Neurophysiology of Nerve Conduction Studies

Total Page:16

File Type:pdf, Size:1020Kb

Neurophysiology of Nerve Conduction Studies 12 Neurophysiology of Nerve Conduction Studies James B. Caress, Gregory J. Esper, and Seward B. Rutkove Summary The methodology for performing standard nerve conduction studies has been established by iden- tifying the most helpful and consistent physiological data obtainable while being constrained by a variety of technical and practical limitations. Nerve stimulation occurs underneath the negatively charged anode of the applied stimulator and simultaneous hyperpolarization of the nerve occurs beneath the positively charged cathode. Referential or bipolar recording techniques are used for all types of measurements. Sensory conduction studies can be performed either antidromically or ortho- dromically, although, for technical reasons, the former are usually preferred; the recorded sensory nerve action potential is made up of the simultaneous depolarization of all of the cutaneous sensory axons. In motor studies, the compound motor action potential is recorded from the motor point of the muscle of interest and represents the depolarization of the underlying muscle fibers rather than the nerve itself and is, thus, of considerably greater amplitude and duration. F-waves and H-reflexes rep- resent the two most commonly evaluated forms of late responses and assist with assessing the entire length of the neurons, from spinal cord to distal muscle. Key Words: Compound motor action potential; depolarization; late responses; nerve conduction study; sensory nerve action potential; stimulation. 1. PHYSIOLOGY OF STIMULATION Stimulators used in routine nerve conduction studies (NCS) have a cathode and an anode and are, therefore, bipolar. The cathode is negatively charged, whereas the anode is positively charged. The depolarization of axons occurs under the cathode because the negativity in the region of the cathode leads to a reduction in the potential difference between the inside and the outside of the cell (the inside of the cell is relatively negative at baseline). On the other hand, the extracellular environment under the anode is positively charged, leading to hyper- polarization of the underlying axons. Much of the current supplied by the stimulator travels in the very low resistance extracel- lular space because current follows the path of least resistance. The cross-sectional resistance of an axon will determine whether some of that current will enter and depolarize the nerve. Cross-sectional resistance is reduced as diameter of the axon increases, resulting in a greater area in which current can flow. The result relevant to NCS is that large axons will depolarize with relatively less stimulus current than smaller axons. Hence, with low stimulus intensities, large axons will be preferentially stimulated. From: The Clinical Neurophysiology Primer Edited by: A. S. Blum and S. B. Rutkove © Humana Press Inc., Totowa, NJ 207 208 Caress, Esper, and Rutkove Fig. 1. A median sensory nerve action potential recorded from digit 2. The digitally averaged waveform is on top. 2. MEASUREMENT OF SENSORY POTENTIALS IN NCS Waveforms that are displayed during sensory NCS reflect the passage of current beneath surface electrodes that are at least a few millimeters distant from the current generators (that is, the depolarizing axons). Routine studies usually use a bipolar recording technique in which both the active and reference electrodes lie above the nerve. The potential measured by the active electrode is compared with that measured by the reference electrode, and both are compared with a ground electrode lying elsewhere on the patient. The reference electrode makes an important contribution to the observed compound sensory nerve action potential (SNAP) (Fig. 1). The nerve current is not directly measured in NCS but overlying loops of current in the soft tissue reflect the actual action potentials. This situation is referred to as volume conduction and is further described in Chapter 4. Temporal dispersion refers to the phenomenon that, as a sensory conduction study is per- formed over longer and longer segments of nerve, the recorded SNAP loses its sharpness (high amplitude and short duration) and becomes a broader, lower-amplitude potential. This occurs normally in any sensory NCS because individual sensory axons conduct at slightly different rates and