Get to Grips with /Proc and /Sysfs
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Userland Tools and Techniques for Board Bring up and Systems Integration
Userland Tools and Techniques for Board Bring Up and Systems Integration ELC 2012 HY Research LLC http://www.hy-research.com/ Feb 5, 2012 (C) 2012 HY Research LLC Agenda * Introduction * What? * Why bother with userland? * Common SoC interfaces * Typical Scenario * Kernel setup * GPIO/UART/I2C/SPI/Other * Questions HY Research LLC http://www.hy-research.com/ Feb 5, 2012 (C) 2012 HY Research LLC Introduction * SoC offer a lot of integrated functionality * System designs differ by outside parts * Most mobile systems are SoC * "CPU boards" for SoCs * Available BSP for starting * Vendor or other sources * Common Unique components * Memory (RAM) * Storage ("flash") * IO * Displays HY Research LLC * Power supplies http://www.hy-research.com/ Feb 5, 2012 (C) 2012 HY Research LLC What? * IO related items * I2C * SPI * UART * GPIO * USB HY Research LLC http://www.hy-research.com/ Feb 5, 2012 (C) 2012 HY Research LLC Why userland? * Easier for non kernel savy * Quicker turn around time * Easier to debug * Often times available already Sample userland from BSP/LSP vendor * Kernel driver is not ready HY Research LLC http://www.hy-research.com/ Feb 5, 2012 (C) 2012 HY Research LLC Common SoC interfaces Most SoC have these and more: * Pinmux * UART * GPIO * I2C * SPI * USB * Not discussed: Audio/Displays HY Research LLC http://www.hy-research.com/ Feb 5, 2012 (C) 2012 HY Research LLC Typical Scenario Custom board: * Load code/Bring up memory * Setup memory controller for part used * Load Linux * Toggle lines on board to verify Prototype based on demo/eval board: * Start with board at a shell prompt * Get newly attached hw to work HY Research LLC http://www.hy-research.com/ Feb 5, 2012 (C) 2012 HY Research LLC Kernel Setup Additions to typical configs: * Enable UART support (typically done already) * Enable I2C support along with drivers for the SoC * (CONFIG_I2C + other) * Enable SPIdev * (CONFIG_SPI + CONFIG_SPI_SPIDEV) * Add SPIDEV to board file * Enable GPIO sysfs * (CONFIG_GPIO + other + CONFIG_GPIO_SYSFS) * Enable USB * Depends on OTG vs normal, etc. -
Flexible Lustre Management
Flexible Lustre management Making less work for Admins ORNL is managed by UT-Battelle for the US Department of Energy How do we know Lustre condition today • Polling proc / sysfs files – The knocking on the door model – Parse stats, rpc info, etc for performance deviations. • Constant collection of debug logs – Heavy parsing for common problems. • The death of a node – Have to examine kdumps and /or lustre dump Origins of a new approach • Requirements for Linux kernel integration. – No more proc usage – Migration to sysfs and debugfs – Used to configure your file system. – Started in lustre 2.9 and still on going. • Two ways to configure your file system. – On MGS server run lctl conf_param … • Directly accessed proc seq_files. – On MSG server run lctl set_param –P • Originally used an upcall to lctl for configuration • Introduced in Lustre 2.4 but was broken until lustre 2.12 (LU-7004) – Configuring file system works transparently before and after sysfs migration. Changes introduced with sysfs / debugfs migration • sysfs has a one item per file rule. • Complex proc files moved to debugfs • Moving to debugfs introduced permission problems – Only debugging files should be their. – Both debugfs and procfs have scaling issues. • Moving to sysfs introduced the ability to send uevents – Item of most interest from LUG 2018 Linux Lustre client talk. – Both lctl conf_param and lctl set_param –P use this approach • lctl conf_param can set sysfs attributes without uevents. See class_modify_config() – We get life cycle events for free – udev is now involved. What do we get by using udev ? • Under the hood – uevents are collect by systemd and then processed by udev rules – /etc/udev/rules.d/99-lustre.rules – SUBSYSTEM=="lustre", ACTION=="change", ENV{PARAM}=="?*", RUN+="/usr/sbin/lctl set_param '$env{PARAM}=$env{SETTING}’” • You can create your own udev rule – http://reactivated.net/writing_udev_rules.html – /lib/udev/rules.d/* for examples – Add udev_log="debug” to /etc/udev.conf if you have problems • Using systemd for long task. -
CSE 220: Systems Programming Input and Output
CSE 220: Systems Programming Input and Output Ethan Blanton Department of Computer Science and Engineering University at Buffalo Introduction Unix I/O Standard I/O Buffering Summary References I/O Kernel Services We have seen some text I/O using the C Standard Library. printf() fgetc() … However, all I/O is built on kernel system calls. In this lecture, we’ll look at those services vs. standard I/O. © 2020 Ethan Blanton / CSE 220: Systems Programming Introduction Unix I/O Standard I/O Buffering Summary References Everything is a File These services are particularly important on Unix systems. On Unix, “everything is a file”. Many devices and services are accessed by opening device nodes. Device nodes behave like (but are not) files. Examples: /dev/null: Always readable, contains no data. Always writable, discards anything written to it. /dev/urandom: Always readable, reads a cryptographically secure stream of random data. © 2020 Ethan Blanton / CSE 220: Systems Programming Introduction Unix I/O Standard I/O Buffering Summary References File Descriptors All access to files is through file descriptors. A file descriptor is a small integer representing an open file in a particular process. There are three “standard” file descriptors: 0: standard input 1: standard output 2: standard error …sound familiar? (stdin, stdout, stderr) © 2020 Ethan Blanton / CSE 220: Systems Programming Introduction Unix I/O Standard I/O Buffering Summary References System Call Failures Kernel I/O (and most other) system calls return -1 on failure. When this happens, the global variable errno is set to a reason. Include errno.h to define errno in your code. -
