Multipath & Fading
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Multi-Antenna Non-Line-Of-Sight Identification Techniques for Target Localization in Mobile Ad-Hoc Networks
Michigan Technological University Digital Commons @ Michigan Tech Dissertations, Master's Theses and Master's Dissertations, Master's Theses and Master's Reports - Open Reports 2011 Multi-antenna non-line-of-sight identification techniques for target localization in mobile ad-hoc networks Wenjie Xu Michigan Technological University Follow this and additional works at: https://digitalcommons.mtu.edu/etds Part of the Electrical and Computer Engineering Commons Copyright 2011 Wenjie Xu Recommended Citation Xu, Wenjie, "Multi-antenna non-line-of-sight identification techniques for target localization in mobile ad- hoc networks", Dissertation, Michigan Technological University, 2011. https://doi.org/10.37099/mtu.dc.etds/58 Follow this and additional works at: https://digitalcommons.mtu.edu/etds Part of the Electrical and Computer Engineering Commons MULTI-ANTENNA NON-LINE-OF-SIGHT IDENTIFICATION TECHNIQUES FOR TARGET LOCALIZATION IN MOBILE AD-HOC NETWORKS By Wenjie Xu A DISSERTATION Submitted in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY (Electrical Engineering) MICHIGAN TECHNOLOGICAL UNIVERSITY 2011 c 2011 Wenjie Xu This dissertation, "Multi-Antenna Non-Line-Of-Sight Identification Techniques for Target Localization in Mobile Ad-hoc Networks," is hereby approved in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY IN THE FIELD OF ELEC- TRICAL ENGINEERING. Department of Electrical and Computer Engineering Signatures: Dissertation Advisor Dr. Seyed A. (Reza) Zekavat Committee Member Dr. Daniel R. Fuhrmann Committee Member Dr. Zhi (Gerry) Tian Committee Member Dr. Vladimir D. Tonchev Department Chair Dr. Daniel R. Fuhrmann Date Contents List of Figures ..................................... vii List of Tables ...................................... xi Acknowledgments ...................................xiii Abstract ........................................ xv 1 Introduction ................................... -
Radio Communications in the Digital Age
Radio Communications In the Digital Age Volume 1 HF TECHNOLOGY Edition 2 First Edition: September 1996 Second Edition: October 2005 © Harris Corporation 2005 All rights reserved Library of Congress Catalog Card Number: 96-94476 Harris Corporation, RF Communications Division Radio Communications in the Digital Age Volume One: HF Technology, Edition 2 Printed in USA © 10/05 R.O. 10K B1006A All Harris RF Communications products and systems included herein are registered trademarks of the Harris Corporation. TABLE OF CONTENTS INTRODUCTION...............................................................................1 CHAPTER 1 PRINCIPLES OF RADIO COMMUNICATIONS .....................................6 CHAPTER 2 THE IONOSPHERE AND HF RADIO PROPAGATION..........................16 CHAPTER 3 ELEMENTS IN AN HF RADIO ..........................................................24 CHAPTER 4 NOISE AND INTERFERENCE............................................................36 CHAPTER 5 HF MODEMS .................................................................................40 CHAPTER 6 AUTOMATIC LINK ESTABLISHMENT (ALE) TECHNOLOGY...............48 CHAPTER 7 DIGITAL VOICE ..............................................................................55 CHAPTER 8 DATA SYSTEMS .............................................................................59 CHAPTER 9 SECURING COMMUNICATIONS.....................................................71 CHAPTER 10 FUTURE DIRECTIONS .....................................................................77 APPENDIX A STANDARDS -
On the Cascaded Weibull Fading Channel Model