because these slight differences are magnified when a NCS is performed over a large segment of nerve. In diseased states, such as polyneuropathies, temporal disper- sion can be enhanced (abnormal temporal dispersion). Because sensory NCS are especially vulnerable to the effects of temporal dispersion in both health and disease, sensory studies are usually performed over shorter segments of nerve than motor studies, which tend to be less susceptible to these effects (described in Section 3). Sensory responses can be recorded with an orthodromic or an antidromic technique. In ortho- dromic studies, the recording electrodes are proximal to the stimulation site, and, in antidromic studies, stimulation is proximal to the recording position. In the hands, ring electrodes are used around the fingers to stimulate (orthodromic) or record (antidromic). Although orthodromic Nerve Conduction Studies 209 Fig. 2. A median compound muscle action potential. Recordings made with wrist and elbow stim- ulating APB, abductor pollicis brevis. responses reflect more accurately the physiology of sensory responses via afferent conduc- tion, upper extremity orthodromic responses are usually considerably smaller than antidromic responses. 3. MEASUREMENT OF MOTOR POTENTIALS IN NCS The active electrode is placed over the motor point of the muscle, where the majority of the motor axons synapse with the end plates of the muscle fibers. Rather than measuring a compound nerve action potential, the summation of the muscle fiber action potentials is measured. This is called the compound motor action potential (CMAP) (Fig. 2). In this case, there is no leading edge of a dipole to cause an initial downward deflection, because the depo- larization initiates directly beneath the recording electrode. The influx of Na+ at the muscle end plates generates extracellular negativity that is displayed as an abrupt upward deflection from the baseline. The waveform returns to the baseline as the resting membrane potential of the muscle fibers is reestablished. The distal latency is the time at which the depolarization of the fastest nerve fiber is recorded; this response is routinely recorded but does not directly measure the conduction velocity, as is the case with sensory recordings. This is because of the additional time it takes for acetylcholine to traverse the synapse, to attach to receptors, and to generate muscle fiber action potentials. Conduction velocity is calculated only in the proximal segments of nerve, by subtracting the distal latency and distance from the values obtained with proximal stimulation. However, by establishing normal values for distal laten- cies for specific distances, meaning can be given to the measurement that can assist in the evaluation of a variety nerve disorders, including distal compression neuropathies, such as carpal tunnel syndrome (median neuropathy at the wrist). One point that is frequently overlooked is that the recorded CMAP does not reflect mus- cle contraction. The CMAP is a purely electrical signal from the summation of muscle fiber action potentials, which occurs well before the actual contraction of the muscle takes place. 210 Caress, Esper, and Rutkove The visible muscle contraction requires Ca2+ release cross-linking of actin and myosin fibers (so-called excitation–contraction coupling), which occurs much more slowly and is not meas- ured in routine NCS. Also, as in sensory NCS, the reference electrode is not electrically inac- tive, and it contributes to the waveform, even though it is often placed over a bone, a region generally considered electrically silent. This is particularly clear during ulnar or tibial motor NCS, where the waveform characteristically exhibits a double-peaked negative phase. The second peak results from activity recorded at the reference electrode. Similar to sensory responses, normal temporal dispersion of the responses does occur because smaller motor neurons will conduct at slower velocities than larger, causing the recorded CMAP to spread out (increase in duration and decrease in amplitude) the longer the segment of nerve studied. However, the effects are not nearly as dramatic as those observed in sensory studies, because the duration of the CMAP is much larger than of the SNAP (~6 times longer). Hence, small increases in duration are not be readily apparent, and the amplitude of the response generally declines only modestly with increasing distance. 