Recommendation for Pair-Wise Key Establishment Schemes Using

Total Page:16

File Type:pdf, Size:1020Kb

Recommendation for Pair-Wise Key Establishment Schemes Using Archived NIST Technical Series Publication The attached publication has been archived (withdrawn), and is provided solely for historical purposes. It may have been superseded by another publication (indicated below). Archived Publication Series/Number: NIST Special Publication 800-56A Title: Recommendation for Pair-Wise Key Establishment Schemes Using Discrete Logarithm Cryptography Publication Date(s): March 2006 Withdrawal Date: March 2007 Withdrawal Note: SP 800-56A is superseded in its entirety by the publication of SP 800-56A Revised (March 2007). Superseding Publication(s) The attached publication has been superseded by the following publication(s): Series/Number: NIST Special Publication 800-56A Revised Title: Recommendation for Pair-Wise Key Establishment Schemes Using Discrete Logarithm Cryptography (Revised) Author(s): Elaine Barker, Don Johnson, Miles Smid Publication Date(s): March 2007 URL/DOI: http://dx.doi.org/10.6028/NIST.SP.800-56ar Additional Information (if applicable) Contact: Computer Security Division (Information Technology Lab) Latest revision of the SP 800-56A Revision 2 (as of August 7, 2015) attached publication: Related information: http://csrc.nist.gov/groups/ST/toolkit/key_management.html Withdrawal N/A announcement (link): Date updated: ƵŐƵƐƚϳ, 2015 NIST Special Publication 800-56A Recommendation for Pair-Wise March, 2006 Key Establishment Schemes Using Discrete Logarithm Cryptography Elaine Barker, Don Johnson, and Miles Smid C O M P U T E R S E C U R I T Y NIST SP 800-56A, Recommendation for Pair-Wise Key Establishment Schemes Using Discrete Logarithm Cryptography March, 2006 Abstract This Recommendation specifies key establishment schemes using discrete logarithm cryptography, based on standards developed by the Accredited Standards Committee (ASC) X9, Inc.: ANS X9.42 (Agreement of Symmetric Keys Using Discrete Logarithm Cryptography) and ANS X9.63 (Key Agreement and Key Transport Using Elliptic Curve Cryptography). KEY WORDS: assurances; Diffie-Hellman; elliptic curve cryptography; finite field cryptography; key agreement; key confirmation; key derivation; key establishment; key management; key recovery; key transport; MQV. 2 NIST SP 800-56A, Recommendation for Pair-Wise Key Establishment Schemes Using Discrete Logarithm Cryptography March, 2006 Acknowledgements The National Institute of Standards and Technology (NIST) gratefully acknowledges and appreciates contributions by Rich Davis, Mike Hopper and Laurie Law from the National Security Agency concerning the many security issues associated with this Recommendation. NIST also thanks the many contributions by the public and private sectors whose thoughtful and constructive comments improved the quality and usefulness of this publication. 3 NIST SP 800-56A, Recommendation for Pair-Wise Key Establishment Schemes Using Discrete Logarithm Cryptography March, 2006 Authority This document has been developed by the National Institute of Standards and Technology (NIST) in furtherance of its statutory responsibilities under the Federal Information Security Management Act (FISMA) of 2002, Public Law 107-347. NIST is responsible for developing standards and guidelines, including minimum requirements, for providing adequate information security for all agency operations and assets, but such standards and guidelines shall not apply to national security systems. This guideline is consistent with the requirements of the Office of Management and Budget (OMB) Circular A-130, Section 8b(3), Securing Agency Information Systems, as analyzed in A-130, Appendix IV: Analysis of Key Sections. Supplemental information is provided in A-130, Appendix III. This Recommendation has been prepared for use by federal agencies. It may be used by nongovernmental organizations on a voluntary basis and is not subject to copyright. (Attribution would be appreciated by NIST.) Nothing in this document should be taken to contradict standards and guidelines made mandatory and binding on federal agencies by the Secretary of Commerce under statutory authority. Nor should these guidelines be interpreted as altering or superseding the existing authorities of the Secretary of Commerce, Director of the OMB, or any other federal official. Conformance testing for implementations of key establishment schemes, as specified in this Recommendation, will be conducted within the framework of the Cryptographic Module Validation Program (CMVP), a joint effort of NIST and the Communications Security Establishment of the Government of Canada. An implementation of a key establishment scheme must adhere to the requirements in this Recommendation in order to be validated under the CMVP. The requirements of this Recommendation are indicated by the word “shall.” 