ARTICLE IN PRESS Journal of the Franklin Institute 344 (2007) 1–11 www.elsevier.com/locate/jfranklin On the cascaded Weibull fading channel model Nikos C. Sagiasa, George S. Tombrasb,Ã aInstitute of Informatics and Telecommunications, National Centre for Scientific Research– ‘‘Demokritos’’, Agia Paraskevi, GR-15310 Athens, Greece bLaboratory of Electronics, Department of Physics, University of Athens, Panepistimiopolis, Zografou, GR-15784 Athens, Greece Received 3 April 2006; received in revised form 24 June 2006; accepted 6 July 2006 Abstract A new stochastic fading channel model called cascaded Weibull fading is introduced and the associated capacity is derived in closed form. This model is generated by the product of independent, but not necessarily identically distributed, Weibull random variables (RVs). By quantifying the convergence rate of the central limit theorem as pertaining to the multiplication of Weibull distributed RVs, the statistical basis of the lognormal distribution is investigated. By performing Kolmogorov–Smirnov tests, the null hypothesis for this product to be approximated by the lognormal distribution is studied. Another null hypothesis is also examined for this product to be approximated by a Weibull distribution with properly adjusted statistical parameters. r 2006 The Franklin Institute. Published by Elsevier Ltd. All rights reserved. Keywords: Fading channels; Weibull distribution; Lognormal distribution; Cascaded fading; Shannon capacity; Kolmogorov–Smirnov test; Central limit theorem (CLT); Stochastic models; Product of variates 1. Introduction Due to the existence of a great variety of fading environments, several distributions have been proposed for channel modeling of fading envelopes under short, long, as well as mixed fading conditions [1]. Recently, attention has been given to the so-called ‘‘multiplicative’’ stochastic models. -
Analysis of Outdoor and Indoor Propagation at 15 Ghz and Millimeter Wave Frequencies in Microcellular Environment
Advances in Science, Technology and Engineering Systems Journal Vol. 3, No. 1, 160-167 (2018) ASTESJ www.astesj.com ISSN: 2415-6698 Special issue on Advancement in Engineering Technology Analysis of Outdoor and Indoor Propagation at 15 GHz and Millimeter Wave Frequencies in Microcellular Environment Muhammad Usman Sheikh*, Jukka Lempiainen Tampere University of Technology, Department of Electronics and Communications Engineering, Finland. A R T I C L E I N F O A B S T R A C T Article history: The main target of this article is to perform the multidimensional analysis of multipath Received: 26 November, 2017 propagation in an indoor and outdoor environment at higher frequencies i.e. 15 GHz, 28 Accepted: 07 January, 2018 GHz and 60 GHz, using “sAGA” a 3D ray tracing tool. A real world outdoor Line of Sight Online: 30 January, 2018 (LOS) microcellular environment from the Yokusuka city of Japan is considered for the analysis. The simulation data acquired from the 3D ray tracing tool includes the received Keywords: signal strength, power angular spectrum and the power delay profile. The different Multipath propagation propagation mechanisms were closely analyzed. The simulation results show the difference Microcellular of propagation in indoor and outdoor environment at higher frequencies and draw a special 3D ray tracing attention on the impact of diffuse scattering at 28 GHz and 60 GHz. In a simple outdoor System performance microcellular environment with a valid LOS link between the transmitter and a receiver, 5G the mean received signal at 28 GHz and 60 GHz was found around 5.7 dB and 13 dB Millimeter wave frequencies inferior in comparison with signal level at 15 GHz. -
Rayleigh Fading Multi-Antenna Channels
EURASIP Journal on Applied Signal Processing 2002:3, 316–329 c 2002 Hindawi Publishing Corporation Rayleigh Fading Multi-Antenna Channels Alex Grant Institute for Telecommunications Research, University of South Australia, Mawson Lakes Boulevard, Mawson Lakes, SA 5095, Australia Email: [email protected] Received 29 May 2001 Information theoretic properties of flat fading channels with multiple antennas are investigated. Perfect channel knowledge at the receiver is assumed. Expressions for maximum information rates and outage probabilities are derived. The advantages of transmitter channel knowledge are determined and a critical threshold is found beyond which such channel knowledge gains very little. Asymptotic expressions for the error exponent are found. For the case of transmit diversity closed form expressions for the error exponent and cutoff rate are given. The use of orthogonal modulating signals is shown to be asymptotically optimal in terms of information rate. Keywords and phrases: space-time channels, transmit diversity, information theory, error exponents. 1. INTRODUCTION receivers such as the decorrelator and MMSE filter [10]; (b) mitigation of fading effects by averaging over the spatial Wireless access to data networks such as the Internet is ex- properties of the fading process. This is a dual of interleav- pected to be an area of rapid growth for mobile communi- ing techniques which average over the temporal properties cations. High user densities will require very high speed low of the fading process; (c) increased link margins by simply delay links in order to support emerging Internet applica- collecting more of the transmitted energy at the receiver. tions such as voice and video. -
