Spreads in Strongly Regular Graphs Haemers, W.H.; Touchev, V.D
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Perfect Domination in Book Graph and Stacked Book Graph
International Journal of Mathematics Trends and Technology (IJMTT) – Volume 56 Issue 7 – April 2018 Perfect Domination in Book Graph and Stacked Book Graph Kavitha B N#1, Indrani Pramod Kelkar#2, Rajanna K R#3 #1Assistant Professor, Department of Mathematics, Sri Venkateshwara College of Engineering, Bangalore, India *2 Professor, Department of Mathematics, Acharya Institute of Technology, Bangalore, India #3 Professor, Department of Mathematics, Acharya Institute of Technology, Bangalore, India Abstract: In this paper we prove that the perfect domination number of book graph and stacked book graph are same as the domination number as the dominating set satisfies the condition for perfect domination. Keywords: Domination, Cartesian product graph, Perfect Domination, Book Graph, Stacked Book Graph. I. INTRODUCTION By a graph G = (V, E) we mean a finite, undirected graph with neither loops nor multiple edges. The order and size of G are denoted by p and q respectively. For graph theoretic terminology we refer to Chartrand and Lesnaik[3]. Graphs have various special patterns like path, cycle, star, complete graph, bipartite graph, complete bipartite graph, regular graph, strongly regular graph etc. For the definitions of all such graphs we refer to Harry [7]. The study of Cross product of graph was initiated by Imrich [12]. For structure and recognition of Cross Product of graph we refer to Imrich [11]. In literature, the concept of domination in graphs was introduced by Claude Berge in 1958 and Oystein Ore in [1962] by [14]. For review of domination and its related parameters we refer to Acharya et.al. [1979] and Haynes et.al. -
Strongly Regular Graphs
Chapter 4 Strongly Regular Graphs 4.1 Parameters and Properties Recall that a (simple, undirected) graph is regular if all of its vertices have the same degree. This is a strong property for a graph to have, and it can be recognized easily from the adjacency matrix, since it means that all row sums are equal, and that1 is an eigenvector. If a graphG of ordern is regular of degreek, it means that kn must be even, since this is twice the number of edges inG. Ifk�n− 1 and kn is even, then there does exist a graph of ordern that is regular of degreek (showing that this is true is an exercise worth thinking about). Regularity is a strong property for a graph to have, and it implies a kind of symmetry, but there are examples of regular graphs that are not particularly “symmetric”, such as the disjoint union of two cycles of different lengths, or the connected example below. Various properties of graphs that are stronger than regularity can be considered, one of the most interesting of which is strong regularity. Definition 4.1.1. A graphG of ordern is called strongly regular with parameters(n,k,λ,µ) if every vertex ofG has degreek; • ifu andv are adjacent vertices ofG, then the number of common neighbours ofu andv isλ (every • edge belongs toλ triangles); ifu andv are non-adjacent vertices ofG, then the number of common neighbours ofu andv isµ; • 1 k<n−1 (so the complete graph and the null graph ofn vertices are not considered to be • � strongly regular). -
Distance-Regular Graphs with Strongly Regular Subconstituents
P1: KCU/JVE P2: MVG/SRK QC: MVG Journal of Algebraic Combinatorics KL434-03-Kasikova April 24, 1997 13:11 Journal of Algebraic Combinatorics 6 (1997), 247–252 c 1997 Kluwer Academic Publishers. Manufactured in The Netherlands. Distance-Regular Graphs with Strongly Regular Subconstituents ANNA KASIKOVA Department of Mathematics, Kansas State University, Manhattan, KS 66506 Received December 3, 1993; Revised October 5, 1995 Abstract. In [3] Cameron et al. classified strongly regular graphs with strongly regular subconstituents. Here we prove a theorem which implies that distance-regular graphs with strongly regular subconstituents are precisely the Taylor graphs and graphs with a1 0 and ai 0,1 for i 2,...,d. = ∈{ } = Keywords: distance-regular graph, strongly regular graph, association scheme 1. Introduction Let 0 be a connected graph without loops and multiple edges, d d(0) be the diameter = of 0, V (0) be the set of vertices and v V(0) .Fori 1,...,d let 0i (u) be the set of =| | = vertices at distance i from u (‘subconstituent’) and ki 0i(u). We use the same notation =| | 0i (u) for the subgraph of 0 induced by the vertices in 0i (u). Distance between vertices u and v in 0 will be denoted by ∂(u,v). Recall that a connected graph is said to be distance regular if it is regular and for each i = 1,...,dthe numbers ai 0i(u) 01(v) , bi 0i 1(u) 01(v) , ci 0i 1(u) 01(v) =| ∩ | =| + ∩ | =| ∩ | are independent of the particular choice of u and v with v 0i (u). It is well known that in l ∈ this case all numbers p 0i(u) 0j(v) do not depend on the choice of the pair u, v i, j =| ∩ | with v 0l (u). -
