The Use of Isozyme Characters in Systematic Studies of Turtles: Preliminary Data for Australian Chelids
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Demographic Consequences of Superabundance in Krefft's River
i The comparative ecology of Krefft’s River Turtle Emydura krefftii in Tropical North Queensland. By Dane F. Trembath B.Sc. (Zoology) Applied Ecology Research Group University of Canberra ACT, 2601 Australia A thesis submitted in fulfilment of the requirements of the degree of Masters of Applied Science (Resource Management). August 2005. ii Abstract An ecological study was undertaken on four populations of Krefft’s River Turtle Emydura krefftii inhabiting the Townsville Area of Tropical North Queensland. Two sites were located in the Ross River, which runs through the urban areas of Townsville, and two sites were in rural areas at Alligator Creek and Stuart Creek (known as the Townsville Creeks). Earlier studies of the populations in Ross River had determined that the turtles existed at an exceptionally high density, that is, they were superabundant, and so the Townsville Creek sites were chosen as low abundance sites for comparison. The first aim of this study was to determine if there had been any demographic consequences caused by the abundance of turtle populations of the Ross River. Secondly, the project aimed to determine if the impoundments in the Ross River had affected the freshwater turtle fauna. Specifically this study aimed to determine if there were any difference between the growth, size at maturity, sexual dimorphism, size distribution, and diet of Emydura krefftii inhabiting two very different populations. A mark-recapture program estimated the turtle population sizes at between 490 and 5350 turtles per hectare. Most populations exhibited a predominant female sex-bias over the sampling period. Growth rates were rapid in juveniles but slowed once sexual maturity was attained; in males, growth basically stopped at maturity, but in females, growth continued post-maturity, although at a slower rate. -
Recent Evolutionary History of the Australian Freshwater Turtles Chelodina Expansa and Chelodina Longicollis
Recent evolutionary history of the Australian freshwater turtles Chelodina expansa and Chelodina longicollis. by Kate Meredith Hodges B.Sc. (Hons) ANU, 2004 A thesis submitted in fulfilment of the requirements of the degree of Doctor of Philosophy School of Biological Sciences Department of Genetics and Evolution The University of Adelaide December, 2015 Kate Hodges with Chelodina (Macrochelodina) expansa from upper River Murray. Photo by David Thorpe, Border Mail. i Declaration I certify that this work contains no material which has been accepted for the award of any other degree or diploma in any university or other tertiary institution and, to the best of my knowledge and belief, contains no material previously published or written by another person, except where due reference has been made in the text. In addition, I certify that no part of this work will, in the future, be used in a submission for any other degree or diploma in any university or other tertiary institution without the prior approval of the University of Adelaide and where applicable, any partner institution responsible for the joint-award of this degree. I give consent to this copy of my thesis when deposited in the University Library, being made available for loan and photocopying, subject to the provisions of the Copyright Act 1968. The author acknowledges that copyright of published works contained within this thesis resides with the copyright holder(s) of those works. I also give permission for the digital version of my thesis to be made available on the web, via the University’s digital research repository, the Library catalogue and also through web search engines, unless permission has been granted by the University to restrict access for a period of time. -
Qryholdings Scientific Name Species Code Common Name Number of Licensees Acquired Bred Disposed Hoplocephalus Bitorquatus W2675