Performance Analysis of Two-Way AF Cooperative Relay Networks Over Weibull Fading Channels
Journal of Communications Vol. 8, No. 6, June 2013 Performance Analysis of Two-Way AF Cooperative Relay Networks over Weibull Fading Channels Xinjie Wang1,2, Hao Zhang1,3, T. Aaron Gulliver3, Wei Shi1 and Hongjiao Zhang1 1 Department of Electrical Engineering, Ocean University of China, Qingdao, China 2 College of Communication and Electronics, Qingdao Technological University, China 3 Department of Electrical and Computer Engineering, University of Victoria, Victoria, BC, Canada Email: [email protected]; [email protected]; [email protected]; [email protected] [email protected] Abstract—The performance of two-way amplify-and-forward and symbol error probability (SEP) for two-way AF (AF) cooperative relay networks over independent but not relaying were analyzed with perfect channel state necessarily identically distributed Weibull fading channels is information (CSI) over Rayleigh fading channels in [11], studied. Tight closed form approximations for the overall [12]. In [13], two-way relaying in mixed Rayleigh and outage probability (OOP) and the average symbol error Rician fading channels was considered. The exact probability (ASEP) are derived. The analysis is verified by expressions for OP, SEP and average sum-rate were simulation, and the accuracy is shown to be excellent, especially derived over Nakagami-m fading channels in [14]. at high signal noise ratio (SNR). According to the analysis, increasing the fading parameter, the power scaling parameter, or However, the above results only consider the performance in terms of single user outage and SER. the number of relays, can improve the system performance when the best relay is selected. Since the quality of service (QoS) requirements for bidirectional links are the same as for two-way relaying, Index Terms—Two-way relay network; Weibull fading channel; the overall outage probability (OOP) and average SEP Outage probability; Symbol error probability; Amplify and performance can be used to evaluate the performance of forward both links. -
LED TV in Some Locations) Turns the TV on and Off
Getting Started Plug & Play Connections Remote Control When you turn the TV on for the first time, a sequence of on-screen prompts will assist in configuring basic settings. Press thePOWER ✎ This remote control has Braille points on the Power, Channel, and Volume buttons and can be used by visually impaired persons. y For better picture and audio quality, connect to a digital device using an HDMI cable. y PC(D-Sub) and PC/DVI AUDIO IN input are not supported. Accessories button. Plug & Play is available only when the Input source is set to y The picture may not display normally (if at all) or the audio may not work if an external y For HDMI/DVI cable connection, you must use the HDMI IN 1(DVI) port. TV. device that uses an older version of HDMI mode is connected to the TV. If such a problem • Remote Control & Batteries (AAA x 2) • Holder-Wire stand occurs, ask the manufacturer of the external device about the HDMI version and, if out of y Connecting through the HDMI cable may not be supported depending on the PC. • Owner’s Instructions • Power Cord ✎ Connecting the power cord and antenna. (refer to date, request an upgrade. y If an HDMI to DVI cable is connected to the HDMI IN 1(DVI) port, the audio does not work. • Warranty Card / Safety Guide (Not available ‘Connections’) y Be sure to purchase a certified HDMI cable. Otherwise, the picture may not display or a y Service: Connector for service only. Displays and selects the available video connection error may occur. -
Fading Channels: Capacity, BER and Diversity
