THE SHRIKHANDE GRAPH 1. Introduction a Well Studied And

Total Page:16

File Type:pdf, Size:1020Kb

THE SHRIKHANDE GRAPH 1. Introduction a Well Studied And THE SHRIKHANDE GRAPH RYAN M. PEDERSEN Abstract. In 1959 S.S. Shrikhande wrote a paper concerning L2 association schemes [11]. Out of this paper arose a strongly reg- ular graph with parameters (16, 6, 2, 2) that was not isomorphic to L2(4). This graph turned out to be important in the study of strongly regular graphs as a whole. In this paper, we survey the various constructions and properties of this graph. 1. Introduction A well studied and simple family of strongly regular graphs are called the square lattice graphs L2(n). These graphs have parame- ters (n2, 2(n − 1), n − 2, 2). Now strongly regular graphs with these parameters are unique for all n except n = 4. However, when n = 4 we have two non-isomorphic strongly regular graphs with parameters (16, 6, 2, 2). The non-lattice graph with these parameters is known as the Shrikhande graph. In what follows, we consider various construc- tions of this graph, along with a discussion of its various properties. 2. Constructions 2.1. The Original Construction. We begin by describing what is done in the original paper [11]. Note first that a strongly regular graph is equivalent to a two-class association scheme. Now if we can arrange the v vertices (points) into b subsets (blocks) such that Date: November 16, 2007. 1 2 RYAN M. PEDERSEN (a) Each block contains k points (all different), (b) Each point is contained in r blocks, (c) if any two points are ith associates (i = 1, 2) then they occur together in λi blocks, then we call this design D a partially balanced incomplete block (PBIB) design . Now if the PBIB design comes from the strongly regular graph 2 L2(s) where v = s , then the design is called an L2 association scheme. Now In [11] the following is shown. Theorem 1. If the parameters of the second kind for a partially bal- anced incomplete block design with s2 treatments with two associate classes are given by 1 2 n1 =2s − 2, p11 = s − 2, p11 =2, then the design has L2 association scheme if s =2, 3, or s> 4. However when s = 4 there exists two non-isomorphic PBIB designs with the following parameters v = 16, n1 = 6, n2 = 9 1 1 1 p11 = 2, p12 = 3, p22 = 6 2 2 2 p11 = 2, p12 = 4, p22 = 4. One of these is of course given by the graph L2(4). The other, however, is the Shrikhande graph. 2.2. The Switching Construction. A more standard way of con- structing the Shrikhande graph is given in [5] as follows. Start with L2(4) which is shown in figure 1. TOPICS PAPER, INSTRUCTOR WILLIAM CHEROWITZO 3 Figure 1. L2(4) Figure 2. The Shrikhande graph If we then perform the operation of switching with respect to the ver- tices on the diagonal, then we obtain the Shrikhande graph as desired. Figure 2 gives a drawing of the graph in its representation on a torus. 2.3. The Code Graph Construction. Another construction uses the concept of a code graph defined here. 4 RYAN M. PEDERSEN 000000 110000 110110 000110 001100 011000 111010 101110 101101 011101 011011 101011 100001 110101 010111 000011 Figure 3. Codeword construction Definition 1. A code graph Γ(C) is a graph whose vertices are code- words of a binary code C with two vertices being adjacent when the codewords differ in two entries. Now if one considers the binary code given by the words 000000, 110000, 010111, 011011, and those obtained by a cyclic permutation of the six entries, then one obtains the Shrikhande graph. This is illustrated in figure 3. 2.4. The Latin Square Graph Construction. Next we consider the concept of a Latin square graph. Definition 2. Suppose we have a Latin square L of order n. Construct a graph Γ as follows: Let the vertices of Γ be the n2 entries of L. Let two vertices be adjacent if and only if the the entries are in the same row, column, or contain the same symbol. Then Γ is called a Latin square graph. Γ is strongly regular with parameters (n2, 3(n − 1), n, 6). Now there are only two non-isomorphic Latin squares of order 4. These are the Caley tables for the Klein group, and the cyclic group TOPICS PAPER, INSTRUCTOR WILLIAM CHEROWITZO 5 of order 4. The Latin square graphs that correspond to these groups are two non-isomorphic strongly regular graphs with parameters (16, 9, 4, 6). The complements of these graphs are the graphs L2(4), and the Shrikhande graph. See [4] for a deeper look at this construction. 