Strongly Regular Graphs, Part 1 23.1 Introduction 23.2 Definitions
Spectral Graph Theory Lecture 23 Strongly Regular Graphs, part 1 Daniel A. Spielman November 18, 2009 23.1 Introduction In this and the next lecture, I will discuss strongly regular graphs. Strongly regular graphs are extremal in many ways. For example, their adjacency matrices have only three distinct eigenvalues. If you are going to understand spectral graph theory, you must have these in mind. In many ways, strongly-regular graphs can be thought of as the high-degree analogs of expander graphs. However, they are much easier to construct. Many times someone has asked me for a matrix of 0s and 1s that \looked random", and strongly regular graphs provided a resonable answer. Warning: I will use the letters that are standard when discussing strongly regular graphs. So λ and µ will not be eigenvalues in this lecture. 23.2 Definitions Formally, a graph G is strongly regular if 1. it is k-regular, for some integer k; 2. there exists an integer λ such that for every pair of vertices x and y that are neighbors in G, there are λ vertices z that are neighbors of both x and y; 3. there exists an integer µ such that for every pair of vertices x and y that are not neighbors in G, there are µ vertices z that are neighbors of both x and y. These conditions are very strong, and it might not be obvious that there are any non-trivial graphs that satisfy these conditions. Of course, the complete graph and disjoint unions of complete graphs satisfy these conditions. -
The Extendability of Matchings in Strongly Regular Graphs
The extendability of matchings in strongly regular graphs Sebastian M. Cioab˘a∗ Weiqiang Li Department of Mathematical Sciences Department of Mathematical Sciences University of Delaware University of Delaware Newark, DE 19707-2553, U.S.A. Newark, DE 19707-2553, U.S.A. [email protected] [email protected] Submitted: Feb 25, 2014; Accepted: Apr 29, 2014; Published: May 13, 2014 Mathematics Subject Classifications: 05E30, 05C50, 05C70 Abstract A graph G of even order v is called t-extendable if it contains a perfect matching, t < v=2 and any matching of t edges is contained in some perfect matching. The extendability of G is the maximum t such that G is t-extendable. In this paper, we study the extendability properties of strongly regular graphs. We improve previous results and classify all strongly regular graphs that are not 3-extendable. We also show that strongly regular graphs of valency k > 3 with λ > 1 are bk=3c-extendable k+1 (when µ 6 k=2) and d 4 e-extendable (when µ > k=2), where λ is the number of common neighbors of any two adjacent vertices and µ is the number of common neighbors of any two non-adjacent vertices. Our results are close to being best pos- sible as there are strongly regular graphs of valency k that are not dk=2e-extendable. We show that the extendability of many strongly regular graphs of valency k is at least dk=2e − 1 and we conjecture that this is true for all primitive strongly regular graphs. We obtain similar results for strongly regular graphs of odd order. -
Strongly Regular Graphs
MT5821 Advanced Combinatorics 1 Strongly regular graphs We introduce the subject of strongly regular graphs, and the techniques used to study them, with two famous examples. 1.1 The Friendship Theorem This theorem was proved by Erdos,˝ Renyi´ and Sos´ in the 1960s. We assume that friendship is an irreflexive and symmetric relation on a set of individuals: that is, nobody is his or her own friend, and if A is B’s friend then B is A’s friend. (It may be doubtful if these assumptions are valid in the age of social media – but we are doing mathematics, not sociology.) Theorem 1.1 In a finite society with the property that any two individuals have a unique common friend, there must be somebody who is everybody else’s friend. In other words, the configuration of friendships (where each individual is rep- resented by a dot, and friends are joined by a line) is as shown in the figure below: PP · PP · u P · u · " " BB " u · " B " " B · "B" bb T b ub u · T b T b b · T b T · T u PP T PP u P u u 1 1.2 Graphs The mathematical model for a structure of the type described in the Friendship Theorem is a graph. A simple graph (one “without loops or multiple edges”) can be regarded as a set carrying an irreflexive and symmetric binary relation. The points of the set are called the vertices of the graph, and a pair of points which are related is called an edge. -