Fading Channels: Capacity, BER and Diversity Master Universitario en Ingenier´ıade Telecomunicaci´on I. Santamar´ıa Universidad de Cantabria Introduction Capacity BER Diversity Conclusions Contents Introduction Capacity BER Diversity Conclusions Fading Channels: Capacity, BER and Diversity 0/48 Introduction Capacity BER Diversity Conclusions Introduction I We have seen that the randomness of signal attenuation (fading) is the main challenge of wireless communication systems I In this lecture, we will discuss how fading affects 1. The capacity of the channel 2. The Bit Error Rate (BER) I We will also study how this channel randomness can be used or exploited to improve performance diversity ! Fading Channels: Capacity, BER and Diversity 1/48 Introduction Capacity BER Diversity Conclusions General communication system model sˆ[n] bˆ[n] b[n] s[n] Channel Channel Source Modulator Channel ⊕ Demod. Encoder Decoder Noise I The channel encoder (FEC, convolutional, turbo, LDPC ...) adds redundancy to protect the source against errors introduced by the channel I The capacity depends on the fading model of the channel (constant channel, ergodic/block fading), as well as on the channel state information (CSI) available at the Tx/Rx Let us start reviewing the Additive White Gaussian Noise (AWGN) channel: no fading Fading Channels: Capacity, BER and Diversity 2/48 Introduction Capacity BER Diversity Conclusions AWGN Channel I Let us consider a discrete-time AWGN channel y[n] = hs[n] + r[n] where r[n] is the additive white Gaussian noise, s[n] is the -
2 the Wireless Channel
CHAPTER 2 The wireless channel A good understanding of the wireless channel, its key physical parameters and the modeling issues, lays the foundation for the rest of the book. This is the goal of this chapter. A defining characteristic of the mobile wireless channel is the variations of the channel strength over time and over frequency. The variations can be roughly divided into two types (Figure 2.1): • Large-scale fading, due to path loss of signal as a function of distance and shadowing by large objects such as buildings and hills. This occurs as the mobile moves through a distance of the order of the cell size, and is typically frequency independent. • Small-scale fading, due to the constructive and destructive interference of the multiple signal paths between the transmitter and receiver. This occurs at the spatialscaleoftheorderofthecarrierwavelength,andisfrequencydependent. We will talk about both types of fading in this chapter, but with more emphasis on the latter. Large-scale fading is more relevant to issues such as cell-site planning. Small-scale multipath fading is more relevant to the design of reliable and efficient communication systems – the focus of this book. We start with the physical modeling of the wireless channel in terms of elec- tromagnetic waves. We then derive an input/output linear time-varying model for the channel, and define some important physical parameters. Finally, we introduce a few statistical models of the channel variation over time and over frequency. 2.1 Physical modeling for wireless channels Wireless channels operate through electromagnetic radiation from the trans- mitter to the receiver. -
Noise and Multipath Characteristics of Power Line Communication Channels
University of South Florida Scholar Commons Graduate Theses and Dissertations Graduate School 3-30-2010 Noise and Multipath Characteristics of Power Line Communication Channels Hasan Basri Çelebi University of South Florida Follow this and additional works at: https://scholarcommons.usf.edu/etd Part of the American Studies Commons Scholar Commons Citation Çelebi, Hasan Basri, "Noise and Multipath Characteristics of Power Line Communication Channels" (2010). Graduate Theses and Dissertations. https://scholarcommons.usf.edu/etd/1594 This Thesis is brought to you for free and open access by the Graduate School at Scholar Commons. It has been accepted for inclusion in Graduate Theses and Dissertations by an authorized administrator of Scholar Commons. For more information, please contact [email protected]. Noise and Multipath Characteristics of Power Line Communication Channels by Hasan Basri C»elebi A thesis submitted in partial ful¯llment of the requirements for the degree of Master of Science in Electrical Engineering