Hydrobiologia (2013) 719:269–289 DOI 10.1007/s10750-013-1685-4

MEDITERRANEAN CLIMATE STREAMS Review Paper

Freshwater biodiversity and conservation in mediterranean climate streams of

Ricardo Figueroa • Nu´ria Bonada • Meyer Guevara • Pablo Pedreros • Francisco Correa-Araneda • Marı´aE.Dı´az • Victor H. Ruiz

Received: 15 July 2013 / Accepted: 12 September 2013 / Published online: 26 September 2013 Ó Springer Science+Business Media Dordrecht 2013

Abstract In Chile, mediterranean climate condi- indicates that the ChMZ has high levels of endemism, tions only occur in the Central Zone (ChMZ). Despite with many primitive species being of Gondwanan its small area, this mediterranean climate region (med- origin. Although detailed information is available on region) has been recognised as a hotspot for biodiver- most floral groups, most faunal groups remain poorly sity. However, in contrast to the rivers of other med- known. In addition, numerous rivers in the ChMZ regions, the rivers in the ChMZ have been studied remain completely unexplored. Taxonomic specialists infrequently, and knowledge of their freshwater bio- are scarce, and the information available on freshwater diversity is scarce and fragmented. We gathered biodiversity has resulted from studies with objectives information on the freshwater biodiversity of ChMZ, that did not directly address biodiversity issues. and present a review of the current knowledge of the Research funding in this med-region has a strong principal floral and faunal groups. Existing knowledge applied character and is not focused on the knowledge of natural systems and their biodiversity. Species conservation policies are urgently required in this highly diverse med-region, which is also the most Electronic supplementary material The online version of severely impacted and most populated region of the this article (doi:10.1007/s10750-013-1685-4) contains supple- mentary material, which is available to authorized users. country.

Guest editors: N. Bonada & V. H. Resh / Streams in Keywords Central Chile Á Diversity Á Mediterranean climate regions: lessons learned from the last Endemism Á Fauna Á Flora Á Streams and rivers decade

R. Figueroa Á M. Guevara Á P. Pedreros Á V. H. Ruiz F. Correa-Araneda Á M. E. Dı´az Department of Zoology, University Center of Environmental Sciences EULA-Chile, of Concepcion, P.O. Box 160-C, University of Concepcion, Casilla 160-C, Concepcio´n, Chile Concepcion, Chile e-mail: rfi[email protected]

N. Bonada (&) Grup de Recerca Freshwater Ecology and Management (FEM), Departament d’Ecologia, Facultat de Biologia, Universitat de Barcelona (UB), Diagonal 643, 08028 Barcelona, Catalonia, Spain e-mail: [email protected] 123 270 Hydrobiologia (2013) 719:269–289

Introduction Andes Cordillera, the coastal ranges, and the Central Valley (Mann, 1964). However, the limits of the Chile is located in southwestern South America in a ChMZ are not clearly established, and the El Nin˜o and region with a predominantly temperate climate. La Nin˜a phenomena can expand or contract the area Mountains dominate 80% of the country. Mediterra- influenced by the med-climate (e.g., Di Castri & nean climate conditions (med-climate) occur only in Hajek, 1976; Luebert & Pliscoff, 2004, 2006). the Central Zone, between the IV and the VIII Mesoclimate variability within the ChMZ was administrative regions. The mediterranean climate previously recognised by Mann (1964), who distin- region (med-region), also called the Chilean mediter- guished between a ‘‘preclimax’’ area with low water ranean zone (ChMZ), is located primarily between the availability and a ‘‘postclimax’’ area with greater Aconcagua and Biobı´o River basins (32–40°S, Fig. 1) water availability. The area of the ChMZ with the (Di Castri, 1981) and includes the west side of the highest temperatures is the Central Valley. Because

Fig. 1 Location of the Chilean mediterranean zone (32–40°S) showing the limits of its major river basins (in grey)

123 Hydrobiologia (2013) 719:269–289 271 the coastal mountains (up to 2,000 m.a.s.l.) act as a The orography of Chile results in a longitudinal barrier, inland areas are sheltered from maritime orientation of most river basins. Seven large river influence. As a result, the Central Valley is 5–6°C basins located from north to south in the ChMZ (the warmer than the coastal areas on the other side of Aconcagua, Maipo, Rapel, Mataquito, Maule, Biobı´o, the mountains. However, winter frost can also occur and Itata rivers) have their headwaters in the foothills in areas of the Central Valley near the foothills of of the Andes and drain the Central Valley and the the Andes. Winter precipitation in the entire ChMZ coastal ranges (Fig. 1). In addition, several smaller, is concentrated from May through July, with a range steep river basins are located in the coastal ranges. of 300–1,500 mm/year from north to south (Nie- This particular distribution of river basins in the meyer & Cereceda, 1989). Such precipitation ChMZ resembles that found in the med-region of increases river flows and causes substantial amounts California (Ball et al., 2013). Contrary to those in other of ice and snow to accumulate in the mountains med-regions of the world, however, the rivers in the from 1,500 m.a.s.l. upwards (Fuentes, 1988; Clapp- ChMZ have rarely been studied, and the knowledge of erton, 1994). The melting of the ice and snow peaks their freshwater biodiversity is extremely scarce and at the end of spring, maintaining permanent river fragmented. The aim of the present study is to gather flows during the entire summer. For this reason, the available information on the freshwater biodiver- temporary rivers flowing from the Andes are sity of the ChMZ and to identify the gaps in this relatively uncommon, whereas temporary rivers are knowledge to guide further fundamental and applied common in the coastal ranges. research in the region. Variation in med-climate conditions occurs not only in longitude (i.e. from the coastal ranges to the foothills of the Andes) but also in latitude. Based on Biogeography climatogram analyses, Di Castri & Hajek (1976) have shown that med-climate conditions vary with latitude, The principal features of the geology of the ChMZ are with a progressive decrease southwards during the dry metamorphosed sediments and igneous batholithic period. South of the Biobı´o River basin, however, two rocks in the Andes, sediments in the Central Valley, fundamental properties determine the change to and metamorphosed and granite deposits in the coastal another climatic regime, which is the temperate ranges (Thrower & Bradbury, 1973). The landscape climate of the Valdivian rainforest (Miller, 1976). has been strongly shaped by ancient and intense First, the influence of the westerly winds causes winter tectonic activity and by recent glacial events (Clapp- precipitation and extreme summer droughts (Villagra´n erton, 1993). & Hinojosa, 1997). Second, the fragmentation of the The association between med-climate characteris- coastal ranges allows the maritime influence to extend tics and vegetation structure and physiology in the inland, increasing precipitation (Miller, 1976). The ChMZ has been analysed in several studies (e.g. CFP, city of Valdivia in southern Chile, for example, does 1950; Mann, 1964; Di Castri & Hajek, 1976). The not have the summer dry period and winter-wet period vegetation of the ChMZ consists primarily of a typical of a med-climate. semidesertic formation of sclerophyll and evergreen The ChMZ is the Chilean region with the highest trees and shrubs, as well as woodlands with the human density and the most fertile soils, with *14.5% deciduous Nothophagus spp. and the evergreen Dri- of the land used for wheat, sugar beets, oats, potatoes, mys winteri (Hajek, 1991; Dallman, 1998). The oilseed rape, barley, and maize production (Fuentes, vegetation of the most arid sector occurs in the 1988). This extensive agricultural use, in combination northern ChMZ between the Aconcagua and Maipo with similarly important uses for livestock and indus- river basins (Fig. 1). Spiny shrub steppes formed by trial activities, has produced strong pressure on both plants such as Acacia caven are highly abundant in the land use and water resources (Figueroa et al., 2007). coastal ranges and the Central Valley, whereas Thus, for example, 85% of the water resources of the sclerophyll forests dominate in the Andes foothills. ChMZ are used for agriculture, but 70% of this water Southwards, between the Rapel and Maule river is lost to evaporation or infiltration from the open basins, the vegetation is dominated by subhumid channels used for irrigation (Table 1). species in the coastal ranges and the Central Valley, 123 272 123

Table 1 Characteristics of the administrative regions of the Chilean Mediterranean Zone and pressures faced by their aquatic resources

Valparaiso Metropolitan O’Higgins Maule Biobı´o of Santiago

Total population 1,539,852 6,061,185 780,627 908,097 1,528,306 Urban population 1,409,902 5,875,013 548,544 603,020 1,528,306 % urban population 91.6 96.9 70.3 66.4 21.8 Rural population 129,950 186,172 232,043 305,077 333,256 % rural population 8.4 3.1 29.7 33.6 78.2 Agriculture water demands 461.9 1292.8 1599 1654.9 855.6 Drinking water demands 39.5 178.6 16.8 17 28.8 Industry water demans 40.4 86.7 8.2 22.8 392.5 Mining watern demands 9.6 3.9 86.5 0 13.2 Energy water demands 211.4 1362.1 3270.7 8860 2462.1 Main river basin Aconcagua Maipo Rapel Mataquito Maule Itata Biobı´o River length (km) 190 220 240 250 230 195 380 Watershed area (km2) 7,640 15,400 13,520 6,050 21,690 11,480 24,000 Average discharge (m3 s-1 ) 40 102 161 53 380 140 900 Hydrological regimen Snow-pluvial Snow-pluvial Snow-pluvial Snow- Snow-pluvial Snow-pluvial Snow-pluvial pluvial Principal tributaries Putaendo, Blanco, Colorado, Volca´n, Cachapoal, Tinguiririca Teno and Melado, Claro, N˜ uble, Cato, Chilla´n, Vergara, Laja, Malleco, and Colorado Yeso, and Mapocho and Alhue Lontue´ and Loncomilla Palpal, Diguillin, Rahue, Ranquil, Queuco, yrbooi 21)719:269–289 (2013) Hydrobiologia and Larqui Duqueco, and Bureo