Values of Lambda and Mu for Which There Are Only Finitely Many Feasible
Electronic Journal of Linear Algebra ISSN 1081-3810 A publication of the International Linear Algebra Society Volume 10, pp. 232-239, October 2003 ELA STRONGLY REGULAR GRAPHS: VALUES OF λ AND µ FOR WHICH THERE ARE ONLY FINITELY MANY FEASIBLE (v, k, λ, µ)∗ RANDALL J. ELZINGA† Dedicated to the memory of Prof. Dom de Caen Abstract. Given λ and µ, it is shown that, unless one of the relations (λ − µ)2 =4µ, λ − µ = −2, (λ − µ)2 +2(λ − µ)=4µ is satisfied, there are only finitely many parameter sets (v, k, λ, µ)for which a strongly regular graph with these parameters could exist. This result is used to prove as special cases a number of results which have appeared in previous literature. Key words. Strongly Regular Graph, Adjacency Matrix, Feasible Parameter Set. AMS subject classifications. 05C50, 05E30. 1. Properties ofStrongly Regular Graphs. In this section we present some well known results needed in Section 2. The results can be found in [11, ch.21] or [8, ch.10]. A strongly regular graph with parameters (v, k, λ, µ), denoted SRG(v, k, λ, µ), is a k-regular graph on v vertices such that for every pair of adjacent vertices there are λ vertices adjacent to both, and for every pair of non-adjacent vertices there are µ vertices adjacent to both. We assume throughout that a strongly regular graph G is connected and that G is not a complete graph. Consequently, k is an eigenvalue of the adjacency matrix of G with multiplicity 1 and (1.1) v − 1 >k≥ µ>0and k − 1 >λ≥ 0. -
On the Generalized Θ-Number and Related Problems for Highly Symmetric Graphs
On the generalized #-number and related problems for highly symmetric graphs Lennart Sinjorgo ∗ Renata Sotirov y Abstract This paper is an in-depth analysis of the generalized #-number of a graph. The generalized #-number, #k(G), serves as a bound for both the k-multichromatic number of a graph and the maximum k-colorable subgraph problem. We present various properties of #k(G), such as that the series (#k(G))k is increasing and bounded above by the order of the graph G. We study #k(G) when G is the graph strong, disjunction and Cartesian product of two graphs. We provide closed form expressions for the generalized #-number on several classes of graphs including the Kneser graphs, cycle graphs, strongly regular graphs and orthogonality graphs. Our paper provides bounds on the product and sum of the k-multichromatic number of a graph and its complement graph, as well as lower bounds for the k-multichromatic number on several graph classes including the Hamming and Johnson graphs. Keywords k{multicoloring, k-colorable subgraph problem, generalized #-number, Johnson graphs, Hamming graphs, strongly regular graphs. AMS subject classifications. 90C22, 05C15, 90C35 1 Introduction The k{multicoloring of a graph is to assign k distinct colors to each vertex in the graph such that two adjacent vertices are assigned disjoint sets of colors. The k-multicoloring is also known as k-fold coloring, n-tuple coloring or simply multicoloring. We denote by χk(G) the minimum number of colors needed for a valid k{multicoloring of a graph G, and refer to it as the k-th chromatic number of G or the multichromatic number of G. -
An Introduction to Algebraic Graph Theory
An Introduction to Algebraic Graph Theory Cesar O. Aguilar Department of Mathematics State University of New York at Geneseo Last Update: March 25, 2021 Contents 1 Graphs 1 1.1 What is a graph? ......................... 1 1.1.1 Exercises .......................... 3 1.2 The rudiments of graph theory .................. 4 1.2.1 Exercises .......................... 10 1.3 Permutations ........................... 13 1.3.1 Exercises .......................... 19 1.4 Graph isomorphisms ....................... 21 1.4.1 Exercises .......................... 30 1.5 Special graphs and graph operations .............. 32 1.5.1 Exercises .......................... 37 1.6 Trees ................................ 41 1.6.1 Exercises .......................... 45 2 The Adjacency Matrix 47 2.1 The Adjacency Matrix ...................... 48 2.1.1 Exercises .......................... 53 2.2 The coefficients and roots of a polynomial ........... 55 2.2.1 Exercises .......................... 62 2.3 The characteristic polynomial and spectrum of a graph .... 63 2.3.1 Exercises .......................... 70 2.4 Cospectral graphs ......................... 73 2.4.1 Exercises .......................... 84 3 2.5 Bipartite Graphs ......................... 84 3 Graph Colorings 89 3.1 The basics ............................. 89 3.2 Bounds on the chromatic number ................ 91 3.3 The Chromatic Polynomial .................... 98 3.3.1 Exercises ..........................108 4 Laplacian Matrices 111 4.1 The Laplacian and Signless Laplacian Matrices .........111 4.1.1 -