4 NIST SP 800-56A, Recommendation for Pair-Wise Key Establishment Schemes Using Discrete Logarithm Cryptography March, 2006 Table of Contents 1. Introduction............................................................................................................ 10 2. Scope and Purpose ............................................................................................... 11 3. Definitions, Symbols and Abbreviations ............................................................. 12 3.1 Definitions...................................................................................................................... 12 3.2 Symbols and Abbreviations ........................................................................................... 16 4. Key Establishment Schemes Overview ............................................................... 20 4.1 Key Agreement Preparations by an Owner ................................................................... 21 4.2 Key Agreement Process................................................................................................. 24 4.3 DLC-based Key Transport Process................................................................................ 25 5. Cryptographic Elements ....................................................................................... 26 5.1 Cryptographic Hash Functions ...................................................................................... 26 5.2 Message Authentication Code (MAC) Algorithm......................................................... 26 5.2.1 MacTag Computation ........................................................................................ 26 5.2.2 MacTag Checking.............................................................................................. 27 5.2.3 Implementation Validation Message ................................................................. 27 5.3 Random Number Generation ......................................................................................... 27 5.4 Nonces........................................................................................................................... 27 5.5 Domain Parameters........................................................................................................ 28 5.5.1 Domain Parameter Generation........................................................................... 28 5.5.1.1 FFC Domain Parameter Generation.................................................... 28 5.5.1.2 ECC Domain Parameter Generation................................................... 29 5.5.2 Assurances of Domain Parameter Validity........................................................ 30 5.5.3 Domain Parameter Management........................................................................ 31 5.6 Private and Public Keys................................................................................................. 31 5.6.1 Private/Public Key Pair Generation................................................................... 31 5 NIST SP 800-56A, Recommendation for Pair-Wise Key Establishment Schemes Using Discrete Logarithm Cryptography March, 2006 5.6.1.1 FFC Key Pair Generation.................................................................... 31 5.6.1.2 ECC Key Pair Generation................................................................... 32 5.6.2 Assurances of the Arithmetic Validity of a Public Key..................................... 32 5.6.2.1 Owner Assurances of Static Public Key Validity............................... 32 5.6.2.2 Recipient Assurances of Static Public Key Validity........................... 33 5.6.2.3 Recipient Assurances of Ephemeral Public Key Validity .................. 33 5.6.2.4 FFC Full Public Key Validation Routine............................................ 34 5.6.2.5 ECC Full Public Key Validation Routine........................................... 34 5.6.2.6 ECC Partial Public Key Validation Routine....................................... 35 5.6.3 Assurances of the Possession of a Static Private Key........................................ 36 5.6.3.1 Owner Assurances of Possession of a Static Private Key................... 37 5.6.3.2 Recipient Assurance of Owner’s Possession of a Static Private Key. 38 5.6.3.2.1 Recipient Obtains Assurance through a Trusted Third Party ............. 38 5.6.3.2.2 Recipient Obtains Assurance Directly from the Claimed Owner....... 38 5.6.4 Key Pair Management........................................................................................ 39 5.6.4.1 Common Requirements on Static and Ephemeral Key Pairs.............. 39 5.6.4.2 Specific Requirements on Static Key Pairs ........................................ 40 5.6.4.3 Specific Requirements on Ephemeral Key Pairs ...............................