Source Niemeyer & Cereceda (1989), INE (2003), DGA (2004) Hydrobiologia (2013) 719:269–289 273 whereas mountain forest species are common in the 2006) and has a high ecological and environmental Andes foothills. From Talca to the south, sclerophyll value (Habit et al., 2003). forests with inclusions of Valdivian hydrophilic forest Biogeographic studies of Chilean freshwaters have species are frequent. In this southern region, the focused primarily on the southern area of the country. rainfall is more regular and allows the occurrence of This area is highly interesting from a biogeographical many endemic species with higher water requirements perspective because glaciation has been an extremely (Rodrı´guez et al., 1983). Overall, a total of 57 forest important determinant of the geomorphology of the tree and shrubs species occur in the ChMZ, namely, 35 area’s fluvial ecosystems (Clapperton, 1993; Villagra´n endemics, 12 with South American affinities, and 10 & Hinojosa, 1997; Smith-Ramı´rez, 2004). However, with subantarctic affinities. The typical species are the rivers of the ChMZ have generally been ignored in Peumus boldus (boldo, which is endemic); Lithraea terms of scientific research. In the ChMZ, fluvial caustica (litre, endemic); Acacia caven (espino, landscapes have been modelled by volcanic and endemic); Cryptocarya alba (peumo, endemic); Quil- tectonic events before and during the formation of laja saponaria (quillay, endemic); Austrocedrus chil- the Andes (Parada & Peredo, 1989; Charrier et al., ensis (cipre´s, subantarctic); Aextoxicon punctantum 2002; Barrientos et al., 2004, 1994). (olivillo, subantarctic); Nothofagus spp. (South Amer- ican beech species group, endemic); Jubaea chilensis (Chilean wine palm, endemic, and which is South Current status of freshwater biodiversity America’s southernmost palm species, and it is almost knowledge extinct); Porlieria chilensis (palo santo, endemic); Senecio yegua (palo yegua, endemic); Azara integri- In the ChMZ, freshwater diversity studies have follia (aromo, endemic); and Lomatia dentata (palo primarily been focused on floristic groups (Bannister negro, endemic). et al., 2011) and on the distribution of several major Despite its high number of endemic species, faunal species, including Lutra provocax (Chilean Chilean native vegetation has been strongly modified otter), Casmerodius albus (greategret), Egretta thula by agricultural activity, urban expansion, and forestry. (snowy egret), Calyptocephalella gayi (Chilean hel- In the Biobı´o River basin, for example, the coverage of meted water toad), and Rhinoderma darwinii (Dar- forest plantations can exceed 55%. Land use in the win’s frog) (Quintanilla, 1983). Other groups, e.g. Vergara River basin, an important tributary of the Trichoptera, Plecoptera, and fish, have been consid- Biobı´o River, consists of 47% for agriculture use, 31% ered to be of major ecological importance in the ChMZ, for native forests, and 18% for scrubland in 1979, but the current knowledge of these groups is far from whereas forestry plantations occupied 38% of the complete (Dyer, 2000; Teneb et al., 2004; Palma & basin, native forests 21%, and agriculture 32% in 1994 Figueroa, 2008). Figueroa et al. (2006) have high- (Stehr et al., 2010). Similarly, deciduous forests lighted the lack of studies in the ChMZ and the around the city of Concepcio´n have been almost unbalanced knowledge of this area relative to other totally eradicated by exotic tree species, such as Pinus med-regions in the world. These deficiencies can result radiata (Monterey pine tree) and Eucalyptus globulus in incorrect conclusions about its biodiversity status. (Tasmanian blue gum). The annual report issued by As a result of the absence of national collections of Medio Ambiente in 2010 indicated that only 2.28% of particular groups (e.g. of aquatic ) and the lack the surface area of the Biobı´o Region is protected of available taxonomists, it is extremely challenging to within the National System of Protected Wild Areas of construct inventories of freshwater biodiversity. the Chilean State. The amount of protected wild areas Information on Chilean freshwater diversity has in the Biobı´o Region is the fourth smallest in Chile, recently been collected in a special issue of the journal after the Metropolitan, Coquimbo, and Maule Gayana (Concepcio´n) (2006, volume 70). This infor- Regions, all of which are located in the ChMZ (INE, mation allows detailed analyses of freshwater groups 2012). Recently, the Fundo Nongue´n National nationwide, such as microalgae (Parra, 2006; Rivera, Reserve was established by decree. This reserve (of 2006), macrophytes (Hauenstein, 2006), planktonic 3,055 ha) represents the last fragment of deciduous protozoans (Woelfl, 2006), zooplankton (Villalobos, coastal forest in the Biobı´o region (Jerez & Bocaz, 2006), malacostracan (Jara et al., 2006), 123 274 Hydrobiologia (2013) 719:269–289

Ephemeroptera (Camousseight, 2006), Plecoptera nutrient inputs. These ecosystems are characterised by (Vera & Camousseight, 2006), Trichoptera (Rojas, the presence of small cladocerans (Ceriodaphnia 2006), Coleoptera (Jerez & Moroni, 2006), Bivalvia dubia, Moina micrura, Neobosmina chilensis, Daph- (Parada & Peredo, 2006), Gastropoda (Valdovinos, nia pulex), calanoids (Tumeodiaptomus diabolicus), 2006), Bryozoa (Orellana, 2006), fishes (Habit et al., and cyclopoids (Mesocyclops longisetus). De los Rios- 2006a), amphibians (Ortiz & Dı´az-Pa´ez, 2006), birds Escalante (2010) found 14 species in 7 reservoirs, with (Victoriano et al., 2006), and parasites (Olmos & a maximum of 10 or 11 species in the most eutrophic Mun˜oz, 2006). However, it is difficult to use these reservoirs and only 4 or 5 in the less eutrophic ones. reviews to find fauna characteristic of the ChMZ because these publications do not consider the distri- Aquatic insects butional areas of species and are too general for the purpose of this current review. Therefore, to analyse Information on Ephemeroptera in Chile can be found the biodiversity of this med-region we used informa- in Camousseight (2006). Domı´nguez et al. (1992, tion provided in the journal Gayana (Concepcio´n) 2001, 2006; Domı´nguez & Ferna´ndez 2009) have also (2006, volume 70) and specific studies conducted in updated previous knowledge of South American the ChMZ, such as those by Arenas (1995) in the Ephemeroptera, including those of the Chilean region. Biobı´o River basin; Figueroa et al. (2003, 2006, 2007) Seven families of the 14 present in South America in the Damas, Nongue´n, and Chilla´n river basins; occur only in Chile, with 375 genera and ca. 4,000 spp. Valdovinos et al. (2009) in the Itata River basin; and Of these families, the family Onicigastridae had not Domı´nguez & Ferna´ndez (2009) for the entire Neo- been reported in the ChMZ (Table 2) until recently, tropical region. when it was found in the Maule and Biobı´o river basins. Similarly, these recent studies indicate that the Diatoms and macrophytes genus Camelobaetidius (Baetidae), which had not previously been recorded for Chile, occurs throughout Rivera (2006) noted that most of the diatom species the ChMZ. Thus, 42 species in all, with 12 endemic present in Chile are cosmopolitan. Most studies con- species, are recognised for the ChMZ (Table 2). The ducted in Chilean rivers have been concentrated in the biology of the Ephemeroptera in the ChMZ is little ChMZ, especially in the Concepcio´n area. Parra (2006) known and follows the general patterns described by observed the same situation for other benthic algae groups, Domı´nguez et al. (2006). Recent studies by Sabando for which no endemic species have been identified. et al. (2011) on the population structure of Andesiops Hauenstein (2006) indicated that *455 macrophyte torrens have shown that this species feeds on fine species are found in Chile, with a high percentage of organic particles as well as on algae. endemic species (ca. 80%). This author also indicated that Of the 16 known families of Plecoptera in the richness increases from north to south. Ramı´rez et al. world, Chile has only 6. Recent studies by Vera & (1979)andRamı´rez & San (2006) noted that although Camousseight (2006) and Palma & Figueroa (2008) macrophyte distributions are poorly known in Chile, the have confirmed that all six families, with a total of 48 greatest diversity is located between 35° and 40°S, which species (five endemic species), occur in the ChMZ includes the ChMZ. Despite the low representation of the (Table 3). As in other med-regions of the world, introduced macrophyte species Egeria densa, this species Plecoptera have been used in the ChMZ as water- has caused severe problems in freshwater habitats of this quality bioindicators (Figueroa et al., 2003, 2007) area, hampering sport activity, transportation, and invad- because all families appear to be restricted to rivers ing irrigation channels and rice fields (Ramı´rez & San, with high oxygen concentrations and low levels of 2006). human impact (Palma & Figueroa, 2008). One family The zooplankton fauna recorded in reservoirs does of particular interest is the Diamphipnoidae, which not include any endemic species in the ChMZ, and the occurs only in Chile (Fochetti & Tierno de Figueroa, species present are widespread in Chile (Araya & 2007) and comprises two genera and five species, all of Zun˜iga, 1985; Soto & Zun˜iga, 1991). Numerous which are present in the ChMZ. Diamphipnoa vires- reservoirs are located in the Central Valley. Many of centipennis and Diamphipnopsis samali are confined these reservoirs are eutrophic as a result of high to the ChMZ (37° to 38°S and 38° to 42°S, 123 Hydrobiologia (2013) 719:269–289 275

Table 2 Distribution of Family Genera/Species Distribution (°S) families and species of Ephemeroptera present in Ameletopsidae Chaquihua bullockb 37°–38° the Chilean mediterranean zone Chiloporter penai 36°–41° Baetidae Baetis (Americobaetis) albinervis 32°–33° Andesiops (Deceptiviosa) angolinab 37°–38° Andesiops arduab 40°–41° Andesiops peruvianus 30°–32°,38°–40° Andesiops torrens 30°,32°–33°,40° Callibaetis fasciatus 32°–33° Callibaetis jocosus 32°–33° Callibaetis lineatus 32°–33° Camelobaetidius sp.a 32°–38° Caenidae Caenisaxillata sp.b 32°–33° Caenis nigellab 32°–33° Coloburiscidae Murphyella needhami 32°–45° Leptophlebiidae Archethraulodes spatulas 35° Dactylophlebia carnulenta 38°–39°–43° Demoulinellus coloratusb 30°,33°,35°,37°–40° Gonserellus atopusb 40° Massartellopsis irarrazavali 29°–35°,42° Meridialaris biobionicab 36° Meridialaris chiloeensis 32°–42° Meridialaris diguillinab 33°–40° Meridialaris inflateb 38° Meridialaris laminate 33°–43° Meridialaris spina 33°–43° Hapsiphlebia anastomosis 34°–38°,40°–43° Nousia bella 33°–42° Nousia crena 34°–42° Nousia grandis 33°–43° Nousia maculate 34°–43° Nousia delicate 32°–43° Nousia minor 34°–43° Penaphlebia (Penaphlebia) barriaib 32°–33° Penaphlebia (Penaphlebia) chilensis 31°,33°–40° Penaphlebia (Penaphlebia) fulvipes 39°–42° Based on Figueroa et al. Penaphlebia (Penaphlebia) flavidula 37°–38° (2003), (2007), Domı´nguez et al. (2006), Domı´nguez & Penaphlebia (Megalophlebia) vinosa 33°,36°,38°–42° Ferna´ndez (2009) Rhigotopus andinensis 39°–43° a Personal records Secochela illiesi 35°–43° See Online Resource 1 for Nesameletidae Metamonius ancepsa 33°–39° specific information; Oniscigastridae Siphlonella guttataa, b 40°–43° b Endemic species of the Siphlonella ventilans 40°–41° ChMZ respectively), whereas the distributions of the other In Chile, Schmid (1955, 1957, 1958, 1959, 1964, 3 species of Diamphipnoidae extend to Patagonia 1989) was the first researcher to conduct significant (Vera & Camousseight, 2006). studies of Trichoptera faunistics. In addition, Flint & 123 276 Hydrobiologia (2013) 719:269–289