2.5. The Cayley Graph Construction. Related to the previous construction, our final construction is found in [8]. We need a cou- ple definitions to begin. Definition 3. Let H be a finite group. A Caley subset S of H is a generating set of H with the property that s ∈ S whenever s−1 ∈ S. Definition 4. A Cayley graph of a group H with respect to S, where S is a Caley subset of H, denoted by Cay(H; S), is the graph with vertex-set H, where x ∈ H is adjacent to y ∈ H whenever xy−1 ∈ S. Now consider the group H = Z4 × Z4 with S = {±(0, 1), ±(1, 1), ±(1, 0)}. Then the graph Cay(H; S) in this case is the Shrikhande graph. We can actually use any of the following three non-Abelian groups of order 16 as well: • ha, b | a8, b2, baba3i with S = {a3, a5, a5b, a7b, a2b, a6b}, • ha, b | a8, b2, baba5i with S = {a3, a5, b, a6b, a3b, a7b}, • ha, b, c | a4, b2,c2, [a, b], [b, c], (ca)2i with S = {ab, a3b, abc, bc, a2c,ac}. 3. Properties 3.1. General Properties. We begin by listing the general properties that this graph has. Most (but not all) of these were taken from [12]. We list these here without proof. 6 RYAN M. PEDERSEN • It is a (0, 2) graph. • It is locally hexagon. • It has an automorphism of order 192 that acts sharply transitive on ordered triangles. • Both the independence and chromatic number are 4. • The complement (which is a Latin square graph) has indepen- dence number 3, and chromatic number 6. • It has edge chromatic number 6. • It has girth 3. • The graph is non-planar. • The characteristic polynomial is (x − 6)(x − 2)6(x + 2)8 We can see from the characteristic polynomial, that the Shrikhande graph has -2 as an eigenvalue. Therefore it is what is known as a Seidel graph. Seidel graphs are a special class of strongly regular graphs and are well studied (see [5]). 3.2. Special Properties. The Shrikhande graph arises in several dif- ferent settings as an exceptional graph. We now discuss some of these types of properties here. We begin with a definition. Definition 5. A group of automorphisms of a connected graph Γ of diameter d is said to be distance-transitive on Γ if it is transitive (on the vertex set of Γ and) on each of the sets {(γ, δ)|d(γ, δ) = i} for 0 ≤ i ≤ d. A graph is called distance-transitive if it is connected and admits a distance-transitive group of automorphisms. It is shown in [3] that a distance-transitive graph is distance-regular. However the converse is not true. In fact, the smallest distance-regular graph that is not distance transitive is the Shrikhande graph. This is perhaps the most popular of the special properties listed in this section. TOPICS PAPER, INSTRUCTOR WILLIAM CHEROWITZO 7 The Shrikhande graph also provides an example of a strongly regular graph with minimal p-rank that is not completely determined by its parameters [9]. In particular, the 2 rank of the Shrikhande graph, and that of L2(4) is minimal, but both these graphs share the same set of parameters, and are non-isomorphic. Finally, as shown in [1] take the cross product of a K2 with the Shrikhande graph. This gives us an example of a weakly spherical graph that is not interval monotone. 4. Connections With Designs We conclude this paper by giving the construction of a design that has the Shrikhande graph as the point graph of the design [6]. Let Γ be a graph, and let a be a vertex of Γ. Define Γi(a) as the sub-graph induced by Γ on the set of all vertices distance i from a. Definition 6. A graph Γ is called an amply regular graph with param- eters (v,k,λ,µ) whenever Γ is edge-regular and Γ1(a) ∩ Γ1(b) contains µ vertices for each pair a, b of vertices at distance 2 in Γ. An amply regular graph is strongly regular when it has diameter 2. Now suppose we take an amply regular graph Γ with diameter 3 with the property that there exists a vertex a such that Γ3(a) is the Shrikhande graph. Then we construct the following design (P, B) by: P = Γ3(a) = a Shrikhande graph, B = Γ2(a), and p ∈ P is incidence with B ∈ B whenever p and B are adjacent in Γ. This forms a 2 − (16, 4, 18) design with b = 360, and r = 90. 8 RYAN M. PEDERSEN References [1] Abdelhafid Berrachedi, Ivan Havel, and Henry Martyn Mulder. Spherical and clockwise spherical graphs. Czechoslovak Mathematical Journal, 53(128):295 – 309, 2003. [2] A.E. Brouwer. Shrikhande graph . http://www.win.tue.nl/∼aeb/drg/graphs/Shrikhande.html, 2007.