ECE 598 – Advanced Operating Systems Lecture 19
ECE 598 { Advanced Operating Systems Lecture 19 Vince Weaver http://web.eece.maine.edu/~vweaver [email protected] 7 April 2016 Announcements • Homework #7 was due • Homework #8 will be posted 1 Why use FAT over ext2? • FAT simpler, easy to code • FAT supported on all major OSes • ext2 faster, more robust filename and permissions 2 btrfs • B-tree fs (similar to a binary tree, but with pages full of leaves) • overwrite filesystem (overwite on modify) vs CoW • Copy on write. When write to a file, old data not overwritten. Since old data not over-written, crash recovery better Eventually old data garbage collected • Data in extents 3 • Copy-on-write • Forest of trees: { sub-volumes { extent-allocation { checksum tree { chunk device { reloc • On-line defragmentation • On-line volume growth 4 • Built-in RAID • Transparent compression • Snapshots • Checksums on data and meta-data • De-duplication • Cloning { can make an exact snapshot of file, copy-on- write different than link, different inodles but same blocks 5 Embedded • Designed to be small, simple, read-only? • romfs { 32 byte header (magic, size, checksum,name) { Repeating files (pointer to next [0 if none]), info, size, checksum, file name, file data • cramfs 6 ZFS Advanced OS from Sun/Oracle. Similar in idea to btrfs indirect still, not extent based? 7 ReFS Resilient FS, Microsoft's answer to brtfs and zfs 8 Networked File Systems • Allow a centralized file server to export a filesystem to multiple clients. • Provide file level access, not just raw blocks (NBD) • Clustered filesystems also exist, where multiple servers work in conjunction. -
Introduction to Unix
Introduction to Unix Rob Funk <[email protected]> University Technology Services Workstation Support http://wks.uts.ohio-state.edu/ University Technology Services Course Objectives • basic background in Unix structure • knowledge of getting started • directory navigation and control • file maintenance and display commands • shells • Unix features • text processing University Technology Services Course Objectives Useful commands • working with files • system resources • printing • vi editor University Technology Services In the Introduction to UNIX document 3 • shell programming • Unix command summary tables • short Unix bibliography (also see web site) We will not, however, be covering these topics in the lecture. Numbers on slides indicate page number in book. University Technology Services History of Unix 7–8 1960s multics project (MIT, GE, AT&T) 1970s AT&T Bell Labs 1970s/80s UC Berkeley 1980s DOS imitated many Unix ideas Commercial Unix fragmentation GNU Project 1990s Linux now Unix is widespread and available from many sources, both free and commercial University Technology Services Unix Systems 7–8 SunOS/Solaris Sun Microsystems Digital Unix (Tru64) Digital/Compaq HP-UX Hewlett Packard Irix SGI UNICOS Cray NetBSD, FreeBSD UC Berkeley / the Net Linux Linus Torvalds / the Net University Technology Services Unix Philosophy • Multiuser / Multitasking • Toolbox approach • Flexibility / Freedom • Conciseness • Everything is a file • File system has places, processes have life • Designed by programmers for programmers University Technology Services -
Storage Devices, Basic File System Design
CS162 Operating Systems and Systems Programming Lecture 17 Data Storage to File Systems October 29, 2019 Prof. David Culler http://cs162.eecs.Berkeley.edu Read: A&D Ch 12, 13.1-3.2 Recall: OS Storage abstractions Key Unix I/O Design Concepts • Uniformity – everything is a file – file operations, device I/O, and interprocess communication through open, read/write, close – Allows simple composition of programs • find | grep | wc … • Open before use – Provides opportunity for access control and arbitration – Sets up the underlying machinery, i.e., data structures • Byte-oriented – Even if blocks are transferred, addressing is in bytes What’s below the surface ?? • Kernel buffered reads – Streaming and block devices looks the same, read blocks yielding processor to other task • Kernel buffered writes Application / Service – Completion of out-going transfer decoupled from the application, File descriptor number allowing it to continue - an int High Level I/O streams • Explicit close Low Level I/O handles 9/12/19 The cs162file fa19 L5system abstraction 53 Syscall registers • File File System descriptors File Descriptors – Named collection of data in a file system • a struct with all the info I/O Driver Commands and Data Transfers – POSIX File data: sequence of bytes • about the files Disks, Flash, Controllers, DMA Could be text, binary, serialized objects, … – File Metadata: information about the file • Size, Modification Time, Owner, Security info • Basis for access control • Directory – “Folder” containing files & Directories – Hierachical -