Table 3 Distribution of Family Species Distribution (°S) families and species of Plecoptera present in the Eustheniidae Neuroperlopsis patria 36°–37°,39°–40° Chilean mediterranean zone Neuroperla schendingi 37°,39°–40° Diamphipnoidae Diamphipnoa annulata 35°–36°,39° Diamphipnoa helgae 38°–40° Diamphipnoa virescentepennis 36°–37° Diamphipnopsis beschi 39° Diamphipnopsis samali 37°,39°–40° Austroperlidae Klapopteryx armillata 36°–40° Penturoperla barbata 35° Klapopteryx costalis 37° Gripopterygidae Notoperlopsis femina 36°–38°,39° Notoperla archiplatae 33°,34°,35° Senzilloides panguipulli 36°–39° Aubetoperla kuscheli 37° Aubetoperla illiesi 34°–38°,40° Claudioperla tigrina 39°–40° Limnoperla jaffueli 32°–33°,35°–40° Potamoperla myrmidon 32°,34°–40° Rhithroperla rossi 36°,39°–40° Teutoperla auberti 36° Teutoperla brundini 40° Teutoperla rothi 37°–40° Antarctoperla michaelseni 33°–40° Araucanioper labrincki 40° Araucanioperla bullock 37° Ceratoperla fazi 38°–40° Ceratoperla schwabei 40° Chilenoperla beschi 34°–39° Chilenoperla puerilis 40° Chilenoperla semitincta 39° Perlugoperla personata 38°–45° Plegoperla borggreenaea 37°–38° Plegoperla punctataa 37°–38° Notonemouridae Austronemoura araucana 37° Austronemoura caramavidensis 37° Austronemoura chilena 38°–40° Austronemoura encoensis 39° Austronemoura eudoxiae 36°–39° Neofulla spinosaa 38° Neonemoura barrosi 33°,35°–40° Udamocercia antarctica 39°–40° Udamocercia arumifera 39°–40° Udamocercia frantzi 39°–40° Perlidae Inconeuria porter 35°–40° Based on Lanfranco (1982), Kempnyella genualis 36°–40° Vera & Camousseight (2006), Kempnyella walperi 36°,39° Palma & Figueroa (2008) Nigroperla costalisa 35°–38° a Endemic species of the Picteroperla repanda 37° ChMZ

123 Hydrobiologia (2013) 719:269–289 277

Table 4 Distribution of Family Species Distribution (°S) families and species of Trichoptera present in the Anomalopsychidae Anomalopsyche minutaa 36° Chilean mediterranean zone Contulma cranifera 38°–39° Calamoceratidae Phylloicus aculeatusa 33° Ecnomidae Austrotinodes armiger 38° Austrotinodes brevisa 38° Austrotinodes cekalovicia 39° Austrotinodes irwinia 38° Austrotinodes quadrispinaa 37°–38° Austrotinodes rectaa 38° Austrotinodes recurvatusa 35° Austrotinodes talcanaa 35° Austrotinodes triangularisa 37° Glossosomatidae Mastigoptila bicornutaa 36° Mastigoptila curvicornutaa 36° Mastigoptila ecornutaa 37° Mastigoptila longicornutaa 36° Mastigoptila ruizi 37° Tolhuaca cupuliferaa 37° Hydropsychidae Smicridea figueroaia 37° Smicridea anticura 40° Smicridea decoraa 37° Smicridea frequens 35° Smicridea matancillaa 34° Smicridea reduncaa 36° Smicridea tregala 37° Smicridea lourditaea 40° Smicridea patinaea 40° Smicridea turgidaa 37° Hydroptilidae Celaenotrichia edwardsi 35° Ochrotrichia (Metrichia) bidentata 37°–38° Ochrotrichia (Metrichia) patagonica 36°,40° Neotrichia chilensis 35° Nothotrichia cautinensisa 39° Nothotrichia illiesia 39° Kokiriidae Pangullia fazianaa 39° Pangullia neaa 35° Helicophidae Alloecentrellodes elongatus 36° Alloecentrellodes obliquus 38° Austrocentrus griseus 37° Austrocentrus valgiformis 36°–38° Austrocentrus bifidus 39° Eosericostoma inaequispina 33°,37°–39° Eosericostoma aequispina 37°–38° Microthremma crassifimbriatum 36° Microthremma lobatuma 39° Microthremma griseuma 37° Microthremma caudatuma 36°,38° Microthremma villosuma 37° Microthremma angulatuma 34° Pseudosericostoma simplississimum 37° 123 278 Hydrobiologia (2013) 719:269–289

Table 4 continued Family Species Distribution (°S)

Helicopsychidae Helicopsyche caligataa 36° Helicopsyche chilensisa 37° Hydrobiosidae Amphichorema costiferum 39° Amphichorema monicaea 35° Amphichorema zotheculuma 36° Apatanodes sociataa 32°,37° Australobiosis bidensa 36° Cailloma rotunda 33° Cailloma angustipennis 33° Cailloma erinaceus 34° Clavichorema capillataa 33°,36° Clavichorema complicatissimaa 36° Clavichorema pillimpillia 37°–38° Clavichorema purgatorium (purgatoria)a 36° Clavichorema trancasicum (trancasica)a 36° Iguazu flavofuscuma 37°–38° Isochorema curvispinuma 36° Microchorema larica 39° Microchorema extensum 35° Microchorema recintoia 36° Neoatopsyche brevispina 37°–38° Neoatopsyche chilensis 36°,38° Neoatopsyche obliqua 32°,33° Neoatopsyche spinosella 33°,38°–39° Neochorema jaulaa 35° Neochorema lobiferuma 39° Neochorema sinuatuma 37° Neopsilochorema chilensea 37° Nolganema chilensea 37° Parachorema bifidum 36° Pomphochorema chilensisa 37°, Pseudoradema spinosissimuma 38°–39° Rheochorema robustuma 38°, Rheochorema tenuispinuma 36° Leptoceridae Brachysetodes bifidusa 33° Brachysetodes bifurcatusa 38° Brachysetodes extensusa 37°, Brachysetodes forcipatus 37° Brachysetodes major 35° Brachysetodes nublensisa 36° Brachysetodes spinosusa 37° Brachysetodes trifidusa 33° Brachysetodes tripartitusa 34° Nectopsyche fulva (Leptocella fulva)a 36° Nectopsyche navasi (Leptocella candida)a 33° Triplectides jaffuelli (robustus) 33° Hudsonema flaminii 32°,35°–38° Limnephilidae Austrocosmoecus hirsutus 32°,38° Monocosmoecus minor 32°,38° Monocosmoecus obtusus 36° 123 Hydrobiologia (2013) 719:269–289 279

Table 4 continued Family Species Distribution (°S)

Monocosmoecus pulcherrimus 37° Verger bispinus (Magellomyia)a 37° Verger curtiora 35° Verger fuscovittatusa 33° Verger pirioni 38° Verger porteri 33° Verger quadrispinusa 33° Verger vespersusa 38° Philopotamidae Sortosa angulataa 34° Sortosa bifidaa 36° Sortosa chilensisa 33° Sortosa duplexa 33° Sortosa dupliplexa 35° Sortosa edwardia 36° Sortosa elongataa 37° Sortosa paxilliferaa 39° Sortosa pectiniferaa 35° Sortosa prolixaa 36° Sortosa scopulaa 36° Sortosa spectabilisa 38° Sortosa spiniferaa 37° Sortosa spinosellaa 35° Sortosa ventricostaa 36° Philorheithridae Mystacopsyche longipilosa 37°–39° Mystacopsyche ochraceaa 38° Psilopsyche chillanaa 36° Psilopsyche molinaia 35°,38° Psilopsyche kolbianaa 37°,38°,39° Psilopsyche grandaa 37° Polycentropodidae Polycentropus aspinosusa 37° Polycentropus obtususa 35° Polycentropus tuberculatusa 36° Sericostomatidae Chiloecia lacustrisa 39° Myotrichia murinaa 33° Notidobiella chacayanaa 35° Notidobiella parallelipipedaa 36° Parasericostoma abruptuma 38° Parasericostoma acutuma 36 Parasericostoma corniculatuma 38 Parasericostoma cristatum 36° Parasericostoma dinocephaluma 35° Parasericostoma drepanigeruma 38° Parasericostoma lateralea 38° Parasericostoma ovale 33° Parasericostoma peniaia 36° Parasericostoma rufuma 36° Based on Flint (1974), (1983, a 2001), Flint et al., (1999), Stenopsychidae Pseudostenopsyche davirosum 35°,36° Rojas (2005), (2006), Pseudostenopsyche gracilisa 37° Holzenthal (2004), Ola´h& Tasimiidae Charadropsyche penicillataa 35°,36° Johanson (2010) Trichovespula macroceraa 33°,36° a Endemic species of the ChMZ

