Destruction Or Potentiation of Different Prions Catalyzed by Similar Hsp104 Remodeling Activities
Molecular Cell 23, 425–438, August 4, 2006 ª2006 Elsevier Inc. DOI 10.1016/j.molcel.2006.05.042 Destruction or Potentiation of Different Prions Catalyzed by Similar Hsp104 Remodeling Activities James Shorter1 and Susan Lindquist1,* transitions of prions and amyloids are profoundly 1 Whitehead Institute for Biomedical Research modulated by molecular chaperones and protein- 9 Cambridge Center remodeling factors (Tuite and Cox, 2003; Muchowski Cambridge, Massachusetts 02142 and Wacker, 2005). However, despite intense scrutiny from many cutting-edge laboratories worldwide, there is still not yet a single example in which the mechanistic Summary interplay between chaperones/protein-remodeling fac- tors and amyloid/prion biochemistry and biology is Yeast prions are protein-based genetic elements that well understood. Here, we address these questions for self-perpetuate changes in protein conformation and two prions of Saccharomyces cerevisiae: [PSI+], whose function. A protein-remodeling factor, Hsp104, con- protein determinant is Sup35, and [URE3], whose pro- trols the inheritance of several yeast prions, including tein determinant is Ure2. Following standard nomencla- those formed by Sup35 and Ure2. Perplexingly, dele- ture, italicized capital letters denote dominant genetic tion of Hsp104 eliminates Sup35 and Ure2 prions, elements, and brackets indicate a non-Mendelian mode whereas overexpression of Hsp104 purges cells of of inheritance. Both properties stem from the ability of Sup35 prions, but not Ure2 prions. Here, we used prions to store and transmit biological information via pure components to dissect how Hsp104 regulates alternative, self-perpetuating structures and functions. prion formation, growth, and division. For both The genetic trait conferred by [PSI+] is due to the con- Sup35 and Ure2, Hsp104 catalyzes de novo prion nu- version of a translation termination factor, Sup35, to cleation from soluble, native protein.
[Show full text]