[13주차] Sysfs and Procfs
1 7 Computer Core Practice1: Operating System Week13. sysfs and procfs Jhuyeong Jhin and Injung Hwang Embedded Software Lab. Embedded Software Lab. 2 sysfs 7 • A pseudo file system provided by the Linux kernel. • sysfs exports information about various kernel subsystems, HW devices, and associated device drivers to user space through virtual files. • The mount point of sysfs is usually /sys. • sysfs abstrains devices or kernel subsystems as a kobject. Embedded Software Lab. 3 How to create a file in /sys 7 1. Create and add kobject to the sysfs 2. Declare a variable and struct kobj_attribute – When you declare the kobj_attribute, you should implement the functions “show” and “store” for reading and writing from/to the variable. – One variable is one attribute 3. Create a directory in the sysfs – The directory have attributes as files • When the creation of the directory is completed, the directory and files(attributes) appear in /sys. • Reference: ${KERNEL_SRC_DIR}/include/linux/sysfs.h ${KERNEL_SRC_DIR}/fs/sysfs/* • Example : ${KERNEL_SRC_DIR}/kernel/ksysfs.c Embedded Software Lab. 4 procfs 7 • A special filesystem in Unix-like operating systems. • procfs presents information about processes and other system information in a hierarchical file-like structure. • Typically, it is mapped to a mount point named /proc at boot time. • procfs acts as an interface to internal data structures in the kernel. The process IDs of all processes in the system • Kernel provides a set of functions which are designed to make the operations for the file in /proc : “seq_file interface”. – We will create a file in procfs and print some data from data structure by using this interface. -
Linux Kernel and Driver Development Training Slides
Linux Kernel and Driver Development Training Linux Kernel and Driver Development Training © Copyright 2004-2021, Bootlin. Creative Commons BY-SA 3.0 license. Latest update: October 9, 2021. Document updates and sources: https://bootlin.com/doc/training/linux-kernel Corrections, suggestions, contributions and translations are welcome! embedded Linux and kernel engineering Send them to [email protected] - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 1/470 Rights to copy © Copyright 2004-2021, Bootlin License: Creative Commons Attribution - Share Alike 3.0 https://creativecommons.org/licenses/by-sa/3.0/legalcode You are free: I to copy, distribute, display, and perform the work I to make derivative works I to make commercial use of the work Under the following conditions: I Attribution. You must give the original author credit. I Share Alike. If you alter, transform, or build upon this work, you may distribute the resulting work only under a license identical to this one. I For any reuse or distribution, you must make clear to others the license terms of this work. I Any of these conditions can be waived if you get permission from the copyright holder. Your fair use and other rights are in no way affected by the above. Document sources: https://github.com/bootlin/training-materials/ - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 2/470 Hyperlinks in the document There are many hyperlinks in the document I Regular hyperlinks: https://kernel.org/ I Kernel documentation links: dev-tools/kasan I Links to kernel source files and directories: drivers/input/ include/linux/fb.h I Links to the declarations, definitions and instances of kernel symbols (functions, types, data, structures): platform_get_irq() GFP_KERNEL struct file_operations - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 3/470 Company at a glance I Engineering company created in 2004, named ”Free Electrons” until Feb. -
Singularityce User Guide Release 3.8
SingularityCE User Guide Release 3.8 SingularityCE Project Contributors Aug 16, 2021 CONTENTS 1 Getting Started & Background Information3 1.1 Introduction to SingularityCE......................................3 1.2 Quick Start................................................5 1.3 Security in SingularityCE........................................ 15 2 Building Containers 19 2.1 Build a Container............................................. 19 2.2 Definition Files.............................................. 24 2.3 Build Environment............................................ 35 2.4 Support for Docker and OCI....................................... 39 2.5 Fakeroot feature............................................. 79 3 Signing & Encryption 83 3.1 Signing and Verifying Containers.................................... 83 3.2 Key commands.............................................. 88 3.3 Encrypted Containers.......................................... 90 4 Sharing & Online Services 95 4.1 Remote Endpoints............................................ 95 4.2 Cloud Library.............................................. 103 5 Advanced Usage 109 5.1 Bind Paths and Mounts.......................................... 109 5.2 Persistent Overlays............................................ 115 5.3 Running Services............................................. 118 5.4 Environment and Metadata........................................ 129 5.5 OCI Runtime Support.......................................... 140 5.6 Plugins................................................. -