qryHoldings Number of Scientific_Name Species_Code Common_Name Acquired Bred Disposed licensees Hoplocephalus bitorquatus W2675 Pale-headed Snake 14 7 314 Hoplocephalus bitorquatus x H. stephensii X2001 Pale-headed X Stephen's Banded Snake hybrid 1 Hoplocephalus bungaroides A2676 Broad-headed Snake 7 4 0 6 Hoplocephalus stephensii C2677 Stephens' Banded Snake 21 9 9 21 Pseudechis colletti W2691 Collett’s Snake 41 18 18 Pseudechis porphyriacus C2693 Red-bellied Black Snake 80 39 55 66 Vermicella annulata M2734 Eastern Bandy-bandy 2 3 Acanthophis antarcticus A2640 Southern Death Adder 59 76 105 95 Acanthophis praelongus Y2804 Northern Death Adder 24 41 0 23 Acanthophis pyrrhus C2641 Desert Death Adder 8 1 0 6 Austrelaps ramsayi W2615 Highlands Copperhead 20 3 0 26 Austrelaps superbus E2642 Lowlands Copperhead 12 14 0 25 Notechis ater Q2680 Black Tiger Snake 8 9 0 9 Notechis scutatus S2681 Common Tiger Snake 45 40 23 55 Pseudechis australis U2690 Mulga Snake 31 23 19 29 Pseudechis butleri M2814 Butler's Snake 1 1 Pseudechis guttatus A2692 Spotted Black Snake 20 12 5 16 Pseudonaja guttata G2695 Speckled Brown Snake 2 4 4 Pseudonaja modesta K2697 Ringed Brown Snake 1 Pseudonaja nuchalis M2698 Western Brown Snake 4 5 2 Rhinoplocephalus nigrescens E2650 EasternSmall-eyed Snake 3 6 Oxyuranus microlepidotus K2689 Western Taipan 25 10 12 21 Oxyuranus scutellatus Y2688 Taipan 17 20 24 45 Pseudonaja textilis Z2699 Common Brown Snake 32 28 35 41 Tropidechis carinatus G2723 Rough-scaled Snake 12 10 11 16 Crocodylus johnstoni K2001 Freshwater Crocodile -
AUSTRALIAN BIODIVERSITY RECORD ______2007 (No 2) ISSN 1325-2992 March, 2007 ______
AUSTRALIAN BIODIVERSITY RECORD ______________________________________________________________ 2007 (No 2) ISSN 1325-2992 March, 2007 ______________________________________________________________ Some Taxonomic and Nomenclatural Considerations on the Class Reptilia in Australia. Some Comments on the Elseya dentata (Gray, 1863) complex with Redescriptions of the Johnstone River Snapping Turtle, Elseya stirlingi Wells and Wellington, 1985 and the Alligator Rivers Snapping Turtle, Elseya jukesi Wells 2002. by Richard W. Wells P.O. Box 826, Lismore, New South Wales Australia, 2480 Introduction As a prelude to further work on the Chelidae of Australia, the following considerations relate to the Elseya dentata species complex. See also Wells and Wellington (1984, 1985) and Wells (2002 a, b; 2007 a, b.). Elseya Gray, 1867 1867 Elseya Gray, Ann. Mag. Natur. Hist., (3) 20: 44. – Subsequently designated type species (Lindholm 1929): Elseya dentata (Gray, 1863). Note: The genus Elseya is herein considered to comprise only those species with a very wide mandibular symphysis and a distinct median alveolar ridge on the upper jaw. All members of the latisternum complex lack a distinct median alveolar ridge on the upper jaw and so are removed from the genus Elseya (see Wells, 2007b). This now restricts the genus to the following Australian species: Elseya albagula Thomson, Georges and Limpus, 2006 2006 Elseya albagula Thomson, Georges and Limpus, Chelon. Conserv. Biol., 5: 75; figs 1-2, 4 (top), 5a,6a, 7. – Type locality: Ned Churchwood Weir (25°03'S 152°05'E), Burnett River, Queensland, Australia. Elseya dentata (Gray, 1863) 1863 Chelymys dentata Gray, Ann. Mag. Natur. Hist., (3) 12: 98. – Type locality: Beagle’s Valley, upper Victoria River, Northern Territory. -
Freshwater Turtles of Tropical Australia Compilation of Distributional Data
Freshwater Turtles of Tropical Australia Compilation of distributional data Final report prepared by the Institute for Applied Ecology, University of Canberra, for the CERF Tropical Rivers and Coastal Knowledge (TRACK) Project January 2008 Copyright © 2008 Arthur Georges All rights reserved. No part of this report or the information contained therein may be used, referenced or reproduced in any form as part of another document, whether it be printed, electronic, mechanical, photographic, or magnetic, without permission. This document may be freely copied provided it is under its current cover without addition, deletion or alteration of any content. It must include this copyright statement and the logo of the Institute of Applied Ecology. It may not be sold nor may it be distributed for a fee. Variations of these conditions and all other uses require the prior written permission of the senior author. Citation details:. Georges, A., and Merrin, L. (2008). Freshwater Turtles of Tropical Australia: Compilation of distributional data. Report to the CERF Tropical Rivers and Coastal Knowledge (TRACK) Project, Charles Darwin University. January 2008. Acknowledgements We would like to than the many people who assisted us, but especially John Legler (University of Utah) for making available the records of specimens held by the University of Utah, Jane Melvile of the Museum of Victoria, Patrick Couper of the Queensland Museum, and Leo Joseph of the Australian National Wildlife Collection for freely providing museum records, and the many people who provided specimens that comprise the turtle tissue collection at the University of Canberra. we are particularly indebted to Scott Thomson for his earlier work in compiling distributional data from museums in Australia and overseas. -