Recommended publications
  • Bilinear Map Cryptography from Progressively Weaker Assumptions
    Full version of an extended abstract published in Proceedings of CT-RSA 2013, Springer-Verlag, Feb. 2013. Available from the IACR Cryptology ePrint Archive as Report 2012/687. The k-BDH Assumption Family: Bilinear Map Cryptography from Progressively Weaker Assumptions Karyn Benson, Hovav Shacham ∗ Brent Watersy University of California, San Diego University of Texas at Austin fkbenson, [email protected] [email protected] February 4, 2013 Abstract Over the past decade bilinear maps have been used to build a large variety of cryptosystems. In addition to new functionality, we have concurrently seen the emergence of many strong assump- tions. In this work, we explore how to build bilinear map cryptosystems under progressively weaker assumptions. We propose k-BDH, a new family of progressively weaker assumptions that generalizes the de- cisional bilinear Diffie-Hellman (DBDH) assumption. We give evidence in the generic group model that each assumption in our family is strictly weaker than the assumptions before it. DBDH has been used for proving many schemes secure, notably identity-based and functional encryption schemes; we expect that our k-BDH will lead to generalizations of many such schemes. To illustrate the usefulness of our k-BDH family, we construct a family of selectively secure Identity-Based Encryption (IBE) systems based on it. Our system can be viewed as a generalization of the Boneh-Boyen IBE, however, the construction and proof require new ideas to fit the family. We then extend our methods to produces hierarchical IBEs and CCA security; and give a fully secure variant. In addition, we discuss the opportunities and challenges of building new systems under our weaker assumption family.
    [Show full text]
  • Circuit-Extension Handshakes for Tor Achieving Forward Secrecy in a Quantum World
    Proceedings on Privacy Enhancing Technologies ; 2016 (4):219–236 John M. Schanck*, William Whyte, and Zhenfei Zhang Circuit-extension handshakes for Tor achieving forward secrecy in a quantum world Abstract: We propose a circuit extension handshake for 2. Anonymity: Some one-way authenticated key ex- Tor that is forward secure against adversaries who gain change protocols, such as ntor [13], guarantee that quantum computing capabilities after session negotia- the unauthenticated peer does not reveal their iden- tion. In doing so, we refine the notion of an authen- tity just by participating in the protocol. Such pro- ticated and confidential channel establishment (ACCE) tocols are deemed one-way anonymous. protocol and define pre-quantum, transitional, and post- 3. Forward Secrecy: A protocol provides forward quantum ACCE security. These new definitions reflect secrecy if the compromise of a party’s long-term the types of adversaries that a protocol might be de- key material does not affect the secrecy of session signed to resist. We prove that, with some small mod- keys negotiated prior to the compromise. Forward ifications, the currently deployed Tor circuit extension secrecy is typically achieved by mixing long-term handshake, ntor, provides pre-quantum ACCE security. key material with ephemeral keys that are discarded We then prove that our new protocol, when instantiated as soon as the session has been established. with a post-quantum key encapsulation mechanism, Forward secret protocols are a particularly effective tool achieves the stronger notion of transitional ACCE se- for resisting mass surveillance as they resist a broad curity. Finally, we instantiate our protocol with NTRU- class of harvest-then-decrypt attacks.