4. NEUROPHYSIOLOGY OF THE LATE RESPONSES 4.1. F-Waves The “F” stands for foot, because these responses were first recorded from intrinsic foot mus- cles. On stimulation of a single motor axon, the wave of depolarization will travel distally to be recorded as part of the CMAP, or “M-wave,” but also will travel proximally to its anterior horn cell (AHC). Retrograde depolarization of AHCs will result in regeneration of an action potential at the axon hillock in a small subset of neurons (~5–10%), which then travels back down the motor axon to the innervated muscle, recorded at the electrodes as the F-wave (Fig. 3). Although, for theoretical reasons, it is desirable to reverse the polarity of the stimulator, placing the anode distally and cathode proximally to avoid “anodal block,” this remains more of a theoretical
Recommended publications
  • F Responses Studied with Single Fibre EMG in Normal Subjects and Spastic Patients1
    J Neurol Neurosurg Psychiatry: first published as 10.1136/jnnp.41.1.45 on 1 January 1978. Downloaded from Journal ofNeurology, Neurosurgery, andPsychiatry, 1978, 41, 45-53 F responses studied with single fibre EMG in normal subjects and spastic patients1 H. H. SCHILLER AND E. STALBERG From the Department of Neurology, University Hospital, Zurich, Switzerland, and the Department of Clinical Neurophysiology, Academic Hospital, Uppsala, Sweden S U M M A R Y Recurrent responses of single human motor neurones after antidromic activation, the so-called F response, have been studied in the abductor digiti minimi muscle in normal subjects and in spastic patients with the single fibre EMG technique. The F response occurs rarely and in groups. Half of all motor neurones did not produce any F response within an arbitrarily chosen time interval of 200 successive stimuli at 1 and 2 Hz. Spastic patients had as many silent neurones as the normal subjects but the responding neurones more frequently produced F responses (P<0.001). When a neurone has few responses at rest the frequency increases under activation of the contralateral or ipsilateral muscle (P<0.05). When there are many responses in the relaxed state there is a decrease (P<0.001) under activation. The Protected by copyright. behaviour of an individual neurone is consistent in different activation periods. After stimulation of a peripheral nerve, a late response is always preceded by an identical response may be recorded with surface electrodes M response and has a jitter only slightly greater over the corresponding muscle at a latency of than that of the M response, usually less than about 20 to 30 ms in the upper extremities (Conrad 50 ,ts (Fig.
    [Show full text]
  • Nerve Conduction Studies: Essentials and Pitfalls in Practice
    NERVE CONDUCTION STUDIES: J Neurol Neurosurg Psychiatry: first published as 10.1136/jnnp.2005.069138 on 16 June 2005. Downloaded from ESSENTIALS AND PITFALLS IN PRACTICE A Mallik, A I Weir ii23 J Neurol Neurosurg Psychiatry 2005;76(Suppl II):ii23–ii31. doi: 10.1136/jnnp.2005.069138 neurologist has sent a patient for nerve conduction studies (NCS) and has received the report, but what does it mean? We hope to remove some of the mysteries that may Asurround NCS. The techniques and how they are affected by disease are described in general terms. These principles can be applied to specific conditions discussed elsewhere. We also discuss the numerous pitfalls that may be encountered with NCS. Understanding these basic concepts will allow you to get the most from your clinical neurophysiology department. NCS are only part of a complete peripheral neurophysiological examination (PNE) and are frequently accompanied by a needle electromyogram (EMG). The combination of both techniques and those detailed in other articles in this issue are often required for a complete diagnostic study. The process of choosing the appropriate tests is the responsibility of the clinical neurophysiologist (CN) and not the referring doctor and is planned as a dynamic series of steps designed to answer specific questions about nervous system function raised by the clinical picture. c ABBREVIATIONS Clinical neurophysiologists can employ a confusing number of terms and abbreviations. Box 1 lists the ones we use frequently. WHAT DO YOU TELL THE PATIENT ABOUT THE TESTS? NCS involve activating nerves electrically with small safe pulses over several points on the skin of copyright.