Recommended publications
  • The Veldkamp Space of GQ(2,4) Metod Saniga, Richard Green, Peter Levay, Petr Pracna, Peter Vrana
    The Veldkamp Space of GQ(2,4) Metod Saniga, Richard Green, Peter Levay, Petr Pracna, Peter Vrana To cite this version: Metod Saniga, Richard Green, Peter Levay, Petr Pracna, Peter Vrana. The Veldkamp Space of GQ(2,4). International Journal of Geometric Methods in Modern Physics, World Scientific Publishing, 2010, pp.1133-1145. 10.1142/S0219887810004762. hal-00365656v2 HAL Id: hal-00365656 https://hal.archives-ouvertes.fr/hal-00365656v2 Submitted on 6 Jul 2009 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. The Veldkamp Space of GQ(2,4) M. Saniga,1 R. M. Green,2 P. L´evay,3 P. Pracna4 and P. Vrana3 1Astronomical Institute, Slovak Academy of Sciences SK-05960 Tatransk´aLomnica, Slovak Republic ([email protected]) 2Department of Mathematics, University of Colorado Campus Box 395, Boulder CO 80309-0395, U. S. A. ([email protected]) 3Department of Theoretical Physics, Institute of Physics Budapest University of Technology and Economics, H-1521 Budapest, Hungary ([email protected] and [email protected]) and 4J. Heyrovsk´yInstitute of Physical Chemistry, v.v.i., Academy of Sciences of the Czech Republic, Dolejˇskova 3, CZ-182 23 Prague 8, Czech Republic ([email protected]) (6 July 2009) Abstract It is shown that the Veldkamp space of the unique generalized quadrangle GQ(2,4) is isomor- phic to PG(5,2).
    [Show full text]
  • Perfect Domination in Book Graph and Stacked Book Graph
    International Journal of Mathematics Trends and Technology (IJMTT) – Volume 56 Issue 7 – April 2018 Perfect Domination in Book Graph and Stacked Book Graph Kavitha B N#1, Indrani Pramod Kelkar#2, Rajanna K R#3 #1Assistant Professor, Department of Mathematics, Sri Venkateshwara College of Engineering, Bangalore, India *2 Professor, Department of Mathematics, Acharya Institute of Technology, Bangalore, India #3 Professor, Department of Mathematics, Acharya Institute of Technology, Bangalore, India Abstract: In this paper we prove that the perfect domination number of book graph and stacked book graph are same as the domination number as the dominating set satisfies the condition for perfect domination. Keywords: Domination, Cartesian product graph, Perfect Domination, Book Graph, Stacked Book Graph. I. INTRODUCTION By a graph G = (V, E) we mean a finite, undirected graph with neither loops nor multiple edges. The order and size of G are denoted by p and q respectively. For graph theoretic terminology we refer to Chartrand and Lesnaik[3]. Graphs have various special patterns like path, cycle, star, complete graph, bipartite graph, complete bipartite graph, regular graph, strongly regular graph etc. For the definitions of all such graphs we refer to Harry [7]. The study of Cross product of graph was initiated by Imrich [12]. For structure and recognition of Cross Product of graph we refer to Imrich [11]. In literature, the concept of domination in graphs was introduced by Claude Berge in 1958 and Oystein Ore in [1962] by [14]. For review of domination and its related parameters we refer to Acharya et.al. [1979] and Haynes et.al.