    [Show full text]
  • A Public-Key Cryptosystem Based on Discrete Logarithm Problem Over Finite Fields 퐅퐩퐧
    IOSR Journal of Mathematics (IOSR-JM) e-ISSN: 2278-5728, p-ISSN: 2319-765X. Volume 11, Issue 1 Ver. III (Jan - Feb. 2015), PP 01-03 www.iosrjournals.org A Public-Key Cryptosystem Based On Discrete Logarithm Problem over Finite Fields 퐅퐩퐧 Saju M I1, Lilly P L2 1Assistant Professor, Department of Mathematics, St. Thomas’ College, Thrissur, India 2Associate professor, Department of Mathematics, St. Joseph’s College, Irinjalakuda, India Abstract: One of the classical problems in mathematics is the Discrete Logarithm Problem (DLP).The difficulty and complexity for solving DLP is used in most of the cryptosystems. In this paper we design a public key system based on the ring of polynomials over the field 퐹푝 is developed. The security of the system is based on the difficulty of finding discrete logarithms over the function field 퐹푝푛 with suitable prime p and sufficiently large n. The presented system has all features of ordinary public key cryptosystem. Keywords: Discrete logarithm problem, Function Field, Polynomials over finite fields, Primitive polynomial, Public key cryptosystem. I. Introduction For the construction of a public key cryptosystem, we need a finite extension field Fpn overFp. In our paper [1] we design a public key cryptosystem based on discrete logarithm problem over the field F2. Here, for increasing the complexity and difficulty for solving DLP, we made a proper additional modification in the system. A cryptosystem for message transmission means a map from units of ordinary text called plaintext message units to units of coded text called cipher text message units. The face of cryptography was radically altered when Diffie and Hellman invented an entirely new type of cryptography, called public key [Diffie and Hellman 1976][2].
    [Show full text]
  • Implementation and Performance Evaluation of XTR Over Wireless Network
    Implementation and Performance Evaluation of XTR over Wireless Network By Basem Shihada [email protected] Dept. of Computer Science 200 University Avenue West Waterloo, Ontario, Canada (519) 888-4567 ext. 6238 CS 887 Final Project 19th of April 2002 Implementation and Performance Evaluation of XTR over Wireless Network 1. Abstract Wireless systems require reliable data transmission, large bandwidth and maximum data security. Most current implementations of wireless security algorithms perform lots of operations on the wireless device. This result in a large number of computation overhead, thus reducing the device performance. Furthermore, many current implementations do not provide a fast level of security measures such as client authentication, authorization, data validation and data encryption. XTR is an abbreviation of Efficient and Compact Subgroup Trace Representation (ECSTR). Developed by Arjen Lenstra & Eric Verheul and considered a new public key cryptographic security system that merges high level of security GF(p6) with less number of computation GF(p2). The claim here is that XTR has less communication requirements, and significant computation advantages, which indicate that XTR is suitable for the small computing devices such as, wireless devices, wireless internet, and general wireless applications. The hoping result is a more flexible and powerful secure wireless network that can be easily used for application deployment. This project presents an implementation and performance evaluation to XTR public key cryptographic system over wireless network. The goal of this project is to develop an efficient and portable secure wireless network, which perform a variety of wireless applications in a secure manner. The project literately surveys XTR mathematical and theoretical background as well as system implementation and deployment over wireless network.
    [Show full text]
  • 2.3 Diffie–Hellman Key Exchange
    2.3. Di±e{Hellman key exchange 65 q q q q q q 6 q qq q q q q q q 900 q q q q q q q qq q q q q q q q q q q q q q q q q 800 q q q qq q q q q q q q q q qq q q q q q q q q q q q 700 q q q q q q q q q q q q q q q q q q q q q q q q q q qq q 600 q q q q q q q q q q q q qq q q q q q q q q q q q q q q q q q qq q q q q q q q q 500 q qq q q q q q qq q q q q q qqq q q q q q q q q q q q q q qq q q q 400 q q q q q q q q q q q q q q q q q q q q q q q q q 300 q q q q q q q q q q q q q q q q q q qqqq qqq q q q q q q q q q q q 200 q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q qq q q qq q q 100 q q q q q q q q q q q q q q q q q q q q q q q q q 0 q - 0 30 60 90 120 150 180 210 240 270 Figure 2.2: Powers 627i mod 941 for i = 1; 2; 3;::: any group and use the group law instead of multiplication.