123 280 Hydrobiologia (2013) 719:269–289

Holzenthal have contributed substantially to the between the ChMZ and southwestern Australian med- knowledge of Chilean species (Flint, 1981, 2002; regions (Brundin, 1966). Thus, the genera Aproteni- Holzenthal, 1986, 1988; Holzenthal & Flint, 1995; ella, Stictocladius, and Botryocladius are considered Flint et al., 1999). All of these studies indicate that Gondwanaland faunal elements and are currently Chile has 18 families, 62 genera, and 224 species of shared by Australia, South America, and New Zealand Trichoptera. In the ChMZ, 18 families, 53 genera, and (Edward, 1989; Cranston & Edward, 1992, 1999). The 150 species are recognised, with 108 endemic species ChMZ and southwestern Australian med-regions also (Table 4). Actually, the current knowledge indicates had similar rarefied richness values, which were lower that central Chile is a center of diversification for than that found in the Mediterranean Basin (Puntı´, Trichoptera (Pauls et al., 2010). The Biobı´o River 2007). basin is of particular interest because it has the greatest concentration of recorded species (Rojas, 2006). The Other invertebrates studies performed also highlight the high degree of endemism (Holzenthal, 2004; Rojas, 2006), although Knowledge of non- aquatic invertebrates is information on juvenile aquatic forms, their behav- scarce in Chile, and information is only available for iour, and their ecological requirements is completely molluscs and some groups. A total of 75 lacking (Angrisano & Korob, 2001). According to species of freshwater molluscs occur in Chile. Their Angrisano & Korob (2001), the Trichoptera are distribution varies latitudinally from north to south, characterised by a total or partial replacement of with a greater concentration between latitudes 26° and species from the headwaters to the lowlands. The 44°S (Fuentealba et al., 2010), which is where the pattern of species replacement is influenced by the ChMZ is located. Two families of bivalves, the current velocity, which directly affects the availability Hyriidae and Sphaeriidae, occur in the freshwater of food, the construction of refuges, and the amount of habitats of Chile. The Hyriidae are only represented by drifting organisms. In addition, Sabando et al. (2011) a single genus with two species (Diplodon chilensis have demonstrated that the degree of genetic isolation and D. solidulus), whereas the Sphaeriidae are repre- of Smicridea annulicornis among the basins of the sented by three genera and 11 species. Pisidium ChMZ is noteworthy, even in highly deforested basins. chilense, P. huillichum, and P. llanquihuensis are Information on other groups of aquatic insects is endemic to the ChMZ. However, Parada & Peredo scarce. Jerez & Moroni (2006) recognised 12 species (2006) noted that there is a significant lack of of aquatic Coleoptera for Chile and indicated that the information about freshwater molluscs occurring knowledge of this group in the country is vague, and is between 18° and 35°S, a substantial part of the ChMZ. usually derived from extrapolations from other coun- Freshwater gastropods comprise 73 species in Chile tries. However, Chile lacks endemic families of (Valdovinos, 2006), with many endemic species of the Coleoptera, and the families present include elements families Hydrobiidae (Littoridina cumingi), Chilini- with both tropical and Australian affinities. dae (Chilina dombeyana, C. fluctuosa, C. tenuis, C. In the ChMZ, Puntı´ (2007) studied the highly gibbosa, C. fasciata, C. obovata, and C. minuta), diverse dipteran family of Chironomidae and com- Physidae (Physa chilensis), and Planorbidae. The pared species richness, abundance, and composition Planorbiidae are distributed between the northern among the ChMZ, southwestern Australia, and the regions of Chile and the ChMZ, with Biomphalaria Mediterranean Basin. Despite the limited knowledge chilensis as the only species in the ChMZ. The family of the group and the problems associated with Ancylidae (Uncancylus gayanus), which has a more chironomid , Puntı´ collected 24 genera of limited distribution range, reaches its maximum Chironomidae at 11 sites belonging to four river basins abundance in the rivers of the Biobı´o region (Vald- in Chile and identified 16 unknown larval morpho- ovinos, 2006). logical forms of Orthocladiinae, Chironomini, Tany- Six species of are distributed in Chile tarsini, and Heptagyini. The composition of the (5 Parastacidae and 1 Palaemonidae). These species Chironomidae of the ChMZ is closer to that of are best represented in the Biobı´o River basin and in southwestern Australia than to that of the Mediterra- the Valdivia region (Jara et al., 2006). In contrast, the nean Basin, indicating past geological connections diversity of anomuran crabs, with 18 species and two 123 Hydrobiologia (2013) 719:269–289 281 subspecies, is notable. Three species are highly reaches 60% in the ChMZ, and the highest species abundant in the ChMZ but are not found exclusively richness (17 species) is attained at the southern limit of in this area. Samastacus spinifronsis distributed from the zone (ca. 38°S). However, this information could the Aconcagua River basin to Chiloe´, Parastacus be enhanced by further study because recent studies by pugnax is distributed within the wetlands of the Ortiz (pers. comm.) have recognised at least two new Central Valleyto the Tolte´n River, and Aegla pewen- species in primary forests of the coastal ranges of the chae is distributed in the area between the cities of San ChMZ. Fernando and Concepcio´n. In contrast, A. bahamondei and A. occidentalis are endemic to the Tucapel- Paicavı´ river and Lleu-lleu lake basins in the coastal ChMZ, respectively (Smith-Ramı´rez et al., 2005). In The Chilean freshwater ichthyofauna consists of 11 addition, A. expansa, A. concepcionensis, and A. families, 17 genera, and 66 species (44 native and 22 laevistalcahuano are also ChMZ endemics. Despite exotic). Their altitudinal range does not exceed the high number of endemics, the information on the 1,500 m.a.s.l. A total of 20 native and 13 introduced conservation status of this group is incomplete. For the species are recognised for the ChMZ (Table 5). ChMZ, A. expansa and A. concepcionensis are iden- Within the ChMZ, the southern portion is the most tified as extinct, whereas S. spinifrons and A. bah- diverse, with several endemic species, such as Trich- amondei are considered vulnerable (Jara et al., 2006). omycterus chiltoni and Percilia irwini (Vila et al., Amphipods have rarely been studied in Chile. 2006). However, this is also the area in the ChMZ Gonza´lez (2003) provides the most complete infor- where populations are most heavily altered because of mation on this group. They are represented by a single anthropogenic pressure (Habit et al., 2006b; Vila & genus and 7 species: Hyalella simplex, H. fossaman- Pardo, 2008; Zunino et al., 2009). A total of 26 fish cinii, H. kochi, H. chiloensis, H. costera, H. araucana, species have been introduced in the ChMZ since the and H. franciscae. Only H. chiloensis and H. costera end of the nineteenth century for such diverse are present in the ChMZ, where they are endemics. purposes as sport fishing, ornamental use, biological Recent discoveries have indicated the presence of 2 control, and aquaculture (Iriarte et al., 2005) new species in Chile, which have not yet been (Table 5). The effects of introducing exotic fishes recorded in the ChMZ: macrodactylus into native fish communities are very poorly under- (Grosso & Peralta, 2009) and Ruffia patagonica stood, but such introductions are considered to be the (Bre´hier et al., 2010). drivers of local native fish extinctions (Ruiz, 1993; Soto et al., 2006). In addition, Figueroa et al. (2010) Vertebrates showed that an elevated diet overlap occurred between native and introduced fish species in a river of the Amphibians ChMZ. This overlap resulted in a significant negative impact on native fish communities. Fifty-nine amphibian species are recognised for Chile, According to Dyer (2000), the Chilean icthyofauna with 60.7% endemic (Ortiz & Dı´az-Pa´ez, 2006; Frost, is grouped into three provinces: Titicaca, Patagonian, 2009). Although information is currently available on and Chilean. The ChMZ belongs to the Chilean Chilean amphibians, aspects of their distribution Province and has a very distinct species composition remain unclear. Only the studies by Vidal et al. compared to southern areas. Researchers have related (2009) and Jofre´ &Me´ndez (2011) have presented this pattern to vicariance for a multiple-taxa diver- information about the latitudinal distribution of gence event (Dyer, 2000), but this conclusion is not amphibians in Chile. Based on a parsimony analysis consistent with geological studies that show a gradual of endemicity, these authors recognise three major uplift of the Andes Mountains during the lower zones related to different groups of amphibians: a Miocene (Jordan & Gardeweg, 1989; Lundberg northern zone from 18° to 24°S, a central zone from et al., 1998) and other geological events that have 24° to 37°S, and a southern zone from 38° to 54°S. The shaped the current isolation patterns of the basins central zone and a portion of the northern zone (Charrier et al., 2002; Mun˜oz et al., 2006). Despite the correspond to the ChMZ. Amphibian endemism distinct species composition of the ChMZ, fish 123 282 Hydrobiologia (2013) 719:269–289

Table 5 Native and introduced fish species identified in several river basins of the Chilean mediterranean zone Aconcagua Maipo Rapel Mataquito Maule Biobı´o Itata

Native species Basilichthys australis xxxxxxx Brachygalaxias bullocki xx x Bullockia maldonadoi xx Cheirodon australis xx x Cheirodon galusdae xx x Cheirodon pisiculus xxx Diplomystes chilensis xxx xxx Diplomystes nahuelbutaensis xx Eleginops maclovinusa xx Galaxias maculatusa xxxxxxx Geotria australisa xxxxxxx Mugil cephalusa xxxxxxx Nematogenys inermis xxxxxxx Odontesthes debueni xxxxxxx Odontesthesmaleanum xxxxxxx Percichthys melanops xx Percichthys trucha xxxxxxx Percilia gillissi xxx x Percilia irwini xx Trichomycterus aerolatus xxxxxxx Introduced species Ameiurus nebulosus x Carassius carassius xxxxxxx Cnesteredon decenmaculatus xx Cyprinus carpio xxxxxxx Galaxias maculatus Gambussia affinis xxxxxxx Ictalarus nebulosus x Odonthestes bonariensis xxx x Oncorhynchus mykiss xxxxxxx Percichthys melanops x Salmo trutta xxxxxxx Trichomycterus chiltoni xx Source DGA (2004), Ruiz & Marchant (2004), CONAMA (2009), EULA (2009), and Habit & Ortı´z(2009) a Associated with the estuarine zone diversity is low overall but includes many endemics restricted species distributions. For example, Bulloc- (Quezada-Romegialli et al., 2010). This pattern, kia maldonai is only found in the Itata and Cautı´n together with the small body size of the species, has River Basins in the ChMZ (Habit et al., 2006b). In been related to the geographic isolation of the country contrast, recent genetic studies of Trichomycterus and to the presence of rivers with high levels of areolatus and Basilichthys microlepidotus have also discharge (Habit et al., 2006b; Vila et al., 2006). The demonstrated genetic isolation among ChMZ basins. geographic isolation of Chile has resulted in highly For this reason, future conservation programs must

123 Hydrobiologia (2013) 719:269–289 283 consider river basins individually (Quezada-Romegi- riversides to ensure the maintenance of the most alli et al., 2010) to avoid cases such as the extinction of relevant ecosystem services. Diplomystes chilensis in the Maipo River (Vila & Pardo, 2008). Pollution and pressures