    [Show full text]
  • Strongly Regular Graphs
    Chapter 4 Strongly Regular Graphs 4.1 Parameters and Properties Recall that a (simple, undirected) graph is regular if all of its vertices have the same degree. This is a strong property for a graph to have, and it can be recognized easily from the adjacency matrix, since it means that all row sums are equal, and that1 is an eigenvector. If a graphG of ordern is regular of degreek, it means that kn must be even, since this is twice the number of edges inG. Ifk�n− 1 and kn is even, then there does exist a graph of ordern that is regular of degreek (showing that this is true is an exercise worth thinking about). Regularity is a strong property for a graph to have, and it implies a kind of symmetry, but there are examples of regular graphs that are not particularly “symmetric”, such as the disjoint union of two cycles of different lengths, or the connected example below. Various properties of graphs that are stronger than regularity can be considered, one of the most interesting of which is strong regularity. Definition 4.1.1. A graphG of ordern is called strongly regular with parameters(n,k,λ,µ) if every vertex ofG has degreek; • ifu andv are adjacent vertices ofG, then the number of common neighbours ofu andv isλ (every • edge belongs toλ triangles); ifu andv are non-adjacent vertices ofG, then the number of common neighbours ofu andv isµ; • 1 k<n−1 (so the complete graph and the null graph ofn vertices are not considered to be • � strongly regular).
    [Show full text]
  • Distance-Regular Graphs with Strongly Regular Subconstituents
    P1: KCU/JVE P2: MVG/SRK QC: MVG Journal of Algebraic Combinatorics KL434-03-Kasikova April 24, 1997 13:11 Journal of Algebraic Combinatorics 6 (1997), 247–252 c 1997 Kluwer Academic Publishers. Manufactured in The Netherlands. Distance-Regular Graphs with Strongly Regular Subconstituents ANNA KASIKOVA Department of Mathematics, Kansas State University, Manhattan, KS 66506 Received December 3, 1993; Revised October 5, 1995 Abstract. In [3] Cameron et al. classified strongly regular graphs with strongly regular subconstituents. Here we prove a theorem which implies that distance-regular graphs with strongly regular subconstituents are precisely the Taylor graphs and graphs with a1 0 and ai 0,1 for i 2,...,d. = ∈{ } = Keywords: distance-regular graph, strongly regular graph, association scheme 1. Introduction Let 0 be a connected graph without loops and multiple edges, d d(0) be the diameter = of 0, V (0) be the set of vertices and v V(0) .Fori 1,...,d let 0i (u) be the set of =| | = vertices at distance i from u (‘subconstituent’) and ki 0i(u). We use the same notation =| | 0i (u) for the subgraph of 0 induced by the vertices in 0i (u). Distance between vertices u and v in 0 will be denoted by ∂(u,v). Recall that a connected graph is said to be distance regular if it is regular and for each i = 1,...,dthe numbers ai 0i(u) 01(v) , bi 0i 1(u) 01(v) , ci 0i 1(u) 01(v) =| ∩ | =| + ∩ | =| ∩ | are independent of the particular choice of u and v with v 0i (u). It is well known that in l ∈ this case all numbers p 0i(u) 0j(v) do not depend on the choice of the pair u, v i, j =| ∩ | with v 0l (u).