The Captive Husbandry and Reproduction of the Pink-Eared Turtle (Emydura Victoriae) at Perth Zoo
MURDOCH RESEARCH REPOSITORY This is the author’s final version of the work, as accepted for publication following peer review but without the publisher’s layout or pagination. http://dx.doi.org/10.1002/zoo.20317 Gaikhorst, G.S., Clarke, B.R., McPharlin, M., Larkin, B., McLaughlin, J. and Mayes, J. (2011) The captive husbandry and reproduction of the pink-eared turtle (Emydura victoriae) at Perth Zoo. Zoo Biology, 30 (1). pp. 79-94. http://researchrepository.murdoch.edu.au/4105/ © 2010 Wiley-Liss, Inc It is posted here for your personal use. No further distribution is permitted. The captive husbandry and reproduction of the pink-eared turtle (Emydura victoriae) at Perth Zoo G.S. Gaikhorst1, B.R. Clarke2, M. McPharlin3, B. Larkin3, J. McLaughlin4 and J. Mayes3 1. Native Species Breeding Programs, Perth Zoo, South Perth, Western Australia, Australia 2. School of Chemical and Mathematical Science, Faculty of Minerals and Energy, Murdoch University, Murdoch, Western Australia, Australia 3. Perth Zoo, South Perth, Western Australia, Australia 4. Marine and Atmospheric Research, Centre for Environmental and life Sciences, Floreat, Western Australia, Australia Abstract In 1997, Perth Zoo acquired six pink-eared turtles (Emydura victoriae) from the wild for display in the reptile facility. There is very little documented information on pink-eared turtles in captivity. This article looks at the reproductive biology, ecology, behavior, diet, and captive husbandry of the species. Eight clutches of eggs were documented over a 2-year period with an average clutch size of 10 eggs. Egg size was recorded with three clutches incubated to hatching. Ten hatchlings were maintained for a growth and development study. -
NSW REPTILE KEEPERS' LICENCE Species Lists 1006
NSW REPTILE KEEPERS’ LICENCE SPECIES LISTS (2006) The taxonomy in this list follows that used in Wilson, S. and Swan, G. A Complete Guide to Reptiles of Australia, Reed 2003. Common names generally follow the same text, when common names were used, or have otherwise been lifted from other publications. As well as reading this species list, you will also need to read the “NSW Reptile Keepers’ Licence Information Sheet 2006.” That document has important information about the different types of reptile keeper licenses. It also lists the criteria you need to demonstrate before applying to upgrade to a higher class of licence. THESE REPTILES CAN ONLY BE HELD UNDER A REPTILE KEEPERS’ LICENCE OF CLASS 1 OR HIGHER Code Scientific Name Common Name Code Scientific Name Common Name Turtles Monitors E2018 Chelodina canni Cann’s Snake-necked Turtle G2263 Varanus acanthurus Spiney-tailed Monitor C2017 Chelodina longicollis Snake-necked Turtle Q2268 Varanus gilleni Pygmy Mulga Monitor G2019 Chelodina oblonga Oblong Turtle G2271 Varanus gouldii Sand Monitor Y2028 Elseya dentata Northern Snapping Turtle M2282 Varanus tristis Black-Headed Monitor K2029 Elseya latisternum Saw-shelled Turtle Y2776 Elusor macrurus Mary River Turtle E2034 Emydura macquarii Murray Short-necked Turtle Skinks T2031 Emydura macquarii dharra Macleay River Turtle A2464 Acritoscincus platynotum Red-throated Skink T2039 Emydura macquarii dharuk Sydney Basin Turtle W2331 Cryptoblepharus virgatus Cream-striped Wall Skink T2002 Emydura macquarii emmotti Emmott’s Short-necked Turtle W2375 -
Chelonian Advisory Group Regional Collection Plan 4Th Edition December 2015