The history of environmental protection in Chile has Conservation and future challenges been brief. The first Environmental Law was approved in 1994, and the first ‘‘Norm for the Protection of Projected climate change Surface Water Quality’’ is still under development (CONAMA, 2004). Actually, no legal document exists In terms of the modification of the thermal regime, in Chile with the aim of protecting river basins in the studies conducted by CONAMA (2006) have shown country. More than 2/3 of the Chilean population is that the ChMZ will be one of the areas in Chile most located in the ChMZ, and most domestic and industrial affected by the global temperature increase. The wastewater is discharged into the area’s principal altitude of the 0°C isotherm has already shifted rivers and tributaries. Diffuse pollution from the (*300–500 m; CONAMA, 2006); as a result, a agricultural sector, together with pollution by hazard- greater amount of precipitation falls as rain rather ous and liquid industrial wastes, is also important in than of snow. The discharge of the rivers flowing from particular river basins (e.g. the Maipo and Rapel River the Andes foothills in the ChMZ is expected to basins; CONAMA, 2007, 2008, 2009a, b). increase, especially in winter. An increase of 400 m in Bioassessment approaches are being investigated in the altitude of the 0°C isotherm would imply a loss of several rivers of the ChMZ. However, most of this 23% of the snow area between 30° and 35°S. work is conducted entirely for research purposes and, The Andean foothills of the ChMZ are one of the although the results of the research are transferred to areas in the country with the greatest productivity for the local and national administrations, their imple- forest farming. Moreover, a high percentage of Chile’s mentation is still not being done. hydroelectric energy (approximately 60%) is gener- In the Biobı´o River basin, a number of investiga- ated in the ChMZ. In terms of rainfall, it is expected tions have focused on the study of the ecological that precipitation will decrease 40% in winter between quality of several rivers (Parra et al., 1993a, b; Vighi 308 and 40°S, with a somewhat smaller decrease in fall et al., 1993), proposing management strategies and and summer (CONAMA, 2006). The loss in rainfall recognising areas under pressure. The Biobı´o River also extends to the summer throughout the region basin is the most important hydrologic system in between 38° and 40°S and farther north in the Andean Chile, covering 24,260 km2. It is one of the large sector. McPhee et al. (2010) have indicated that for the rivers in Chile showing the greatest disturbance by Maule and Laja River basins, a 40% reduction in the industrial and urban effluents and by flow regulation availability of water is expected. In the Laja River for hydropower generation and irrigation (Parra et al., basin, a greater temperature increase will also occur. 2009). Nutrients occur at very low concentration in the In addition, Garreaud & Falvey (2009) has indicated upper section of the Biobı´o River, but the concentra- that climate change models are more uncertain in the tions of nitrogenated compounds (ammonium, nitrite, Southeast Pacific because of the dependence of the nitrate, total nitrogen, and total phosphorus) are climate on the La Nin˜a phenomenon, assuming an increased downstream as a result of contributions intensification of the South Pacific Anticyclone in from cellulose mills, urban settlements, and agricul- recent decades. tural/forestry activities (Parra et al., 2009). This The anticipated changes in the climate, added to situation is particularly critical in the lower section, changes in land use (Aguayo et al., 2009; Schulz et al., where the nutrient values approach eutrophication 2010) and thermal pollution, are problems not cur- levels. Phenolic compounds also show a clear increas- rently addressed in Chile in terms of the protection of ing trend towards the lower part of river. Other Chilean aquatic ecosystems (Parra et al., 2009). In this relevant variables affecting water quality, however, sense, the only possibility is to address future changes such as the concentration of heavy metals, hydrocar- via the sustainable management of rivers and bons, and pesticides, have shown very low values or 123 284 Hydrobiologia (2013) 719:269–289

Table 6 Dams in the Chilean mediterranean zone Administrative region Number % of dams within % SNASPE respect % SNASPE respect of dams the ChMZ to regional surface to national surface

Valparaı´so (Aconcagua Basin) 218 24.8 2.7 0.1 Metropolitana de Santiago (Maipo Basin) 138 15.7 0.9 0.0 O’Higgins (Rapel Basin) 70 8.0 2.8 0.1 Maule (Maule Basin) 212 24.1 0.6 0.0 Biobı´o (Itata and Biobı´o basins) 242 27.5 2.9 0.1 Total mediterranean region 880 100.0 0.3 Source DGA (2010), based on several studies and satellite data; INE (2012), annual report on the environment) (SNASPE: National System of Protected Wild Areas of the Chilean State) are under the detection limits of the methods used. ChMZ (INE, 2012). In addition, Chile has 12 sites that During the past decade, pulp mills have doubled their are recognised under the Ramsar convention (i.e. production in the Biobı´o River basin (over internationally protected lakes and wetlands). Two of 1,800,000 tons/year; Parra et al., 2009). Despite this these sites (0.8%) are located in the ChMZ. drastic increase in production, the water-quality parameters directly associated with cellulose mills have not shown any increases relative to historic Conclusions levels, perhaps the result of the new cleaner technol- ogies being used in the mills. A number of studies of The biological diversity of numerous med-rivers in the biomarkers and the ecological status of the aquatic ChMZ remains completely unexplored. Taxonomic biota have also been conducted in the Biobı´o River specialists are rare, and the scarce information avail- basin, showing the large-scale and long-term effects of able on freshwater biodiversity is found in studies that human impacts on rivers (Gaete et al., 1999; Orrego do not directly address biodiversity issues but focus on et al., 2005, 2006, 2009a, b; Habit et al., 2006a, b; other objectives. Research funding has a strong Chamorro et al., 2010; Chiang et al., 2011). biotechnological and applied character and is not In terms of fragmentation, all large basins of the focused on the knowledge of natural systems, their ChMZ show alterations of natural flow regimes by biodiversity, and the ecological services that they dams to a certain extent (Table 6). The generation of provide. Despite all these challenges, existing knowl- hydroelectricity represents approximately 70% of the edge already shows that the ChMZ has high levels of energy used in the country. Approximately 60% of endemism in a reduced geographic area, with many Chile’s hydroelectricity is generated in the Biobı´o primitive faunal elements of Gondwanan origin (de River basin, which sustains a significant biodiversity, Moor and Ivanov, 2008; Valdovinos, 2008). Many with many endemics. freshwater groups of the ChMZ have a stronger From a river conservation perspective, there are no affinity to the fauna of New Zealand and Australia than development policies in Chile. River conservation to the rest of South America (Fittkau, 1969; Zwick, depends on the National System of Protected Wild 2000). Areas of the Chilean State (SNASPE), which repre- Our review indicates that detailed information is sents the principal tool for biodiversity protection available on specific invertebrate groups, such as through the administration and management of natural molluscs (Fuentealba et al., 2010), Plecoptera (Palma areas nationwide. Chile has 36 national parks, 49 & Figueroa, 2008), and Trichoptera (Flint et al., 1999). reserves, and 15 natural monuments (CONAF, 2010). However, most groups remain poorly known. In this Of these natural areas, 4, 19, and 1, respectively, are sense, the ChMZ represents an exceptional area for located in the ChMZ. However, only 19% of the area performing taxonomic and ecological studies because of Chile is protected to some extent, and only 0.3% of its potential high levels of biodiversity and ende- (Table 6) of Chile’s protected area is located in the mism. For example, our analysis has shown that 28.6%

123 Hydrobiologia (2013) 719:269–289 285 of the species of Ephemeroptera, 10.4% of the Araya, J. M. & L. R. Zun˜iga, 1985. Manual taxono´mico del Plecoptera, and 70.6% of the Trichoptera in the ChMZ zooplancton lacustre de Chile. Boletı´n Limnolo´gico. Uni- versidad Austral de Chile 8: 1–10. are endemic. These levels of endemism are expected Arenas, J. N., 1995. Composicio´n y distribucio´n del macro- to be modified as more rivers throughout the country zoobentos del curso principal del rı´o Biobı´o. Chile Medio are explored. Ambiente 12(2): 39–50. In the ChMZ, vertebrates, especially anurans (Ortiz Ball, J. E., L. A. Beˆche, P. K. Mendez & V. H. Resh, 2013. Biodiversity in mediterranean-climate streams of Califor- &Dı´az-Pa´ez, 2006; Vidal et al., 2009) and fish (Habit nia. Hydrobiologia. doi:10.1007/s10750-012-1368-6. et al., 2003, 2007), have received more attention than Bannister, J. R., O. J. Vidal, E. Teneb & V. Sandoval, 2011. invertebrates. The southern part of the ChMZ (Con- Latitudinal patterns and regionalization of plant diversity cepcio´n Province) and its extension farther southwards along a 4270-km gradient in continental Chile. Austral Ecology 37(4): 500–509. (Valdivia Province) appears to be one of the most Barrientos, S., E. Vera, P. Alvarado & T. Monfret, 2004. Crustal diverse areas for fish in Chile and has been recognised seismicity in central Chile. Journal of South American as one of the world’s diversity hotspots (Myers et al., Earth Sciences 16: 759–768. 2000). However, it must be recognised that universities Bre´hier, F., R. Vonk & D. Jaume, 2010. First record of the family Phreatogammaridae in South America, with com- with a long tradition of local fish specialists (e.g., Hugo ments on the arrangement of coxal and sterna gills, and on Campos) are located in both provinces. the biramous condition of the seventh pereopod in From a conservation perspective, only certain fish, amphipod crustaceans. Journal of Crustacean Biology amphibian, and crustacean species have some form of 30(3): 503–520. Brundin, L., 1966. Transantarctic Relationships and their Sig- protection. Invertebrates other than crustaceans are nificance, as Evidenced by Chironomid Midges: With a completely ignored in the Chilean red list. In addition, Monograph of the Subfamilies Podonominae and Aph- protected areas are scarce in the ChMZ and only roteniinae and the Austral Heptagyiae. Almqvist & Wik- represent 0.3% of the protected areas in Chile (INE, sell, Stockholm. Camousseight, A., 2006. Estado de conocimiento de los 2012). The ChMZ is being heavily exploited for mining, Ephemeroptera de Chile. Gayana (Concepcio´n) 70: 50–56. agriculture, and hydroelectric projects. These activities CFP, 1950. Geografı´a de Chile. Tomo I. Fundacio´n Pedro Ag- involve a high level of economic investment but ignore uirre Cerda de la Corporacio´n de Fomento de la Produc- freshwater biodiversity. These projects, together with cio´n. Editorial Universitaria, Santiago de Chile, Chile. Chamorro, S., V. Herna´ndez, E. Monsalvez, J. Becerra, M. the rapid degree of contamination of watercourses in the Mondaca, B. Pin˜a & G. Vidal, 2010. Detection of estro- ChMZ, suggest that many species will move from being genic activity from kraft mill effluents by the yeast estrogen unknown to being lost. In this sense, the ChMZ urgently screen. Bulletin of Environmental Contamination and requires policies focused on the protection and conser- Toxicology 84: 165–169. Charrier, R., O. Baeza, S. Elgueta, J. J. Flynn, P. Gans, S. vation of freshwater biodiversity. M. Kay, N. Munoz, A. R. Wyss & E. Zurita, 2002. Evi- dence for Cenozoic extensional basin development and Acknowledgments NB acknowledges support received by the tectonic inversion south of the flat-slab segment, southern BioFresh EU project-Biodiversity of Freshwater Ecosystems: Central Andes, Chile (33°–36° SL). Journal of South Status, Trends, Pressures and Conservation Priorities (7th FWP American Earth Sciences 15: 117–139. contract No 226874), the RICHABUN project funded by the Chiang, G., M. E. McMaster, R. Urrutia, M. F. Saavedra, J. Spanish Ministry of Education and Science FEDER (CGL2007- F. Gavilan, F. Tucca, R. Barra & K. R. Munkittrick, 2011. 60163/BOS) and Project DIUC 212.310.060-1.0, University of Health status of native fish (Percilia gillissi and Trich- Concepcio´n. omycterus areolatus) downstream of the discharge of effluent from a tertiary-treated elemental chlorine-free pulp mill in Chile. Environmental Toxicology and Chemistry 30: 1793–1809. References Clapperton, C., 1993. Quaternary Geology and Geomorphology of South America. Elsevier, Amsterdam. Aguayo, M., A. Pauchard, G. Azocar & O. Parra, 2009. Land use Clapperton, C., 1994. The quaternary glaciation of Chile: a change in the south central Chile at the end of the 20(th) review. Revista Chilena de Historia Natural 67: 369–383. century. Understanding the spatio-temporal dynamics of CONAF, 2010. Sistema Nacional de A´ reas Silvestres Protegidas the landscape. Revista Chilena de Historia Natural 82: del Estado (SNASPE). In http://www.conaf.cl/parques/ 361–374. index.html. Accessed 24 Nov 2011. Angrisano, E. B. & P. G. Korob, 2001. Trichoptera. In Fern- CONAMA, 2004. Guı´a relativa al desarrollo de la dictacio´nde a´ndez, H. R. & E. Domı´nguez (eds), Guı´a para la deter- Normas Secundarias de Calidad Ambiental para Aguas minacio´n de los artro´podos bento´nicos Sudamericanos. Continentales Superficiales y Aguas Marinas. Comisio´n Universidad de Tucuma´n, Argentina: 55–92. Nacional del medio Ambiente, Gobierno de Chile, Chile. 123 286 Hydrobiologia (2013) 719:269–289