    [Show full text]
  • Some Topics Concerning Graphs, Signed Graphs and Matroids
    SOME TOPICS CONCERNING GRAPHS, SIGNED GRAPHS AND MATROIDS DISSERTATION Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of the Ohio State University By Vaidyanathan Sivaraman, M.S. Graduate Program in Mathematics The Ohio State University 2012 Dissertation Committee: Prof. Neil Robertson, Advisor Prof. Akos´ Seress Prof. Matthew Kahle ABSTRACT We discuss well-quasi-ordering in graphs and signed graphs, giving two short proofs of the bounded case of S. B. Rao's conjecture. We give a characterization of graphs whose bicircular matroids are signed-graphic, thus generalizing a theorem of Matthews from the 1970s. We prove a recent conjecture of Zaslavsky on the equality of frus- tration number and frustration index in a certain class of signed graphs. We prove that there are exactly seven signed Heawood graphs, up to switching isomorphism. We present a computational approach to an interesting conjecture of D. J. A. Welsh on the number of bases of matroids. We then move on to study the frame matroids of signed graphs, giving explicit signed-graphic representations of certain families of matroids. We also discuss the cycle, bicircular and even-cycle matroid of a graph and characterize matroids arising as two different such structures. We study graphs in which any two vertices have the same number of common neighbors, giving a quick proof of Shrikhande's theorem. We provide a solution to a problem of E. W. Dijkstra. Also, we discuss the flexibility of graphs on the projective plane. We conclude by men- tioning partial progress towards characterizing signed graphs whose frame matroids are transversal, and some miscellaneous results.
    [Show full text]
  • Lattices from Group Frames and Vertex Transitive Graphs
    Frames Lattices Graphs Examples Lattices from group frames and vertex transitive graphs Lenny Fukshansky Claremont McKenna College (joint work with Deanna Needell, Josiah Park and Jessie Xin) Tight frame F is rational if there exists a real number α so that αpf i ; f j q P Q @ 1 ¤ i; j ¤ n: Frames Lattices Graphs Examples Tight frames k A spanning set tf 1;:::; f nu Ă R , n ¥ k, is called a tight frame k if there exists a real constant γ such that for every x P R , n 2 2 }x} “ γ px; f j q ; j“1 ¸ where p ; q stands for the usual dot-product. Frames Lattices Graphs Examples Tight frames k A spanning set tf 1;:::; f nu Ă R , n ¥ k, is called a tight frame k if there exists a real constant γ such that for every x P R , n 2 2 }x} “ γ px; f j q ; j“1 ¸ where p ; q stands for the usual dot-product. Tight frame F is rational if there exists a real number α so that αpf i ; f j q P Q @ 1 ¤ i; j ¤ n: k Let f P R be a nonzero vector, then Gf “ tUf : U P Gu k is called a group frame (or G-frame). If G acts irreducibly on R , Gf is called an irreducible group frame. Irreducible group frames are always tight. Frames Lattices Graphs Examples Group frames Let G be a finite subgroup of Ok pRq, the k-dimensional real orthog- k onal group, then G acts on R by left matrix multiplication.
    [Show full text]
  • Strongly Regular Graphs, Part 1 23.1 Introduction 23.2 Definitions
    Spectral Graph Theory Lecture 23 Strongly Regular Graphs, part 1 Daniel A. Spielman November 18, 2009 23.1 Introduction In this and the next lecture, I will discuss strongly regular graphs. Strongly regular graphs are extremal in many ways. For example, their adjacency matrices have only three distinct eigenvalues. If you are going to understand spectral graph theory, you must have these in mind. In many ways, strongly-regular graphs can be thought of as the high-degree analogs of expander graphs. However, they are much easier to construct. Many times someone has asked me for a matrix of 0s and 1s that \looked random", and strongly regular graphs provided a resonable answer. Warning: I will use the letters that are standard when discussing strongly regular graphs. So λ and µ will not be eigenvalues in this lecture. 23.2 Definitions Formally, a graph G is strongly regular if 1. it is k-regular, for some integer k; 2. there exists an integer λ such that for every pair of vertices x and y that are neighbors in G, there are λ vertices z that are neighbors of both x and y; 3. there exists an integer µ such that for every pair of vertices x and y that are not neighbors in G, there are µ vertices z that are neighbors of both x and y. These conditions are very strong, and it might not be obvious that there are any non-trivial graphs that satisfy these conditions. Of course, the complete graph and disjoint unions of complete graphs satisfy these conditions.
