Fractal curves were generated on square initiators and rated in terms of complexity by eight viewers. The stimuli differed in fractional dimension, recursion, and number of segments in their generators. Across six stimulus sets, recursion accounted for most of the variance in complexity judgments, but among stimuli with the most recursive depth, fractal dimension was a respect­ able predictor. Six variables from previous psychophysical literature known to effect complexity judgments were compared with these fractal variables: symmetry, moments of spatial distribu­ tion, angular variance, number of sides, P2/A, and Leeuwenberg codes. The latter three provided reliable predictive value and were highly correlated with recursive depth, fractal dimension, and number of segments in the generator, respectively. Thus, the measures from the previous litera­ ture and those of fractal parameters provide equal predictive value in judgments of these stimuli. Fractals are mathematicalobjectsthat have recently cap­ determine the fractional dimension by dividing the loga­ tured the imaginations of artists, computer graphics en­ rithm of the number of unit lengths in the generator by gineers, and psychologists. Synthesized and popularized the logarithm of the number of unit lengths across the ini­ by Mandelbrot (1977, 1983), with ever-widening appeal tiator. Since there are five segments in this generator and (e.g., Peitgen & Richter, 1986), fractals have many curi­ three unit lengths across the initiator, the fractionaldimen­ ous and fascinating properties. Consider four. sion is log(5)/log(3), or about 1.47.
    [Show full text]
  • Writing the History of Dynamical Systems and Chaos
    Historia Mathematica 29 (2002), 273–339 doi:10.1006/hmat.2002.2351 Writing the History of Dynamical Systems and Chaos: View metadata, citation and similar papersLongue at core.ac.uk Dur´ee and Revolution, Disciplines and Cultures1 brought to you by CORE provided by Elsevier - Publisher Connector David Aubin Max-Planck Institut fur¨ Wissenschaftsgeschichte, Berlin, Germany E-mail: [email protected] and Amy Dahan Dalmedico Centre national de la recherche scientifique and Centre Alexandre-Koyre,´ Paris, France E-mail: [email protected] Between the late 1960s and the beginning of the 1980s, the wide recognition that simple dynamical laws could give rise to complex behaviors was sometimes hailed as a true scientific revolution impacting several disciplines, for which a striking label was coined—“chaos.” Mathematicians quickly pointed out that the purported revolution was relying on the abstract theory of dynamical systems founded in the late 19th century by Henri Poincar´e who had already reached a similar conclusion. In this paper, we flesh out the historiographical tensions arising from these confrontations: longue-duree´ history and revolution; abstract mathematics and the use of mathematical techniques in various other domains. After reviewing the historiography of dynamical systems theory from Poincar´e to the 1960s, we highlight the pioneering work of a few individuals (Steve Smale, Edward Lorenz, David Ruelle). We then go on to discuss the nature of the chaos phenomenon, which, we argue, was a conceptual reconfiguration as
    [Show full text]
  • Measures of Complexity a Non--Exhaustive List
    Measures of Complexity a non--exhaustive list Seth Lloyd d'Arbeloff Laboratory for Information Systems and Technology Department of Mechanical Engineering Massachusetts Institute of Technology [email protected] The world has grown more complex recently, and the number of ways of measuring complexity has grown even faster. This multiplication of measures has been taken by some to indicate confusion in the field of complex systems. In fact, the many measures of complexity represent variations on a few underlying themes. Here is an (incomplete) list of measures of complexity grouped into the corresponding themes. An historical analog to the problem of measuring complexity is the problem of describing electromagnetism before Maxwell's equations. In the case of electromagnetism, quantities such as electric and magnetic forces that arose in different experimental contexts were originally regarded as fundamentally different. Eventually it became clear that electricity and magnetism were in fact closely related aspects of the same fundamental quantity, the electromagnetic field. Similarly, contemporary researchers in architecture, biology, computer science, dynamical systems, engineering, finance, game theory, etc., have defined different measures of complexity for each field. Because these researchers were asking the same questions about the complexity of their different subjects of research, however, the answers that they came up with for how to measure complexity bear a considerable similarity to eachother. Three questions that researchers frequently ask to quantify the complexity of the thing (house, bacterium, problem, process, investment scheme) under study are 1. How hard is it to describe? 2. How hard is it to create? 3. What is its degree of organization? Here is a list of some measures of complexity grouped according to the question that they try to answer.