CONAMA, 2006. Informe de la variabilidad clima´tica en chile Domı´nguez, E., M. L. Pescador, M. D. Hubbard, C. Molineri & para el Siglo XXI. Dpto. de Geofı´sica Fac. Cs Fı´sicas y C. Nieto, 2006. Ephemeroptera of South America. In Adis, Matema´ticas, Universidad de Chile, Chile. J., J. R. Arias, G. Rueda-Delgado & K. M. Wantzen (eds), CONAMA RM, 2007. Estandarizacio´n de especies bioindica- Aquatic Biodiversity in Latin America (ABLA), Vol. 2. doras de calidad del agua en la cuenca del rı´o Maipo. In- Pensoft, Sofı´a-Moscow: 1–646. forme Final. Estudio realizado por EULA, Chile. Dyer, B., 2000. Systematic review and biogeography of the CONAMA RM, 2008. Aplicacio´n del IB ChSiGNAL desarrol- freshwater fishes of Chile. Estudios Oceanolo´gicos 19: lado para comunidades de macroinvertebrados bento´nicos 77–98. para monitorear la calidad del agua en la cuenca del rı´o Edward, D. H. D., 1989. Gondwanaland elements in the Chi- Maipo. Informe final Estudio realizado por EULA, Chile. ronomidae (Diptera) of south-western Australia. Acta Bi- CONAMA RM, 2009a. Validacio´n y Complementacio´ndela ologica Debrecina, Supplementum Oecologica Hungarica aplicacio´n del I´ndice Bio´tico ChSignal en la Cuenca del Rı´o 2: 181–187. Maipo. Informe Final. Estudio realizado por EULA, Chile. EULA, 2009. Monitoreo de la calidad del agua del rı´o Mataquito CONAMA VI R, 2009b. Diagno´stico indicadores biolo´gicos en mediante el uso de indicadores biolo´gicos y biomarca- la Cuenca Rapel. Informe final, estudio realizado por dores. Informe preparado para ARAUCO S.A. Eula-Chile, EULA PROYECTO N8 30073967-0, VI Regio´n, Chile. Universidad de Concepcio´n, Concepcio´n, Chile. Cranston, P. S. & D. H. D. Edward, 1992. A systematic reap- Figueroa, R., C. Valdovinos, E. Araya & O. Parra, 2003. Benthic praisal of the Australian Aphroteniinae (Diptera, Chiro- macroinvertebrates as indicators of water quality of nomidae) with dating from vicariance biogeography. southern Chile rivers. Revista Chilena de Historia Natural Systematic Entomology 17: 41–54. 76: 275–285. Cranston, P. S. & D. H. D. Edward, 1999. Botryocladius gen.n.: Figueroa, R., V. H. Ruiz, X. Niell, E. Araya & A. Palma, 2006. a new transantarctic genus of orthocladiinae midge (Dip- Invertebrate colonization patterns in a Mediterranean tera: Chironomidae). Systematic Entomology 24: 305–333. Chilean stream. Hydrobiologia 571: 409–417. Dallman, P., 1998. Plant Life in the World’s Mediterranean Figueroa, R., A. Palma, V. Ruiz & X. Niell, 2007. Comparative Climates: California, Chile, South , Australia & the analysis of biotic indexes used to evaluate water quality in Mediterranaean Basin, Californian Native Plant Society & a Mediterranean river of Chile: Chillan River, VIII Region. University of California Press, Los Angeles Garden: www. Revista Chilena de Historia Natural 80: 225–242. gardenvisit.com/m/sp.html. Figueroa, R., V. H. Ruiz, P. Berrios, A. Palma, P. Villegas & A. De los Rios-Escalante, P., 2010. Crustacean zooplankton com- Andreu-Soler, 2010. Trophic ecology of native and intro- munities in Chilean inland waters. Crustaceana Mono- duced fish species from the Chillan River, South-Central graphs 12: 1–109. Chile. Journal of Applied Ichthyology 26: 78–83. de Moor F. C., Ivanov, V. D., 2008 Global diversity of caddis- Fittkau, E., 1969. La fauna de Sudame´rica. Trad. Alberto Lar- flies (Trichoptera: Insecta) in freshwater. Hydrobiologia rain (1973). Boletı´n de la Sociedad de Biologı´a de Con- 595: 393–407. cepcio´n: 1–31. DGA, 2004. Diagno´stico y clasificacio´n de los cursos y cuerpos Flint, O. S., 1974. Checklist of the Trichoptera, or Caddisflies, of de agua segu´n objetivos de calidad cuenca del rı´o Biobı´o. Chile. Revista Chilena de Entomologı´a 8: 83–93. Direccio´n Nacional de Aguas, Ministerio de Obras Pu´bli- Flint, O. S., 1981. Studies of Neotropical caddis flies, XXVII: cas. Informe CADE-IDEPE, Chile. Anomalopsychidae a new family of Trichoptera. Proceed- DGA, 2010. Catastro de embalses ubicados entre las regiones de ings of the 3rd International Symposium of Trichoptera: Valparaı´so y la Araucanı´a. Pag. Informe final Aquaterra 75–85. ingenieros Ltda. Direccio´n Nacional de Aguas, Ministerio Flint, O. S., 1983. Studies of Neotropical caddisflies, XXXIII: de Obras Pu´blicas, Chile. new species from austral South America (Trichoptera). Di Castri, F., 1981. Mediterranean-type shrublands of the world. Smithsonian Contributions to Zoology 377: 1–100. In Di Castri, F., D. W. Goodall & R. L. Specht (eds), Flint, Jr., O. S., 2001. Diplectroninae of (Trichoptera: Mediterranean-Type Shrublands. Vol. 11. Elsevier Scien- Hydropsychidae). Proceedings of the Biological Society of tific Publishing Company, Amsterdam: 1–52. Washington 114: 91–103. Di Castri, F. & E. Hajek, 1976. Bioclimatologı´a de Chile. Edi- Flint, O. S., 2002. Studies on Neotropical caddisflies, LX: Three torial Universidad Cato´lica de Chile, Santiago de Chile, new species of the Chilean genus Microthremma, with a Chile. review of the genus (Trichoptera: Helicophidae). Ento- Domı´nguez, E. & H. R. Ferna´ndez (eds), 2009. Macroinverte- mological News 113: 225–232. brados Bento´nicos Sudamericanos. Sistema´tica y biologı´a. Flint, O. S., R. W. Holzenthal & S. C. Harris, 1999. Catalog of Fundacio´n Miguel Lillo, Tucuma´n, Argentina. the Neotropical Caddisflies (Insecta: Trichoptera). Ohio Domı´nguez, E., M. Hubbard & W. Peters, 1992. Claves para Biological Survey, Columbus. ninfas y adultos de las familias y ge´neros de Ephemerop- Fochetti, R. & J. M. Tierno de Figueroa, 2007. Global diversity tera (Insecta) Sudamericanos. Instituto de Limnologı´a ‘‘Dr. of stoneflies (Plecoptera: Insecta) in freshwater. Hydrobi- Rau´l A. Ringuelet’’. Biologı´a acua´tica 16: 5–32. ologia 595: 365–377. Domı´nguez, E., M. D. Hubbard & M. L. Pescador, 2001. Frost, D. R., 2009. Amphibian species on de world: an online Checklist of the Ephemeroptera of South America. reference. American Museum of Natural History Elec- Ephemeroptera Galactica, http://www.fmu.org/mayfly/ tronic database accessible at http://research.ammnh.org. sacat.html. herpetology/amphibia/.