    [Show full text]
  • Making NTRU As Secure As Worst-Case Problems Over Ideal Lattices
    Making NTRU as Secure as Worst-Case Problems over Ideal Lattices Damien Stehlé1 and Ron Steinfeld2 1 CNRS, Laboratoire LIP (U. Lyon, CNRS, ENS Lyon, INRIA, UCBL), 46 Allée d’Italie, 69364 Lyon Cedex 07, France. [email protected] – http://perso.ens-lyon.fr/damien.stehle 2 Centre for Advanced Computing - Algorithms and Cryptography, Department of Computing, Macquarie University, NSW 2109, Australia [email protected] – http://web.science.mq.edu.au/~rons Abstract. NTRUEncrypt, proposed in 1996 by Hoffstein, Pipher and Sil- verman, is the fastest known lattice-based encryption scheme. Its mod- erate key-sizes, excellent asymptotic performance and conjectured resis- tance to quantum computers could make it a desirable alternative to fac- torisation and discrete-log based encryption schemes. However, since its introduction, doubts have regularly arisen on its security. In the present work, we show how to modify NTRUEncrypt to make it provably secure in the standard model, under the assumed quantum hardness of standard worst-case lattice problems, restricted to a family of lattices related to some cyclotomic fields. Our main contribution is to show that if the se- cret key polynomials are selected by rejection from discrete Gaussians, then the public key, which is their ratio, is statistically indistinguishable from uniform over its domain. The security then follows from the already proven hardness of the R-LWE problem. Keywords. Lattice-based cryptography, NTRU, provable security. 1 Introduction NTRUEncrypt, devised by Hoffstein, Pipher and Silverman, was first presented at the Crypto’96 rump session [14]. Although its description relies on arithmetic n over the polynomial ring Zq[x]=(x − 1) for n prime and q a small integer, it was quickly observed that breaking it could be expressed as a problem over Euclidean lattices [6].
    [Show full text]
  • The Discrete Log Problem and Elliptic Curve Cryptography
    THE DISCRETE LOG PROBLEM AND ELLIPTIC CURVE CRYPTOGRAPHY NOLAN WINKLER Abstract. In this paper, discrete log-based public-key cryptography is ex- plored. Specifically, we first examine the Discrete Log Problem over a general cyclic group and algorithms that attempt to solve it. This leads us to an in- vestigation of the security of cryptosystems based over certain specific cyclic × groups: Fp, Fp , and the cyclic subgroup generated by a point on an elliptic curve; we ultimately see the highest security comes from using E(Fp) as our group. This necessitates an introduction of elliptic curves, which is provided. Finally, we conclude with cryptographic implementation considerations. Contents 1. Introduction 2 2. Public-Key Systems Over a Cyclic Group G 3 2.1. ElGamal Messaging 3 2.2. Diffie-Hellman Key Exchanges 4 3. Security & Hardness of the Discrete Log Problem 4 4. Algorithms for Solving the Discrete Log Problem 6 4.1. General Cyclic Groups 6 × 4.2. The cyclic group Fp 9 4.3. Subgroup Generated by a Point on an Elliptic Curve 10 5. Elliptic Curves: A Better Group for Cryptography 11 5.1. Basic Theory and Group Law 11 5.2. Finding the Order 12 6. Ensuring Security 15 6.1. Special Cases and Notes 15 7. Further Reading 15 8. Acknowledgments 15 References 16 1 2 NOLAN WINKLER 1. Introduction In this paper, basic knowledge of number theory and abstract algebra is assumed. Additionally, rather than beginning from classical symmetric systems of cryptog- raphy, such as the famous Caesar or Vigni`ere ciphers, we assume a familiarity with these systems and why they have largely become obsolete on their own.