    [Show full text]
  • Neurophysiologic Pattern and Severity Grading Scale of Carpal Tunnel
    Research Article iMedPub Journals JOURNAL OF NEUROLOGY AND NEUROSCIENCE 2017 www.imedpub.com ISSN 2171-6625 Vol. 8 No. 4: 213 DOI: 10.21767/2171-6625.1000213 Neurophysiologic Pattern and Severity Salah El-Magzoub M1, MohaMmed El-Najid Grading Scale of Carpal Tunnel Mustafa2 and Syndrome in Sudanese Patients Sami F Abdalla3 1 Faculty of Medicine, National Ribat University, Khartoum, Sudan 2 Faculty of Medicine, International Abstract University of Sudan, Khartoum, Sudan Background: Carpal tunnel syndrome is the most frequent compression-induced 3 Faculty of Medicine, Almaarefa Colleges, neuropathy, where the median nerve is compressed at the wrist causing sensory College of Applied Sciences Medicine, and motor deficits. It is more common in females than males and accounts for Riyadh, Saudi Arabia a higher number of days off work than all other work-related musculoskeletal disorders. Objectives: The aim of this study is to describe electrophysiological criteria for *Corresponding author: Sami F. Abdalla diagnosis of CTS among Sudanese patients, to classify patients with CTS according to severity based on NCS results and clinical presentation, and to determine the [email protected] age group most affected beyond finding any gender difference. Material and methods: This is a retrospective analytic electrophyisologic study Faculty of Medicine, Almaarefa Colleges, performed in 671 clinically diagnosed CTS patients. NCS was performed in more College of Applied Sciences Medicine, Saudi than 1089 hands which included the median and ulnar nerves. Onset and peak Arabia. latencies, amplitude, conduction velocity, F waves and distance were calculated. Tel: 00966538199174 Result and discussion: Out of 671patients with CTS; females were 81.7% and males Fax: +96638199174 were 18.3%.
    [Show full text]
  • Non-Commercial Use Only
    Neurology International 2018; volume 10:7690 Missed diagnosis of chronic logical disorders, several evaluation tools inflammatory demyelinating such as magnetic resonance imaging (MRI), Correspondence: Department of Physical computed tomography (CT), and ultrasound Medicine and Rehabilitation, College of polyneuropathy in a patient are being used. In particular, nerve conduc- Medicine, Yeungnam University 317-1, with cervical myelopathy due tion study (NCS) and electromyography Daemyungdong, Namku, Taegu, 705-717, to ossification of posterior lon- (EMG) play a key role in the diagnosis of a Republic of Korea. peripheral nerve lesion and the assessment Tel.: 82.53.620.4682. gitudinal ligament. of its extent and severity.8 E-mail: [email protected] In the current study, we report a case of Key words: Chronic inflammatory demyeli- missed diagnosis of chronic inflammatory nating polyneuropathy; cervical myelopathy; Min Cheol Chang demyelinating polyneuropathy (CIDP), electrophysiological study. which is one of peripheral polyneu- Department of Physical Medicine and ropathies, in a patient who underwent spinal Conflict of interest: the authors declare no Rehabilitation, College of Medicine, decompression surgery due to cervical conflict of interest. Yeungnam University, Taegu, myelopathy induced by ossification of the Republic of Korea posterior longitudinal ligament (OPLL). By Funding: This work was supported by the reporting this missed diagnosis, we intend National Research Foundation of to emphasize the importance of thorough Korea (NRF) grant funded by the Korea gov- examination of the nervous system before ernment (MSIT) Abstract confirming a diagnosis of a neurological (NRF-2017R1C1B5017714). disorder. In particular, we intend to show Received for publication: 25 March 2018. In the current study, we report a missed the necessity of NCS and EMG to rule out diagnosis of combined chronic inflammato- Revision received: 25 June 2018.
    [Show full text]
  • F Wave Size As a Monitor Ofmotor Neuron Excitability
    J Neurol Neurosurg Psychiatry: first published as 10.1136/jnnp.50.4.453 on 1 April 1987. Downloaded from Journal of Neurology, Neurosurgery, and Psychiatry 1987;50:453-459 F wave size as a monitor of motor neuron excitability: the effect of deafferentation J E FOX, E R HITCHCOCK From the Department ofNeurosurgery, University of Birmingham, Birmingham, UK. SUMMARY F waves have been recorded from hand or leg muscles following surgical section or traumatic avulsion of dorsal roots. It has been found that under these conditions F wave size can still be changed by manoeuvres which influence motor neuron excitability but that the size and direction of the changes are variable and may be dependent on the resting level of that excitability. The F wave is a late response recorded in the electro- neurons,2-6182526 some experiments indicate that, myograph (EMG) of a muscle following stimulation especially under conditions of motor neuron of its nerve supply.1 Although the response was origi- excitation, the response may also include reflex com- nally thought to be a reflex, subsequent work showed ponents.3 25 27 28 Any increase in the size of the late that it can result from a recurrent discharge in motor response might then result from increased reflex activ- - neurons following their antidromic activation.2 6 ity rather than from changes in the size of the F wave Protected by copyright. Although its most frequent clinical use has been in per se. determining conduction velocity in the axons of We report two groups of observations on the F motor neurons,7 -15 there has also been some interest wave.