    [Show full text]
  • The Extendability of Matchings in Strongly Regular Graphs
    The extendability of matchings in strongly regular graphs Sebastian M. Cioab˘a∗ Weiqiang Li Department of Mathematical Sciences Department of Mathematical Sciences University of Delaware University of Delaware Newark, DE 19707-2553, U.S.A. Newark, DE 19707-2553, U.S.A. [email protected] [email protected] Submitted: Feb 25, 2014; Accepted: Apr 29, 2014; Published: May 13, 2014 Mathematics Subject Classifications: 05E30, 05C50, 05C70 Abstract A graph G of even order v is called t-extendable if it contains a perfect matching, t < v=2 and any matching of t edges is contained in some perfect matching. The extendability of G is the maximum t such that G is t-extendable. In this paper, we study the extendability properties of strongly regular graphs. We improve previous results and classify all strongly regular graphs that are not 3-extendable. We also show that strongly regular graphs of valency k > 3 with λ > 1 are bk=3c-extendable k+1 (when µ 6 k=2) and d 4 e-extendable (when µ > k=2), where λ is the number of common neighbors of any two adjacent vertices and µ is the number of common neighbors of any two non-adjacent vertices. Our results are close to being best pos- sible as there are strongly regular graphs of valency k that are not dk=2e-extendable. We show that the extendability of many strongly regular graphs of valency k is at least dk=2e − 1 and we conjecture that this is true for all primitive strongly regular graphs. We obtain similar results for strongly regular graphs of odd order.
    [Show full text]
  • Strongly Regular Graphs
    MT5821 Advanced Combinatorics 1 Strongly regular graphs We introduce the subject of strongly regular graphs, and the techniques used to study them, with two famous examples. 1.1 The Friendship Theorem This theorem was proved by Erdos,˝ Renyi´ and Sos´ in the 1960s. We assume that friendship is an irreflexive and symmetric relation on a set of individuals: that is, nobody is his or her own friend, and if A is B’s friend then B is A’s friend. (It may be doubtful if these assumptions are valid in the age of social media – but we are doing mathematics, not sociology.) Theorem 1.1 In a finite society with the property that any two individuals have a unique common friend, there must be somebody who is everybody else’s friend. In other words, the configuration of friendships (where each individual is rep- resented by a dot, and friends are joined by a line) is as shown in the figure below: PP · PP · u P · u · " " BB " u · " B " " B · "B" bb T b ub u · T b T b b · T b T · T u PP T PP u P u u 1 1.2 Graphs The mathematical model for a structure of the type described in the Friendship Theorem is a graph. A simple graph (one “without loops or multiple edges”) can be regarded as a set carrying an irreflexive and symmetric binary relation. The points of the set are called the vertices of the graph, and a pair of points which are related is called an edge.