Department of Electrical Engineering College of Engineering University of South Florida Major Professor: HÄuseyinArslan, Ph.D. Chris Ferekides, Ph.D. Paris Wiley, Ph.D. Date of Approval: Mar 30, 2010 Keywords: Power line communication, noise, cyclostationarity, multipath, impedance, attenuation °c Copyright 2010, Hasan Basri C»elebi DEDICATION This thesis is dedicated to my fianc¶eeand my parents for their constant love and support. ACKNOWLEDGEMENTS First, I would like to thank my advisor Dr. HÄuseyinArslan for his guidance, encour- agement, and continuous support throughout my M.Sc. studies. It has been a privilege to have the opportunity to do research as a member of Dr. Arslan's research group. -
Experience DTV Using LCD TV
Experiencing DTV on the LCD TV What is DTV? DTV stands for Digital Television, the latest standard and the future of television broadcasting. Unlike analog TV, DTV is broadcast digitally to transmit an audio and video signal for movie-like picture quality and surround sound. HDTV, your ticket to movie theater experiences on your home TV set, is a Digital TV (DTV) format. There are many benefits to DTV, as we will explain below. In addition, on February 1st, 2006, Congress passed a law mandating that all analog TV broadcasts must cease on February 17, 2009. At present, many television stations have begun broadcasting programs digitally. Benefits of Digital Television Improved image and sound quality Digital signals are not prone to interference during transmission, resulting in high fidelity signals all the way to the TV set for immaculate colors, incredible image sharpness and great sound. With DTV we can say goodbye to “ghosting” and “snow” on the TV screen and noise from the speakers. In addition, DTV supports high quality picture formats such as HDTV, meaning you will be able to enjoy movie-like programming right in the comfort of your own living room! Interactive programming With analog TV, we could do very little else with our TV programs other than change the channel. DTV provides us with an interactive viewing experience, a good example of which is the ability to order whichever program we please directly through the TV. That was impossible in the analog TV age. DTV Picture Quality Levels There is more than one DTV picture quality level or format. -
ABRIDGED CV : FIRST PAGE Mqhele Enock‐Hershal Dlodlo
ABRIDGED CV : FIRST PAGE Mqhele Enock‐Hershal Dlodlo (MIEEE) earned a PhD (1996) from Delft University of Technology, a master's degree in electrical engineering (1989) from Kansas State University, and two bachelor's degrees in electrical engineering (1980), mathematics and independent studies in engineering management (1983), from Geneva College, Beaver Falls, PA, USA. Profile: At University of Cape Town, Rondebosch, South Africa, he is an Associate Professor in telecommunications in the Electrical Engineering Department. His research interests are in wireless communication systems and applications. He is an active member of the Communications Research Group (CRG) in the Telkom Centre of Excellence (CoE) for Broadband Networks and Applications. His CoE projects have attracted substantial funding to the CoE from industry and THRIP since 2007. The research has led to over eighty international refereed publications, six PhD theses and numerous master's dissertations. Internationally, he is a member of the Region 8, South Africa Section, Integrated Circuits and Applications Society, and Communications Society of the IEEE. He is also a member of the Fulbright Alumni Association. Competencies: A vision‐driven academic leader with a solid record of team leadership, inauguration and building of new institutions, departments, and programmes, innovative and inventive problem‐ solving and an ability to inspire collaboration across diverse interests and modes of outlook. A results‐oriented, decisive leader that ensures buy‐in on institutional success strategies. An academic with an impeccable track record in research, teaching and responsiveness to societal needs. Experience: Between May 2008 and August 2011, he successfully led a departmental team working on an Innovation Fund (TIA) Project T70026 on low‐bandwidth video streaming, with a spin‐off company and a patent filed in South Africa, and a number of international refereed publications.