File and Console I/O
File and Console I/O CS449 Spring 2016 What is a Unix(or Linux) File? • File: “a resource for storing information [sic] based on some kind of durable storage” (Wikipedia) • Wider sense: “In Unix, everything is a file.” (a.k.a “In Unix, everything is a stream of bytes.”) – Traditional files, directories, links – Inter-process communication (pipes, shared memory, sockets) – Devices (interactive terminals, hard drives, printers, graphic card) • Usually mounted under /dev/ directory – Process Links (for getting process information) • Usually mounted under /proc/ directory Stream of Bytes Abstraction • A file, in abstract, is a stream of bytes • Can be manipulated using five system calls: – open: opens a file for reading/writing and returns a file descriptor • File descriptor: index into an OS array called open file table – read: reads current offset through file descriptor – write: writes current offset through file descriptor – lseek: changes current offset in file – close: closes file descriptor • Some files do not support certain operations (e.g. a terminal device does not support lseek) C Standard Library Wrappers • C Standard Library wraps file system calls in library functions – For portability across multiple systems – To provide additional features (buffering, formatting) • All C wrappers buffered by default – Buffering can be controlled using “setbuf” or “setlinebuf” calls (remember those?) • Works on FILE * instead of file descriptor – FILE is a library data structure that abstracts a file – Contains file descriptor, current offset, buffering mode etc. Wrappers for the Five System Calls Function Prototype Description FILE *fopen(const char *path, const Opens the file whose name is the string pointed to char *mode); by path and associates a stream with it. -
A Platform Architecture for Sensor Data Processing and Verification in Buildings
A Platform Architecture for Sensor Data Processing and Verification in Buildings Jorge Ortiz Electrical Engineering and Computer Sciences University of California at Berkeley Technical Report No. UCB/EECS-2013-196 http://www.eecs.berkeley.edu/Pubs/TechRpts/2013/EECS-2013-196.html December 3, 2013 Copyright © 2013, by the author(s). All rights reserved. Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. To copy otherwise, to republish, to post on servers or to redistribute to lists, requires prior specific permission. A Platform Architecture for Sensor Data Processing and Verification in Buildings by Jorge Jose Ortiz A dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy in Computer Science in the Graduate Division of the University of California, Berkeley Committee in charge: Professor David E. Culler, Chair Professor Randy H. Katz Professor Paul Wright Fall 2013 A Platform Architecture for Sensor Data Processing and Verification in Buildings Copyright 2013 by Jorge Jose Ortiz 1 Abstract A Platform Architecture for Sensor Data Processing and Verification in Buildings by Jorge Jose Ortiz Doctor of Philosophy in Computer Science University of California, Berkeley Professor David E. Culler, Chair This thesis examines the state of the art of building information systems and evaluates their architecture in the context of emerging technologies and applications for deep analysis of the built environment. -
Plan 9 from Bell Labs
Plan 9 from Bell Labs “UNIX++ Anyone?” Anant Narayanan Malaviya National Institute of Technology FOSS.IN 2007 What is it? Advanced technology transferred via mind-control from aliens in outer space Humans are not expected to understand it (Due apologies to lisperati.com) Yeah Right • More realistically, a distributed operating system • Designed by the creators of C, UNIX, AWK, UTF-8, TROFF etc. etc. • Widely acknowledged as UNIX’s true successor • Distributed under terms of the Lucent Public License, which appears on the OSI’s list of approved licenses, also considered free software by the FSF What For? “Not only is UNIX dead, it’s starting to smell really bad.” -- Rob Pike (circa 1991) • UNIX was a fantastic idea... • ...in it’s time - 1970’s • Designed primarily as a “time-sharing” system, before the PC era A closer look at Unix TODAY It Works! But that doesn’t mean we don’t develop superior alternates GNU/Linux • GNU’s not UNIX, but it is! • Linux was inspired by Minix, which was in turn inspired by UNIX • GNU/Linux (mostly) conforms to ANSI and POSIX requirements • GNU/Linux, on the desktop, is playing “catch-up” with Windows or Mac OS X, offering little in terms of technological innovation Ok, and... • Most of the “modern ideas” we use today were “bolted” on an ancient underlying system • Don’t believe me? A “modern” UNIX Terminal Where did it go wrong? • Early UNIX, “everything is a file” • Brilliant! • Only until people started adding “features” to the system... Why you shouldn’t be working with GNU/Linux • The Socket API • POSIX • X11 • The Bindings “rat-race” • 300 system calls and counting..