    [Show full text]
  • DRAFT Special Publication 800-56A, Recommendation for Pair-Wise Key
    The attached DRAFT document (provided here for historical purposes) has been superseded by the following publication: Publication Number: NIST Special Publication (SP) 800-56A Revision 2 Title: Recommendation for Pair-Wise Key-Establishment Schemes Using Discrete Logarithm Cryptography Publication Date: 05/13/2013 • Final Publication: https://doi.org/10.6028/NIST.SP.800-56Ar2 (which links to http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-56Ar2.pdf). • Information on other NIST Computer Security Division publications and programs can be found at: http://csrc.nist.gov/ The following information was posted with the attached DRAFT document: Aug 20, 2012 SP 800-56 A Rev.1 DRAFT Recommendation for Pair-Wise Key-Establishment Schemes Using Discrete Logarithm Cryptography (Draft Revision) NIST announces the release of draft revision of Special Publication 800-56A, Recommendation for Pair-Wise Key Establishment Schemes Using Discrete Logarithm Cryptography. SP 800-56A specifies key-establishment schemes based on the discrete logarithm problem over finite fields and elliptic curves, including several variations of Diffie-Hellman and MQV key establishment schemes. The revision is made on the March 2007 version. The main changes are listed in Appendix D. Please submit comments to 56A2012rev-comments @ nist.gov with "Comments on SP 800-56A (Revision)" in the subject line. The comment period closes on October 31, 2012. NIST Special Publication 800-56A Recommendation for Pair-Wise August 2012 Key-Establishment Schemes Using Discrete Logarithm Cryptography (Draft Revision) Elaine Barker, Lily Chen, Miles Smid and Allen Roginsky C O M P U T E R S E C U R I T Y Abstract This Recommendation specifies key-establishment schemes based on the discrete logarithm problem over finite fields and elliptic curves, including several variations of Diffie-Hellman and MQV key establishment schemes.
    [Show full text]
  • Guidelines on Cryptographic Algorithms Usage and Key Management
    EPC342-08 Version 7.0 4 November 2017 [X] Public – [ ] Internal Use – [ ] Confidential – [ ] Strictest Confidence Distribution: Publicly available GUIDELINES ON CRYPTOGRAPHIC ALGORITHMS USAGE AND KEY MANAGEMENT Abstract This document defines guidelines on cryptographic algorithms usage and key management. Document Reference EPC342-08 Issue Version 7.0 Date of Issue 22 November 2017 Reason for Issue Maintenance of document Produced by EPC Authorised by EPC Document History This document was first produced by ECBS as TR 406, with its latest ECBS version published in September 2005. The document has been handed over to the EPC which is responsible for its yearly maintenance. DISCLAIMER: Whilst the European Payments Council (EPC) has used its best endeavours to make sure that all the information, data, documentation (including references) and other material in the present document are accurate and complete, it does not accept liability for any errors or omissions. EPC will not be liable for any claims or losses of any nature arising directly or indirectly from use of the information, data, documentation or other material in the present document. Conseil Européen des Paiements AISBL– Cours Saint-Michel 30A – B 1040 Brussels Tel: +32 2 733 35 33 – Fax: +32 2 736 49 88 Enterprise N° 0873.268.927 – www.epc-cep.eu – [email protected] © 2016 Copyright European Payments Council (EPC) AISBL: Reproduction for non-commercial purposes is authorised, with acknowledgement of the source Table of Content MANAGEMENT SUMMARY ............................................................. 5 1 INTRODUCTION .................................................................... 7 1.1 Scope of the document ...................................................... 7 1.2 Document structure .......................................................... 7 1.3 Recommendations ............................................................ 8 1.4 Implementation best practices .........................................