    [Show full text]
  • The Study of F- Waves in Normal Healthy Individuals L D Parmar, a Singh
    The Internet Journal of Neurology ISPUB.COM Volume 16 Number 1 The Study Of F- Waves In Normal Healthy Individuals L D Parmar, A Singh Citation L D Parmar, A Singh. The Study Of F- Waves In Normal Healthy Individuals. The Internet Journal of Neurology. 2013 Volume 16 Number 1. Abstract BACKGROUND: F-waves are intriguing motor artifacts produced by anti dromic activation of motor neurons. Many studies have been published regarding normative data from several countries. Aim: to study the characteristics of F wave including Minimum latency and its relation to limb length /height Research design: Cross sectional, analytical Material & Methods: NCS for all limbs performed on 59 healthy participants. Different parameters of F wave including latency, chrono dispersion, persistence, amplitude were studied and compared with the literature.. Statistics: Descriptive statistics, Frequency tables, t-test used for the comparison of the characteristics of f-waves. Results: all parameters well in agreement with literature, study demonstrates no significant side to side difference between minimum latencies of the same nerves. F minimum latency was highly correlated with height and limb length (p<.01), no significant correlation was found with age. The nomogram was established Conclusions: reference values for our laboratory were established INTRODUCTION response of a muscle is found readily in a wide distribution The clinical electro diagnosis involves the recording, when its motor nerve is stimulated supramaximally. It is a display, measurement, and interpretation of action potentials response of low amplitude, usually less than 5% of the direct arising from central nervous system (evoked potentials), motor (M) response, with a latency directly related to the peripheral nerves (nerve conduction studies) and muscles distance of the stimulating and recording sites from the (electromyography).
    [Show full text]
  • Emergence of F-Waves After Repetitive Nerve Stimulation
    Clinical Neurophysiology Practice 5 (2020) 100–103 Contents lists available at ScienceDirect Clinical Neurophysiology Practice journal homepage: www.elsevier.com/locate/cnp Case report Emergence of F-waves after repetitive nerve stimulation ⇑ Simon Zimnowodzki a, , Matthew Butrum b, Jun Kimura c, Erik Stålberg d, Shalini Mahajan e, Leland Gao f a VA San Diego Healthcare, 3350 La Jolla Village Drive, San Diego, CA 92161, USA b Intermountain Healthcare, 5171 S Cottonwood St Ste 810, Salt Lake City, UT 84107, USA c University of Iowa, 0206 RCP, Iowa City, IA 52242, USA d Uppsala University, Dept. of Neuroscience (BMC Box 593), 751 24 Uppsala, Sweden e Cedars-Sinai Medical Center, 8700 Beverly Blvd, Los Angeles, CA 90048, USA f LA Neuromuscular Center, 8750 Wilshire Blvd Ste 350, Beverly Hills, CA 90211, USA article info abstract Article history: Aim: Absence of the F-wave may represent the inability of spinal motor neurons to be excited after peri- Received 11 November 2019 ods of inactivity. Repetitive stimulation in an otherwise immobile patient acts as a voluntary movement Received in revised form 8 April 2020 therefore allowing for the production of an F-wave in a patient with previously demonstrated absent F- Accepted 21 April 2020 waves. Through this case report, we attempt to highlight that the absence of the F-wave may result from Available online 8 May 2020 inexcitability of spinal motor neurons after reduced mobilization. Case: We present the case of a 48-year-old woman who had been hospitalized in an ICU setting for Keywords: almost one month due to a subarachnoid hemorrhage, pancreatitis, and respiratory failure.