123 Hydrobiologia (2013) 719:269–289 287

Fuentealba, C., R. Figueroa & J. J. Morrone, 2010. Endemism Holzenthal, R. W. & O. S. Flint, 1995. Studies of the Neotropical analysis of Chilean freshwater mollusks. Revista Chilena caddisflies, LI: Systematics of the Neotropical caddisflies de Historia Natural 83: 289–298. genus Contulma (Trichoptera: Anomalopsychidae). Smith- Fuentes, E., 1988. Sinopsis de Paisajes de Chile. In Fuentes, E. sonian Contribution Zoology 575: 1–59. & S. Prenafeta (eds), Ecologı´a del paisaje en Chile Central INE, 2003. Censo 2002. Sı´ntesis de resultados. Instituto Nac- Estudios sobre sus espacios montan˜osos. Universidad ional de Estadisticas. Periodı´stica La Nacio´n S.A. Santiago Cato´lica de Chile, Santiago de Chile, Chile: 17–27. de Chile, Chile. Gaete, H., A. Larraı´n, E. Bay-Schmith, A. Cifuentes, J. Rodri- INE, 2012. Medio Ambiente, Informe Anual 2010 (Perı´odo De guez & J. Baeza, 1999. Chronic toxicity and physico- Informacio´n: 2006–2010). Instituto Nacional De Estadı´st- chemical characteristics of the receiving water of pulp mill icas, Gobierno De Chile, Chile. effluents locate in the Biobio river basin (Central Chile). Iriarte, J., G. Lobos & F. Jaksic, 2005. Invasive vertebrate Ecotoxicology and Environmental 2: 67–74. species in Chile and their control and monitoring by gov- Garreaud, R. & M. Falvey, 2009. The coastal winds off western ernmental agencies. Revista Chilena de Historia Natural subtropical South America in future climate scenarios. 78: 143–151. International Journal of Climatology 29: 543–554. Jara, C. G., E. H. Rudolph & E. R. Gonza´lez, 2006. Estado de Gonza´lez, E., 2003. The freshwater amphipods Hyalella Smith, conocimiento de los malacostra´ceos dulceacuı´colas de 1874 in Chile (Crustacea: ). Revista Chilena de Chile. Gayana (Concepcio´n) 70: 40–49. Historia Natural 76(4): 623–637. Jerez, V. & J. Moroni, 2006. Diversidad de Coleo´pteros acua´t- Grosso, L. E. & M. Peralta, 2009. A new icos en Chile. Gayana (Concepcio´n) 70: 72–81. (Crustacea Amphipoda) in the burrow of Virilastacus ru- Jerez, V. & P. Bocaz, 2006. Aulonodera darwini Champion 1918, capihuelensis (Parastacidae) and surrounding peat bogs. a Leaf Litter Flea Beetle from Nothofagus Forest, Chile. Rudolphia macrodactylus n. gen., n. sp. from southern Redescription and Biological Remarks (Coleoptera: South America. Zootaxa 2243: 40–52. Chrysomelidae). The Coleopterists Bulletin 60(3): 217–223. Habit, E. & N. Ortı´z, 2009. Composicio´n, distribucio´nyconser- Jofre´, C. & M. Me´ndez, 2011. The preservation of evolutionary vacio´n de los peces de agua dulce de la cuenca del rı´oItata.In value of Chilean amphibians in protected areas. In Figue- Parra, O, J.C. Castilla, H. Romero, R. Quin˜ones & A. Ca- roa, E. (ed), Biodiversity Conservation in the : aman˜o(eds),Lacuencahidrogra´fica del rı´o Itata. Editorial Lessons and Policy Recommendations. FEN-Universidad Universidad de Concepcio´n, Concepcio´n, Chile: 127–141. de Chile, Santiago de Chile, Chile: 81–112. Habit, E., P. Victoriano & A. Rodrı´guez-Ruiz, 2003. Spatial and Jordan, T. E. & M. Gardeweg, 1989. Tectonic Evolution of the temporal variations of the fish assemblage of a low order Late Cenozoic Central Andes (20°–33°S). In Ben-Avra- fluvial system from central-south of Chile. Revista Chilena ham, Z. (ed), The Evolution of the Pacific Ocean Margins. de Historia Natural 76: 3–14. Oxford University Press, New York: 193–206. Habit, E., B. Dyer & I. Vila, 2006a. Estado de conocimiento de Lanfranco, D., 1982. Presencia de Archiperla willinki en Chile. los peces dulceacuı´colas de Chile. Gayana (Concepcio´n) Anales del Instituto patagonico 13: 207–209. 70: 100–113. Luebert, F. & P. Pliscoff, 2004. Clasificacio´n de pisos de veg- Habit, E., M. C. Belk, R. C. Tuckfield & O. Parra, 2006b. etacio´n y ana´lisis de representatividad ecolo´gica de a´reas Response of the fish community to human-induced changes propuestas para la proteccio´n en la ecorregio´n Valdiviana. in the Biobio River in Chile. Freshwater Biology 51: 1–11. Documento N8 10, Serie de Publicaciones WWF Chile, Habit, E., M. Belk & O. Parra, 2007. Response of the riverine Valdivia. fish community to the construction and operation of a Luebert, F. & P. Pliscoff, 2006. Sinopsis bioclima´tica y vege- diversion hydropower plant in central Chile. Aquatic tacional de Chile. Editorial Universitaria, Santiago. Conservation: Marine and Freshwater Ecosystems 17: Lundberg, J. G., L. G. Marshall, J. Guerrero, B. Horton, M. C. S. 37–49. L. Malabarba & F. Wesselingh, 1998. The stage for Neo- Hajek, E., 1991. Medio ambiente en Chile. In Hajek, E. (eds), La tropical fish diversification: a history of tropical South situacio´n ambiental en Ame´rica Latina: algunos estudios American rivers. In Malabarba, L. R., R. E. Reis, R. de casos. Centro Interdisciplinario de Estudios sobre el P. Vari, Z. M. S. Lucena & C. A. S. Lucena (eds), Phy- Desarrollo Latinoamericano, Serie Investigaciones Exter- logeny and Classification of Neotropical . EDI- nas, Buenos Aires, Argentina: 237–294. PURCRS, Porto Alegre, Brasil: 13–48. Hauenstein, E., 2006. Visio´n sino´ptica de los macro´fitos dul- Mann, G., 1964. Compendio de Zoologı´a. I Ecologı´a y Biog- ceacuı´colas de Chile. Gayana (Concepcio´n) 70: 16–23. eografı´a. Centro de Investigaciones Zoolo´gicas, Universi- Holzenthal, R., 2004. Three new species of Chilean caddisflies dad de Chile, Chile. (Insecta: Trichoptera). Proceedings of the Entomological Mcphee, J., E. Rubio, R. Meza, A. Ayala, X. Vargas, 2010. Society of Washington 106(1): 110–117. Andinas de Chile central: aplicacio´n a las cuencas de Holzenthal, R. W., 1986. Studies in Neotropical Leptoceridae Maule alto y Laja. Sociedad Chilena de Ingenierı´a Hid- (Trichoptera), VI: Inmature stages of Hudsonema flaminii ra´ulica. XIX Congreso Chileno de Hidra´ulica. Navas and the evolution and historical biogeography of Miller, A., 1976. The climate of Chile. In Schwedtfeger, W. Hudsonemini (Triplectidinae). Proceedings of the Ento- (ed.), World survey of climatology. Elsevier, Amsterdam: mological Society of Washington 88: 268–279. 107–134. Holzenthal, R. W., 1988. Systematics of Neotropical Triplec- Myers, N., R. A. Mittermeier, C. G. Mittermeier, G. A. B. da tides (Trichoptera: Leptoceridae). Annals Entomological Fonseca & J. Kent, 2000. Biodiversity hotspots for con- Society of America 81: 187–208. servation priorities. Nature 403: 853–858. 123 288 Hydrobiologia (2013) 719:269–289