    [Show full text]
  • Sieve Algorithms for the Discrete Logarithm in Medium Characteristic Finite Fields Laurent Grémy
    Sieve algorithms for the discrete logarithm in medium characteristic finite fields Laurent Grémy To cite this version: Laurent Grémy. Sieve algorithms for the discrete logarithm in medium characteristic finite fields. Cryptography and Security [cs.CR]. Université de Lorraine, 2017. English. NNT : 2017LORR0141. tel-01647623 HAL Id: tel-01647623 https://tel.archives-ouvertes.fr/tel-01647623 Submitted on 24 Nov 2017 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. AVERTISSEMENT Ce document est le fruit d'un long travail approuvé par le jury de soutenance et mis à disposition de l'ensemble de la communauté universitaire élargie. Il est soumis à la propriété intellectuelle de l'auteur. Ceci implique une obligation de citation et de référencement lors de l’utilisation de ce document. D'autre part, toute contrefaçon, plagiat, reproduction illicite encourt une poursuite pénale. Contact : [email protected] LIENS Code de la Propriété Intellectuelle. articles L 122. 4 Code de la Propriété Intellectuelle. articles L 335.2- L 335.10 http://www.cfcopies.com/V2/leg/leg_droi.php
    [Show full text]
  • Comparing the Difficulty of Factorization and Discrete Logarithm: a 240-Digit Experiment⋆
    Comparing the Difficulty of Factorization and Discrete Logarithm: a 240-digit Experiment? Fabrice Boudot1, Pierrick Gaudry2, Aurore Guillevic2[0000−0002−0824−7273], Nadia Heninger3, Emmanuel Thomé2, and Paul Zimmermann2[0000−0003−0718−4458] 1 Université de Limoges, XLIM, UMR 7252, F-87000 Limoges, France 2 Université de Lorraine, CNRS, Inria, LORIA, F-54000 Nancy, France 3 University of California, San Diego, USA In memory of Peter L. Montgomery Abstract. We report on two new records: the factorization of RSA-240, a 795-bit number, and a discrete logarithm computation over a 795-bit prime field. Previous records were the factorization of RSA-768 in 2009 and a 768-bit discrete logarithm computation in 2016. Our two computations at the 795-bit level were done using the same hardware and software, and show that computing a discrete logarithm is not much harder than a factorization of the same size. Moreover, thanks to algorithmic variants and well-chosen parameters, our computations were significantly less expensive than anticipated based on previous records. The last page of this paper also reports on the factorization of RSA-250. 1 Introduction The Diffie-Hellman protocol over finite fields and the RSA cryptosystem were the first practical building blocks of public-key cryptography. Since then, several other cryptographic primitives have entered the landscape, and a significant amount of research has been put into the development, standardization, cryptanalysis, and optimization of implementations for a large number of cryptographic primitives. Yet the prevalence of RSA and finite field Diffie-Hellman is still a fact: between November 11, 2019 and December 11, 2019, the ICSI Certificate Notary [21] observed that 90% of the TLS certificates used RSA signatures, and 7% of the TLS connections used RSA for key exchange.
    [Show full text]
  • Discrete Logarithm Based Protocols
    Discrete Logarithm Based Protocols Patrick Horster Hans- Joachim Knobloch University of Karlsruhe European Institute for System Security Am Fasanengarten 5 D-7500 Karlsruhe 1 FR Germany Abstract The Exponential Security System (TESS) developed at the European Institute for System Security is the result of an attempt to increase the security in heteroge- nous computer networks. In this paper we present the cryptographic protocols in the kernel of TESS. We show how they can be used to implement access control, authentication, confiden- tiality protection, key exchange, digital signatures and distributed network security management. We also look at the compatibility of TESS with existing standards, like the X.509 Directory Authentication Framework, and compare it to established systems like Kerberos. A comparison of TESS with the non-electronic “paper”-world of authentication and data exchange shows strong parallels. Finally we give a short overview of the current state of development and avail- ability of different TESS components. 1 Introduction During the last years a workinggroup at the European Institute for System Security devel- oped the network security system SELANE (Skure Local Area Network Environment) [BausSO]. The main part of the system is a family of cryptographic protocols based on the discrete logarithm problem. After the possible scope of applications of these protocols had been extended far beyond the originally anticipated area of LAN security, a larger system called TESS (The Exponential Security System) was formed. SELANE is the part of TESS dealing with network security. Another part is an electronic signature system named EES (Exponential Electronic Signature). D.W. Davies (Ed.): Advances in Cryptology - EUROCRYPT ’91, LNCS 547, pp.
    [Show full text]