Association of Zoos and Aquariums (AZA) Chelonian Advisory Group Regional Collection Plan 4th Edition December 2015 Editor Chelonian TAG Steering Committee 1 TABLE OF CONTENTS Introduction Mission ...................................................................................................................................... 3 Steering Committee Structure ........................................................................................................... 3 Officers, Steering Committee Members, and Advisors ..................................................................... 4 Taxonomic Scope ............................................................................................................................. 6 Space Analysis Space .......................................................................................................................................... 6 Survey ........................................................................................................................................ 6 Current and Potential Holding Table Results ............................................................................. 8 Species Selection Process Process ..................................................................................................................................... 11 Decision Tree ........................................................................................................................... 13 Decision Tree Results ............................................................................................................. -
Chelonia (Cheloniidae), Pseudemys (Emydidae), Batagur (Bataguridae) and Dermatemys (Dermatemyidae)
FAUNA of AUSTRALIA 21. FAMILY CHELIDAE John M. Legler & Arthur Georges 1 21. FAMILY CHELIDAE Pl. 3.10. A Western Australian Emydura species. [Cann] Pl. 3.11. Chelodina longicollis showing characteristic, elongate neck; carnivorous; in wetlands of eastern Australia. [Cann] 2 21. FAMILY CHELIDAE Pl. 3.12. Rheodytes leukops occurs in fast flowing waters of the Fitzroy River system, eastern Queensland. [Cann] 3 21. FAMILY CHELIDAE Pl. 3.13. Pseudemydura umbrina, Australia’s most endangered reptile; one or two ponds in Western Australia; head covered with solid shield. [Cann] Pl. 3.14. Pseudemydura umbrina, Australia’s most endangered reptile; one or two ponds in Western Australia; head covered with solid shield. [Cann] 4 21. FAMILY CHELIDAE Pl. 3.15. Elseya dentata lives in large rivers and lagoons of northern Australia. [Cann] 5 21. FAMILY CHELIDAE DEFINITION AND GENERAL DESCRIPTION Chelids are all aquatic or semi-aquatic freshwater turtles. In Australia, the presence of distinct ankle joints and webbed feet, each with four or five claws, readily distinguishes this family from marine turtles and Carettochelys, which have flipper-shaped limbs. The posterior parietosquamosal arch is usually present (absent in Chelodina), but the quadratojugal is absent. The vomer is always present and usually separates the palatines. The presence of nasal bones (except in Chelus) is diagnostic for the family Chelidae, if living forms only are considered (Gaffney 1979). A splenial bone is present. Chelids are typical pleurodirans in respect of features associated with the mechanism of head withdrawal. The cervical vertebrae have strong lateral processes, closely juxtaposed or fused postzygopophyses, and well developed central articulations which are never double (Williams 1950). -
(Genus Myuchelys), with Special Reference to the Endangered M. Bellii
Vol. 17: 63–71, 2012 ENDANGERED SPECIES RESEARCH Published online April 12 doi: 10.3354/esr00417 Endang Species Res Mitochondrial variation among Australian freshwater turtles (genus Myuchelys), with special reference to the Endangered M. bellii Darren Fielder1,*, Karl Vernes1, Erika Alacs2, Arthur Georges2 1Ecosystem Management, University of New England, Armidale, New South Wales 2351, Australia 2Institute for Applied Ecology, University of Canberra, Australian Capital Territory 2601, Australia ABSTRACT: Identifying species and the relationships among them remains important for assess- ing biodiversity trends and is a critical focus for reversing global biodiversity loss. The saw-shelled turtles of Australia, in the genus Myuchelys, show cryptic diversity and include species that range from Endangered (M. bellii), through those that are locally abundant but extremely limited in dis- tribution (M. georgesi and M. purvisi) to those that are common and widespread (M. latisternum). The Endangered M. bellii is restricted to 3 small isolated populations in the headwaters of the Murray-Darling basin, in the Border, Gwydir and Namoi tributaries. There is no evidence of strong differentiation among these 3 populations based on mitochondrial DNA (mtDNA) diver- gences; rather there is only a shallow genetic structure ranging from 0.1 to 0.3% divergence. The 3 restricted and small populations of the Endangered M. bellii face a number of threatening pro- cesses and require conservation management across state boundaries as a single biological spe- cies. The mtDNA phylogeny supports previous phylogenetic findings of a deep phylogenetic divergence between M. purvisi and M. georgesi (13.5% mtDNA) and the sister taxa relationship of M. latisternum and M. -
January 20, 2021 Dear Colleagues: I Write to You with Great Enthusiasm About the Presidency of Peru State College. As a Nemaha C
January 20, 2021 Dear Colleagues: I write to you with great enthusiasm about the Presidency of Peru State College. As a Nemaha County native who grew up in Peru and Auburn I have fond memories of the Peru State campus and the people that make it a special place. My father retired after a long career as a PSC faculty member and administrator, my mother and sister are PSC alumnae and my nephew is a current Bobcat student. This personal association and my familiarity with the campus and with southeast Nebraska would add to my professional passion for improving the lives of students and community members through the transformative power of education. My decades of living in Nebraska and service to the University of Nebraska System provide me with a deep understanding and appreciation of the role of Peru State College and the Nebraska State College System. I understand the backgrounds, the challenges and the possibilities represented by Peru State’s students. Service as president would allow me to use my experiences in the classroom and as a higher education leader to provide opportunities to the students of Peru State College as we work together to help our communities thrive. A review of my professional experiences demonstrates a breadth of executive responsibilities that have shaped my vision and philosophy of the role of higher education in the 21st century. I am a compassionate, collaborative leader with a deep commitment to students and to shared governance. I have held academic administrative positions for over 10 years and served as a cabinet-level officer at two institutions. -
From the Northern Long-Necked Turtle, Chelodina Rugosa (Pleurodira: Chelidae), in Australia
J. Parasitol., 93(2), 2007, pp. 404–408 ᭧ American Society of Parasitologists 2007 APTORCHIS MEGACETABULUS N. SP. (PLATYHELMINTHES: DIGENEA) FROM THE NORTHERN LONG-NECKED TURTLE, CHELODINA RUGOSA (PLEURODIRA: CHELIDAE), IN AUSTRALIA Vasyl V. Tkach and Scott D. Snyder* Department of Biology, University of North Dakota, Grand Forks, North Dakota 58202. e-mail: [email protected] ABSTRACT: Aptorchis megacetabulus n. sp. is described from the intestine of the northern long-necked turtle, Chelodina rugosa (Pleurodira: Chelidae), in Northern Territory, Australia. This is the first helminth species reported from C. rugosa. This plagior- chioidean digenean differs from the 3 previously known species of Aptorchis in the relative size of the ventral sucker, overall body proportions, nature of the cirrus sac, and egg size. Comparison of approximately 2,700 bases of ribosomal DNA obtained from all known Aptorchis species strongly supports the status of Aptorchis megacetabulus n. sp. as a new species. Aptorchis is currently represented by 3 species, all recovered Commission. Seven adult and 3 juvenile specimens of a new digenean from Australian freshwater turtles. Nicoll (1914) described Ap- species belonging to Aptorchis were recovered from the intestine of 3 C. rugosa. Live worms were rinsed in saline, briefly examined prior to torchis aequalis from the saw-shelled turtle, Elseya latisternum, fixation, killed with hot water, and fixed in 70% ethanol. Specimens in northern Queensland. Jue Sue and Platt (1999) proposed a were stained with aqueous alum carmine, dehydrated in a graded eth- new genus Dingularis with 3 species, Dingularis anfracticirrus, anol series, cleared in clove oil, and mounted permanently in Damar balsam.