    [Show full text]
  • Glossary in 1987
    Foreword In 1980, a committee of distinguished members of the American Association of Electromyography and Electrodiagnosis (AAEE) published the first compre- hensive collection of terms used in the practice of what was then referred to by the generic name of electromyography. A second such committee, responding to advances and changes in the field, produced a revised glossary in 1987. Many changes, including the name of the organization to the American Association of Electrodiagnostic Medicine (AAEM), have occurred since that time. Some of the changes have been advances in the science of the field, but others have occurred in response to the changing face of medical practice at the turn of the century. For example, we have recognized that our area of special knowledge and skill in med- icine is better described as the practice of electrodiagnostic medicine rather than the more narrowly defined term electromyography. Such changes are not just cos- metic, but they reflect a clearer sense of what makes the activities of the mem- bership of the AAEM unique in the world of medicine. In response to the many changes that have occurred since 1987, a new Nomenclature Committee was formed in 1994 to revise and update the glossary. This document reflects the hard work of that committee. From the work of the committee, it has become clear that the specialty of electrodiagnostic medicine is a growing and changing field. More than 150 new terms have been added, and 15 terms were deleted from the previ- ous glossary. By the time this glossary is in print, additional new terms will like- ly have come into common usage.
    [Show full text]
  • Motor Nerve in the Guillain-Barre Syndrome
    J Neurol Neurosurg Psychiatry: first published as 10.1136/jnnp.39.6.538 on 1 June 1976. Downloaded from Journal ofNeurology, Neurosurgery, andPsychiatry, 1976, 39, 538-544 Conduction velocity in the proximal segments of a motor nerve in the Guillain-Barre syndrome DAVID KING AND PETER ASHBY From the EMG Department, Toronto Western Hospital, Toronto, Ontario, Canada SYNOPSIS Conduction velocity from spinal cord to axilla (estimated using the F wave) has been compared with conduction velocity from axilla to wrist (measured in the conventional manner) in the motor fibres of the ulnar nerve in 17 control subjects and in 11 patients with the Guillain-Barre syndrome (GBS). In the patients with GBS the conduction velocity was, in general, reduced to a similar extent in both the proximal and the distal portions of the motor fibres, suggesting that the disease process is usually diffuse. In two patients, however, the conduction velocity in the proximal segment was disproportionally reduced and in one of these the conduction in the distal was normal. It is velocity segment concluded that theProtected by copyright. estimation of conduction velocity in the proximal segments of motor nerves may be of value in the assessment of patients with GBS. Patients with the Guillain-Barre syndrome parent until two to three weeks after the onset (GBS) commonly develop a reduction in motor of the syndrome (Peterman et al., 1959; Hum- nerve fibre conduction velocity which helps to phreys, 1964; Kaeser, 1970; Eisen and Hum- differentiate the condition from other types of phreys, 1974). neuromuscular disease (Peterman et al., 1959; In a proportion (10-20%) of patients with Cerra and Johnson, 1961; Lambert and Mul- otherwise typical GBS it is not possible to der, 1964; Isch et al., 1967; Kaeser, 1970; Mc- demonstrate slowing of conduction in the Quillen, 1971; Eisen and Humphreys, 1974).