    [Show full text]
  • Role of Nonlinear Dynamics and Chaos in Applied Sciences
    v.;.;.:.:.:.;.;.^ ROLE OF NONLINEAR DYNAMICS AND CHAOS IN APPLIED SCIENCES by Quissan V. Lawande and Nirupam Maiti Theoretical Physics Oivisipn 2000 Please be aware that all of the Missing Pages in this document were originally blank pages BARC/2OOO/E/OO3 GOVERNMENT OF INDIA ATOMIC ENERGY COMMISSION ROLE OF NONLINEAR DYNAMICS AND CHAOS IN APPLIED SCIENCES by Quissan V. Lawande and Nirupam Maiti Theoretical Physics Division BHABHA ATOMIC RESEARCH CENTRE MUMBAI, INDIA 2000 BARC/2000/E/003 BIBLIOGRAPHIC DESCRIPTION SHEET FOR TECHNICAL REPORT (as per IS : 9400 - 1980) 01 Security classification: Unclassified • 02 Distribution: External 03 Report status: New 04 Series: BARC External • 05 Report type: Technical Report 06 Report No. : BARC/2000/E/003 07 Part No. or Volume No. : 08 Contract No.: 10 Title and subtitle: Role of nonlinear dynamics and chaos in applied sciences 11 Collation: 111 p., figs., ills. 13 Project No. : 20 Personal authors): Quissan V. Lawande; Nirupam Maiti 21 Affiliation ofauthor(s): Theoretical Physics Division, Bhabha Atomic Research Centre, Mumbai 22 Corporate authoifs): Bhabha Atomic Research Centre, Mumbai - 400 085 23 Originating unit : Theoretical Physics Division, BARC, Mumbai 24 Sponsors) Name: Department of Atomic Energy Type: Government Contd...(ii) -l- 30 Date of submission: January 2000 31 Publication/Issue date: February 2000 40 Publisher/Distributor: Head, Library and Information Services Division, Bhabha Atomic Research Centre, Mumbai 42 Form of distribution: Hard copy 50 Language of text: English 51 Language of summary: English 52 No. of references: 40 refs. 53 Gives data on: Abstract: Nonlinear dynamics manifests itself in a number of phenomena in both laboratory and day to day dealings.
    [Show full text]
  • A Simple Scalar Coupled Map Lattice Model for Excitable Media
    This is a repository copy of A simple scalar coupled map lattice model for excitable media. White Rose Research Online URL for this paper: http://eprints.whiterose.ac.uk/74667/ Monograph: Guo, Y., Zhao, Y., Coca, D. et al. (1 more author) (2010) A simple scalar coupled map lattice model for excitable media. Research Report. ACSE Research Report no. 1016 . Automatic Control and Systems Engineering, University of Sheffield Reuse Unless indicated otherwise, fulltext items are protected by copyright with all rights reserved. The copyright exception in section 29 of the Copyright, Designs and Patents Act 1988 allows the making of a single copy solely for the purpose of non-commercial research or private study within the limits of fair dealing. The publisher or other rights-holder may allow further reproduction and re-use of this version - refer to the White Rose Research Online record for this item. Where records identify the publisher as the copyright holder, users can verify any specific terms of use on the publisher’s website. Takedown If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing [email protected] including the URL of the record and the reason for the withdrawal request. [email protected] https://eprints.whiterose.ac.uk/ A Simple Scalar Coupled Map Lattice Model for Excitable Media Yuzhu Guo, Yifan Zhao, Daniel Coca, and S. A. Billings Research Report No. 1016 Department of Automatic Control and Systems Engineering The University of Sheffield Mappin Street, Sheffield, S1 3JD, UK 8 September 2010 A Simple Scalar Coupled Map Lattice Model for Excitable Media Yuzhu Guo, Yifan Zhao, Daniel Coca, and S.A.
    [Show full text]