Mun˜oz, M., F. Fuentes, M. Vergara, L. Aguirre, J. O. Nystrom, central). In Faranda, F. & O. Parra (eds), Monografı´as G. Feraud & A. Demant, 2006. Abanico East Formation: Cientı´ficas N8 12: Evaluacio´n de la calidad del agua y petrology and geochemistry of volcanic rocks behind the ecologı´a del sistema limne´tico y fluvial del rı´o Biobı´o. Cenozoic arc front in the Andean Cordillera, central Chile Editorial Universidad de Concepcio´n, Concepcio´n, Chile: (33°50’ S). Revista Geologica De Chile 33: 109–140. 15–160. Niemeyer, H. & P. Cereceda, 1989.Geografı´a de Chile. Tomo Parra, O., M. Angulo, A. Acun˜a, M. Vighi, R. Vismara, F. Fa- VIII: HIDROGRAFIA. Instituto geogra´fico militar, Santi- randa & S. Munari, 1993b. Propuesta de programa de ago de Chile, Chile: 320 pp. monitoreo de la calidad del agua del sistema rı´o Biobı´o. In Ola´h, J. & K. A. Johanson, 2010. Description of 33 new species Faranda, F. & O. Parra (eds), Monografı´as Cientı´ficas N8 of Calamoceratidae, Molannidae, Odontoceridae and 12: Evaluacio´n de la calidad del agua y ecologı´a del sis- Philorheithridae (Trichoptera), with detailed presentation tema limne´tico y fluvial del rı´o Biobı´o. Editorial Univers- of their cephalic setal warts and grooves. Zootaxa 2457: idad de Concepcio´n, Concepcio´n, Chile: 397–409. 1–128. Parra, O., C. Valdovinos, E. Habi & R. Figueroa, 2009. Long Olmos, V. & G. Mun˜oz, 2006. Estado de conocimiento de los term study of the Biobı´o River: a complex multiuse fluvial para´sitos Eumetazoos de organismos Dulceacuı´colas de system in Chile. Proceedings 7th International Symposium Chile. Gayana (Concepcio´n) 70: 122–139. on Ecohydraulics, Chile: 23. Orellana, M. C., 2006. Estado de conocimiento de los Briozoos Pauls, S. U., R. J. Blahnik, X. Zhou, C. T. Wardwell & R. dulceacuı´colas de Chile. Gayana (Concepcio´n) 70: 96–99. W. Holzenthal, 2010. DNA barcode data confirm new Orrego, R., G. Moraga-Cid, M. Gonzalez, R. Barra, A. Valen- species and reveal cryptic diversity in Chilean Smicridea zuela, A. Burgos & J. E. Gavilan, 2005. Reproductive, (Smicridea) (Trichoptera: Hydropsychidae). Journal of the physiological, and biochemical responses in juvenile North American Benthological Society 29: 1058–1074. female rainbow trout (Oncorhynchus mykiss) exposed to Puntı´, T., 2007. Ecology of Chironomidae communities in sediment from pulp and paper mill industrial discharge mediterranean reference streams. PhD Thesis, University areas. Environmental Toxicology and Chemistry 24: of Barcelona: 151 pp. 1935–1943. Quezada-Romegialli, C., M. Fuentes & D. Veliz, 2010. Com- Orrego, R., A. Burgos, G. Moraga-Cid, B. Inzunza, M. Gonz- parative population genetics of Basilichthys microlepido- alez, A. Valenzuela, R. Barra & J. E. Gavilan, 2006. Effects tus (: Atherinopsidae) and Trichomycterus of pulp and paper mill discharges on caged rainbow trout areolatus (Siluriformes: Trichomycteridae) in north central (Oncorhynchus mykiss): Biomarker responses along a Chile. Environmental Biology of Fishes 89: 173–186. pollution gradient in the Biobio River, Chile. Environ- Quintanilla, V., 1983. Biogeografı´a. Instituto Geogra´fico Mili- mental Toxicology and Chemistry 25: 2280–2287. tar, Santiago Chile. Orrego, R., J. Guchardi, V. Hernandez, R. Krause, L. Roti, J. Ramı´rez, C. & C. San Martı´n, 2006. Diversidad de macro´fitos Armour, M. Ganeshakumar & D. Holdway, 2009a. Pulp chilenos. In Vila, I., A. Veloso, R. Schlatter & C. Ramı´rez and paper mill effluent treatmensts have differential (eds), Biodiversidad: macro´fitas y y vertebrados de los endocrine-disrupting effects on rainbow trout. Environ- sistemas lı´mnicos de Chile. Editorial Universitaria, Chile: mental Toxicology and Chemistry 28: 181–188. 21–72. Orrego, R., S. Adams, R. Barra, G. Chiang & J. F. Gavilan, Ramı´rez, C., M. Romero & A. Riveros, 1979. Habit, origin and 2009b. Patterns of fish community composition along a geographical distribution of Chilean vascular hydrophytes. river affected by agricultural and urban disturbance in Aquatic Botany 7(3): 241–253. south-central Chile. Hydrobiologia 620: 35–46. Rivera, P., 2006. Estado de conocimiento de las diatome´as Ortiz, J. C. & H. Dı´az-Pa´ez, 2006. Estado de Conocimiento de dulceacuı´colas de Chile. Gayana (Concepcio´n) 70: 1–7. los Anfibios de Chile. Gayana (Concepcio´n) 70: 114–121. Rodrı´guez, R., O. Matthei & M. Quezada, 1983. Flora arbo´rea Palma, A. & R. Figueroa, 2008. Latitudinal diversity of Ple- de Chile. Edit Universidad de Concepcio´n, Concepcio´n, coptera (Insecta) on local and global scales. Illiesia 4: Chile. 81–90. Rojas, F., 2005. Nueva especie de Kokiriidae (Trichoptera) en Parada, E. & S. Peredo, 1989. Contribucio´n al Conocimiento de Chile. Revista Chilena de Entomologı´a 31: 27–36. los Hyriidae chilenos. Boletı´n de la Sociedad Biologı´a Rojas, F., 2006. Estado de conocimiento de los Trichoptera de Concepcio´n 60: 173–182. Chile. Gayana (Concepcio´n) 70: 65–71. Parada, E. & S. Peredo, 1994. Un enfoque ecolo´gico evolutivo Ruiz, V. H., 1993. Ictiofauna del rı´o Andalie´n. Gayana (Zoo- de las estrategias de historia de vida de los hyriidos chile- logı´a) 57(2): 109–284. nos (Molusco: Bivalvia). Boletı´n de la Sociedad de Bio- Ruiz, V.H. & M. Marchant, 2004. Ictiofauna de aguas conti- logı´a de Concepcio´n 65: 71–80. nentales chilenas. Depto. De Zoologı´a Facultad de Cien- Parada, E. & S. Peredo, 2006. Estado de conocimiento de los cias Naturales y Oceanogra´ficas. Universidad de Bivalvos dulceacuı´colas de Chile. Gayana (Concepcio´n) Concepcio´n, Concepcio´n, Chile. 70: 82–87. Sabando, M. C., I. Vila, R. Penaloza & D. Veliz, 2011. Con- Parra, O., 2006. Estado de conocimiento de las algas dul- trasting population genetic structure of two widespread ceacuı´colas de Chile (Excepto Bacillariophyceae). Gayana aquatic insects in the Chilean high-slope rivers. Marine and (Concepcio´n) 70: 8–15. Freshwater Research 62: 1–10. Parra, O., L. Chuecas, H. Campos, M. Vighi & R. Vismara, Schmid, F., 1955. Contribution a la connaissance des Trichop- 1993a. Caracterizacio´nfı´sica y quı´mica y evaluacio´ndela teres neotropicaux. Memories Societe´ Vaud Sciences Na- calidad para usos mu´ltiple del agua del rı´o Biobı´o (Chile turelles 11: 117–160. 123 Hydrobiologia (2013) 719:269–289 289

Schmid, F., 1957. Contribution a l’etude des Trichopteres neo- Valdovinos, C., 2008. Invertebrados dulceacuı´colas. In Rovira tropicaux II. Beitrage zur Entomologie 7: 379–398. J., J. Ugalde & M. Stutzin (eds), Biodiversidad de Chile. Schmid, F., 1958. Contribution a` l’etude des Trichopte`res neo- Patrimonios y desafı´os. CONAMA, Chile: 202–223. tropicaux III. Mitteilungen aus dem Zoologischen Museum Valdovinos, C., G. Mancilla & R. Figueroa, 2009. Biodiversidad in Berlı´n 34(1): 183–217. dulceacuı´cola de Chile Central. Macroinvertebrados bent- Schmid, F., 1959. Contribution a` l’etude des Trichopte`res neo- o´nicos del rı´o Itata. In Parra, O., J. C.Castilla, H. Romero, tropicaux IV. Acta Zoolo´gica Lilloana 17: 477–483. R. Quin˜ones, & A. Caman˜o (eds), La cuenca hidrogra´fica Schmid, F., 1964. Contribution a` l’etude des Trichopte`res neo- del rı´o Itata: Aportes cientı´ficos para su gestio´n sustentable. tropicaux V. Tijdschr Entomologie 107: 307–339. Editorial Universidad de Concepcio´n, Concepcio´n, Chile: Schmid, F., 1989. Les Hydrobiosides (Trichoptera: Annulipal- 111–125. pia). Bulletin Institut Royal Sciences Naturelles Belgique Vera, A. & A. Camousseight, 2006. Estado de conocimiento de 59: 1–154. los Pleco´pteros de Chile. Gayana (Concepcio´n) 70: 57–64. Schulz, J. J., L. Cayuela, C. Echeverria, J. Salas & J. M. R. Victoriano, P. F., A. L. Gonza´lez & R. Schlatter, 2006. Estado Benayas, 2010. Monitoring land cover change of the dry- de conocimiento de las aves de aguas continentales de land forest landscape of Central Chile (1975–2008). Chile. Gayana (Concepcio´n) 70: 140–162. Applied Geography 30: 436–447. Vidal, M. A., E. Soto & A. Veloso, 2009. Biogeography of Smith-Ramı´rez, C., 2004. The Chilean coastal range: a vanish- Chilean herpetofauna: distribucional patterns of species ing center of biodiversity and endemism in South Ameri- richness and endemism. Ammphibia-Reptilia 30(2): can temperate rainforests. Biodiversity and Conservation 151–171. 13: 373–393. Vighi, M., O. Parra, C. Valdovinos & R. Urrutia, 1993. Mapa de Smith-Ramı´rez, C., J. J. Armesto & C. Valdovinos, 2005. His- calidad del agua del rı´o Biobı´o y susafluentes principales. toria, biodiversidad y ecologı´a de los bosques costeros de In Faranda, F. & O. Parra (eds), Monografı´as Cientı´ficas Chile. Editorial Universitaria, Santiago de Chile, Chile. N°12: Evaluacio´n de la calidad del agua y ecologı´a del Soto, D. & L. R. Zun˜iga, 1991. Zooplancton assemblages of sistema limne´tico y fluvial del rı´o Biobı´o. Editorial Uni- Chilean temperate lakes: a comparison with North Amer- versidad de Concepcio´n, Concepcio´n, Chile: 1–14. ican Counterparts. Revista Chilena de Historia Natural 64: Vila, I. & R. Pardo, 2008. Peces lı´mnicos. In Rovira J., J. Ugalde 569–581. & M. Stutzin (eds), Biodiversidad de Chile. Patrimonios y Soto, D., I. Arismendi, J. Gonza´lez, J. Santana, F. Jara, C. Jara, desafı´os. CONAMA, Chile: 223–256. E. Guzma´n & A. Lara, 2006. Southern Chile, trout and Vila, I., R. Pardo, B. Dyer & E. Habit, 2006. Peces lı´mnicos: salmon country: invasion patterns and threats for native diversidad, origen y estado de conservacio´n. In Vila, I., A. species. Revista Chilena de Historia Natural 79: 97–117. Veloso, R. Schlatter & C. Ramı´rez (eds), Macro´fitas y Stehr, A., M. Aguayo, O. Link, O. Parra, F. Romero & H. Al- vertebrados de los sistemas lı´mnicos de Chile. Editorial cayaga, 2010. Modelling the hydrologic response of a Universitaria, Santiago, Chile: 73–102. mesoscale Andean watershed to changes in land use pat- Villagra´n, C. & L. Hinojosa, 1997. Historia de los bosques terns for environmental planning. Hydrology and Earth templados del sur de Sudame´rica II: Ana´lisis fitogeogra´fi- System Sciences 14: 1963–1977. co. Revista Chilena de Historia Natural 70: 241–267. Teneb, E. A., L. A. Cavieres, M. J. Parra & A. Marticorena, Villalobos, L., 2006. Estado de conocimiento de los crusta´ceos 2004. Geographic patterns of distribution of trees and zooplancto´nicos dulceacuı´colas de Chile. Gayana (Con- shrubs in the transitional Mediterranean-temperate cli- cepcio´n) 70: 31–39. matic zone of Chile. Revista Chilena de Historia Natural Woelfl, S., 2006. Notas sobre protozoos ciliados dulceacuı´colas 77: 51–71. de Chile. Gayana (Concepcio´n) 70: 24–26. Thrower, N. J. W. & D. E. Bradbury, 1973. The physiography of Zunino, S., C. Aliaga & P. Da Venezia, 2009. Fish communities the Mediterranean lands with special emphasis on Cali- in rivers mouths and streams of the Valparaiso Region, fornia and Chile. In Di Castri, F. & H. A. Mooney (eds), central Chile. Revista De Biologia Marina Y Oceanografia Mediterranean Type Ecosystems: Origin and Structure. 44: 123–130. Springer, New York: 37–52. Zwick, P., 2000. Phylogenetic system and zoogeography of the Valdovinos, C., 2006. Estado de conocimiento de los Gast- Plecoptera. Annual Review of Entomology 45: 709–746. ro´podos dulceacuı´colas de Chile. Gayana (Concepcio´n) 70: 88–95.

123