    [Show full text]
  • Use the K-Neighborhood Subgraphs to Compute Canonical Labelings of Graphs
    mathematics Article Use the K-Neighborhood Subgraphs to Compute Canonical Labelings of Graphs Jianqiang Hao 1,*, Yunzhan Gong 2, Jianzhi Sun 1 and Li Tan 1 1 Beijing Key Laboratory of Big Data Technology for Food Safety, Beijing Technology and Business University, No. 11, Fu Cheng Road, Beijing 100048, China 2 State Key Laboratory of Networking and Switching Technology, Beijing University of Posts and Telecommunications, No 10, Xitucheng Road, Haidian District, Beijing 100876, China * Correspondence: [email protected]; Tel.: +86-10-6898-5704 Received: 5 July 2019; Accepted: 27 July 2019; Published: 31 July 2019 Abstract: This paper puts forward an innovative theory and method to calculate the canonical labelings of graphs that are distinct to Nauty’s. It shows the correlation between the canonical labeling of a graph and the canonical labeling of its complement graph. It regularly examines the link between computing the canonical labeling of a graph and the canonical labeling of its open k-neighborhood subgraph . It defines dif fusion degree sequences and entire dif fusion degree sequence . For each node of a graph G, it designs a characteristic m_NearestNode to improve the precision for calculating canonical labeling. Two theorems established here display how to compute the first nodes of MaxQ(G). Another theorem presents how to determine the second nodes of MaxQ(G). When computing Cmax(G), if MaxQ(G) already holds the first i nodes u1, u2, ··· , ui, Diffusion and Nearest Node theorems provide skill on how to pick the succeeding node of MaxQ(G). Further, it also establishes two theorems to determine the Cmax(G) of disconnected graphs.
    [Show full text]
  • Values of Lambda and Mu for Which There Are Only Finitely Many Feasible
    Electronic Journal of Linear Algebra ISSN 1081-3810 A publication of the International Linear Algebra Society Volume 10, pp. 232-239, October 2003 ELA STRONGLY REGULAR GRAPHS: VALUES OF λ AND µ FOR WHICH THERE ARE ONLY FINITELY MANY FEASIBLE (v, k, λ, µ)∗ RANDALL J. ELZINGA† Dedicated to the memory of Prof. Dom de Caen Abstract. Given λ and µ, it is shown that, unless one of the relations (λ − µ)2 =4µ, λ − µ = −2, (λ − µ)2 +2(λ − µ)=4µ is satisfied, there are only finitely many parameter sets (v, k, λ, µ)for which a strongly regular graph with these parameters could exist. This result is used to prove as special cases a number of results which have appeared in previous literature. Key words. Strongly Regular Graph, Adjacency Matrix, Feasible Parameter Set. AMS subject classifications. 05C50, 05E30. 1. Properties ofStrongly Regular Graphs. In this section we present some well known results needed in Section 2. The results can be found in [11, ch.21] or [8, ch.10]. A strongly regular graph with parameters (v, k, λ, µ), denoted SRG(v, k, λ, µ), is a k-regular graph on v vertices such that for every pair of adjacent vertices there are λ vertices adjacent to both, and for every pair of non-adjacent vertices there are µ vertices adjacent to both. We assume throughout that a strongly regular graph G is connected and that G is not a complete graph. Consequently, k is an eigenvalue of the adjacency matrix of G with multiplicity 1 and (1.1) v − 1 >k≥ µ>0and k − 1 >λ≥ 0.
    [Show full text]
  • Spreads in Strongly Regular Graphs Haemers, W.H.; Touchev, V.D
    Tilburg University Spreads in strongly regular graphs Haemers, W.H.; Touchev, V.D. Published in: Designs Codes and Cryptography Publication date: 1996 Link to publication in Tilburg University Research Portal Citation for published version (APA): Haemers, W. H., & Touchev, V. D. (1996). Spreads in strongly regular graphs. Designs Codes and Cryptography, 8, 145-157. General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the public portal Take down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. Download date: 24. sep. 2021 Designs, Codes and Cryptography, 8, 145-157 (1996) 1996 Kluwer Academic Publishers, Boston. Manufactured in The Netherlands. Spreads in Strongly Regular Graphs WILLEM H. HAEMERS Tilburg University, Tilburg, The Netherlands VLADIMIR D. TONCHEV* Michigan Technological University, Houghton, M149931, USA Communicated by: D. Jungnickel Received March 24, 1995; Accepted November 8, 1995 Dedicated to Hanfried Lenz on the occasion of his 80th birthday Abstract. A spread of a strongly regular graph is a partition of the vertex set into cliques that meet Delsarte's bound (also called Hoffman's bound).
    [Show full text]