The Connectivity of Strongly Regular Graphs
Burop. J. Combinatorics (1985) 6, 215-216 The Connectivity of Strongly Regular Graphs A. E. BROUWER AND D. M. MESNER We prove that the connectivity of a connected strongly regular graph equals its valency. A strongly regular graph (with parameters v, k, A, JL) is a finite undirected graph without loops or multiple edges such that (i) has v vertices, (ii) it is regular of degree k, (iii) each edge is in A triangles, (iv) any two.nonadjacent points are joined by JL paths of length 2. For basic properties see Cameron [1] or Seidel [3]. The connectivity of a graph is the minimum number of vertices one has to remove in oroer to make it disconnected (or empty). Our aim is to prove the following proposition. PROPOSITION. Let T be a connected strongly regular graph. Then its connectivity K(r) equals its valency k. Also, the only disconnecting sets of size k are the sets r(x) of all neighbours of a vertex x. PROOF. Clearly K(r) ~ k. Let S be a disconnecting set of vertices not containing all neighbours of some vertex. Let r\S = A + B be a separation of r\S (i.e. A and Bare nonempty and there are no edges between A and B). Since the eigenvalues of A and B interlace those of T (which are k, r, s with k> r ~ 0> - 2 ~ s, where k has multiplicity 1) it follows that at least one of A and B, say B, has largest eigenvalue at most r. (cf. [2], theorem 0.10.) It follows that the average valency of B is at most r, and in particular that r>O. -
Regular Graphs
Taylor & Francis I-itt¿'tt¡'tnul "llultilintur ..llsahru- Vol. f4 No.1 1006 i[r-it O T¡yld &kilrr c@p On outindependent subgraphs of strongly regular graphs M. A. FIOL* a¡rd E. GARRIGA l)epartarnent de Matenr¿itica Aplicirda IV. t.luiversit¿rr Politdcnica de Catalunv¡- Jordi Gi'on. I--l- \{t\dul C-1. canrpus Nord. 080-lJ Barcelc¡'a. Sp'i¡r Conrr¡¡¡¡¡.n,"d br W. W¿rtkins I Rr,t t,llr,r/ -aj .llrny'r -rllllj) \n trutl¡dcpe¡dollt suhsr¿tnh ot'a gt'aph f. \\ith respccr to:ul ind!'pcndc¡t vcrtr\ subsct ('C l . rs thc suhl¡.aph f¡-induced bv th!'\ert¡ccs in l'',(', lA'!'s¡ud\ the casc'shcn f is stronslv rcgular. shen: the rcst¡lts ol'de C¿rcn ll99ti. The spc,ctnt ol'conrplcrnenttrn .ubgraph, in qraph. a slron{¡\ rr'!ulitr t-un¡lrt\nt J.rrrnt(l .,1 Ctunl¡in¿!orir:- l9(5)- 559 565.1- allou u: to dc'rivc'thc *lrolc spcctrulrt ol- f¡.. IUorcrrver. rr'lrcn ('rtt¿rins thr. [lollllr¡n Lor,isz bound l'or the indePcndr'nce llu¡rthcr. f( ii a rcsul:rr rr:rph {in lüct. d¡st:rnce-rc.rtular il' I- is I \toore graph). This arliclc'i: nltinlr deltrled to stutll: the non-lcgulal case. As lr nlain result. se chitractcrizc thc structurc ol- i¿^ s ht'n (' is ¡he n..ighhorhood of cirher ¡nc \!.rtc\ ()r ¡ne cdse. Ai,r rrr¡riA. Stlonsh rcuular lra¡rh: Indepcndt-nt set: Sr)ett¡.unr . -
Strongly Regular Graphs
Strongly regular graphs Peter J. Cameron Queen Mary, University of London London E1 4NS U.K. Draft, April 2001 Abstract Strongly regular graphs form an important class of graphs which lie somewhere between the highly structured and the apparently random. This chapter gives an introduction to these graphs with pointers to more detailed surveys of particular topics. 1 An example Consider the Petersen graph: ZZ Z u Z Z Z P ¢B Z B PP ¢ uB ¢ uB Z ¢ B ¢ u Z¢ B B uZ u ¢ B ¢ Z B ¢ B ¢ ZB ¢ S B u uS ¢ B S¢ u u 1 Of course, this graph has far too many remarkable properties for even a brief survey here. (It is the subject of a book [17].) We focus on a few of its properties: it has ten vertices, valency 3, diameter 2, and girth 5. Of course these properties are not all independent. Simple counting arguments show that a trivalent graph with diameter 2 has at most ten vertices, with equality if and only it has girth 5; and, dually, a trivalent graph with girth 5 has at least ten vertices, with equality if and only it has diameter 2. The conditions \diameter 2 and girth 5" can be rewritten thus: two adjacent vertices have no common neighbours; two non-adjacent vertices have exactly one common neighbour. Replacing the particular numbers 10, 3, 0, 1 here by general parameters, we come to the definition of a strongly regular graph: Definition A strongly regular graph with parameters (n; k; λ, µ) (for short, a srg(n; k; λ, µ)) is a graph on n vertices which is regular with valency k and has the following properties: any two adjacent vertices have exactly λ common neighbours; • any two nonadjacent vertices have exactly µ common neighbours.