    [Show full text]
  • Nerve Conduction Studies
    CLINICAL Nerve conduction William Huynh Matthew C Kiernan studies This article forms part of our ‘Tests and results’ series for 2011 which aims to provide information In addition to these diagnostic and monitoring about common tests that general practitioners order regularly. It considers areas such as indications, roles, clinical neurophysiology may provide what to tell the patient, what the test can and cannot tell you, and interpretation of results. information about prognosis and can guide management. Keywords: nerve conduction studies; electrodiagnosis; electromyography; peripheral Precautions neuropathy; nerve disorders Cardiac pacemakers or defibrillators are not an absolute contraindication but discussion with the patient’s cardiologist is advisable, particularly if Nerve conduction studies (NCS) and needle the stimulation site is in close proximity to the electromyography (EMG) are collectively chest wall. Studies have demonstrated the safety termed ‘clinical neurophysiology’. They of routine NCS in patients with implanted cardiac enable the clinician to detect signs that devices.1 cannot be confirmed by neurological As EMG involves insertion of fine needles, examination alone and can guide diagnosis care is also required for patients prescribed and treatment. anticoagulation therapy (eg. warfarin) to avoid the development of haematoma. Indications Patient information and Clinical neurophysiology aids diagnosis of disorders preparation of the peripheral nervous system (Table 1). Testing helps to: Nerve conduction studies involve the stimulation • localise the site or level of the lesion; of nerves with small electrical impulses over determining if the pathology involves the several points (usually limbs) and measuring the peripheral nerve, neuromuscular junction, resultant responses. Surface electrodes are used plexus, nerve root or anterior horn cells to both deliver and detect the electrical impulses • identify the pathophysiology, in particular (Figure 1).
    [Show full text]
  • F-Waves – Physiology and Clinical Uses
    Review Article TheScientificWorldJOURNAL, (2007) 7, 144–160 ISSN 1537-744X; DOI 10.1100/tsw.2007.49 F-Waves – Physiology and Clinical Uses Morris A. Fisher Hines VAH and Loyola University Chicago Stritch School of Medicine, Chicago, IL, USA E-mail: [email protected] Received August 31, 2006; Revised January 1, 2007, Accepted January 18, 2007; Published February 2, 2007 F-waves are low amplitude responses produced by antidromic activation of motoneurons. They may not appear after each stimulus and are inherently variable in latency, amplitude, and configuration. Meaningful analysis of F-waves requires an appreciation of these characteristics of F-waves as well as an understanding of their physiology. These features of F-waves as well as their physiology are reviewed. This is important since F-waves are one of the most frequently used studies in clinical neurophysiology and much of the controversies surrounding the use of F-waves relates to a failure to adequately consider the requirements of F- wave analysis. These requirements include the number of F-waves that need to be recorded, the parameters that should be evaluated, and the muscle from which the F-waves are recorded. If analyzed correctly, current reports would indicate that F- waves are the most sensitive and reliable nerve conduction study for evaluating polyneuropathies, can be abnormal in focal proximal nerve dysfunction, can be at least as sensitive as needle electromyography for defining lumbosacral radiculopathies, and can provide a meaningful physiological window into disorders of the central nervous system. Reports supporting these statements and their clinical relevance are discussed.
    [Show full text]
  • “F” WAVE: Clinical Importance B Taksande, a Jain
    The Internet Journal of Neurology ISPUB.COM Volume 10 Number 2 “F” WAVE: Clinical Importance B Taksande, A Jain Citation B Taksande, A Jain. “F” WAVE: Clinical Importance. The Internet Journal of Neurology. 2008 Volume 10 Number 2. Abstract F-wave is one of the late responses produced by antidromic activation of Motoneurons by supramaximal stimulation. They are variable in latency, amplitude, and configuration. Whenever we talk of nerve conduction studies, the importance of F wave are considered less.One should understand the characteristics and the physiology of F wave. This is important since F-waves are one of the most frequently used studies in clinical neurophysiology and much of the controversies surrounding the use of F-waves relates to a failure to adequately consider the requirements of F- wave analysis. These requirements include the number of F-waves that need to be recorded, the parameters that should be evaluated, and the muscle from which the F-waves are recorded. They are recorded over a muscle innervated by the stimulated nerve.F-waves are the only parameter in nerve conduction studies particularly useful for the diagnosis of proximal nerve lesions INTRODUCTION Figure 1 Nerve conduction studies are basically performed to study Figure 1: Mechanism of F response the distal segment involvement. The late responses are preformed to study the proximal segment involvement. There are 3 different late respose: H reflex, F wave and the axon reflex. Out of this H reflex and F wave are preformed to study the proximal regions of nerves (i.e., portions of nerves near the spinal cord.
    [Show full text]