Bioremediation of Chromate in Alkaline Sediment-Water Systems

Total Page:16

File Type:pdf, Size:1020Kb

Bioremediation of Chromate in Alkaline Sediment-Water Systems Bioremediation of chromate in alkaline sediment-water systems Robert Andrew Whittleston Submitted in accordance with the requirements for the degree of Doctor of Philosophy The University of Leeds School of Earth and Environment September 2011 This copy has been supplied on the understanding that it is copyright material and that no quotation for the thesis may be published without proper acknowledgement. The right of R. A. Whittleston to be identified as Author of this work has been asserted by him in accordance with the Copyright, Designs and Patents Act 1988. © 2011 The University of Leeds and Robert A. Whittleston. The candidate confirms that the work submitted is his own, except where work which has formed part of jointly-authored publications has been included. The contribution of the candidate and the other authors to this work has been explicitly indicated below. The candidate confirms that appropriate credit has been given within the thesis where reference has been made to the work of others. Paper status and collaborator contributions Due to the breadth of knowledge required to produce high quality academic research, three of the results chapters within this thesis form all or part of jointly-authored work prepared for publication. Therefore, collaborator contributions and submission status of each article are clarified below. Chapter 4 “Chromate reduction in Fe(II)-containing soil affected by hyperalkaline leachate from chromite ore processing residue” (Submitted to Journal of Hazardous Materials in June 2011, in press August 2011). R. A. Whittleston – principal author, site sampling, geochemical analyses, microcosm experiments, reoxidation experiments, XAS data collection and analyses, culturing of iron reducers, DNA extraction, 16S rRNA gene analysis, clone libraries and phylogenetic tree construction; D. I. Stewart – site sampling, extensive manuscript review; R. J. G Mortimer – manuscript review; Z. C. Tilt – site sampling, XRD, XRF and TOC analyses; A. P. Brown – TEM analysis; K. Geraki – XAS data collection guidance; I. T. Burke – site sampling, SEM preparation, guidance on XAS data collection and analysis, extensive manuscript review. Chapter 5 “Effect of microbially induced anoxia on Cr(VI) mobility at a site contaminated with hyperalkaline residue from chromite ore processing” (Submitted to Geomicrobiology Journal April 2010, published January 2011 28, 68-82). R. A. Whittleston – principal author, geochemical analyses, DNA extraction, 16S rRNA gene analyses, clone libraries and phylogenetic tree construction; D. I. Stewart – site sampling, provided guidance for DNA extraction and 16S rRNA gene analysis, extensive manuscript review; R. J. G Mortimer – manuscript review; D. J. Ashley – IC technical guidance; I. T. Burke – site sampling, microcosm experiments, extensive manuscript review. Chapter 6 “Enhancing microbial reduction in hyperalkaline, chromium contaminated sediments by pH amendment” (Submitted to Journal of Hazardous Materials September 2011). R. A. Whittleston – principal author, site sampling, microcosm experiments, geochemical analyses, DNA extraction, 16S rRNA gene analysis, clone libraries, MOTHUR, rarefaction and MDS analyses, phylogenetic tree construction; R. J. G Mortimer – manuscript review; I. T. Burke – site sampling, extensive manuscript review; D. I. Stewart – site sampling, guidance on MOTHUR, rarefaction and MDS analyses, extensive manuscript review. ACKNOWLEDGEMENTS I would like to express my deepest gratitude to Ian Burke, Doug Stewart, and Rob Mortimer for their unwavering support in my academic development. They have provided me with priceless guidance from their vast range of expertise, without which this project would not have been possible. I am also incredibly grateful to them for the personal help and advice they have given me over the last three or more years. Your ability to remain good humoured in the most frustrating situations was invaluable! I would also like to thank the many others who have had input in one form or another, including but not limited to; David Ashley, Andy Brown, Louise Fletcher, Lesley Neve and Eric Condliffe for technical guidance and data collection, Michael Marsden, Zana Tilt and James Atkins for help with sample collection and interpretation. Thanks also to Kalotina Geraki and Fred Mosselmans for their help with XAS data collection and interpretation, and to Dr Phil Studds and Mark Bell from Ramboll UK for enabling site access and sample collection. Beyond these, I am grateful to everyone that made my time at the university memorable. Ian Burke, for teaching me to remain calm in stressful situations through his unique mini bus driving style and endless supply of British Isles coffee (two not explicitly linked). Mat Evans for repeatedly allowing me to outperform him in the gym, not pressing charges in Arran, and for listening to my endless rants. Sam Allshorn, for patience and understanding despite his militaristic running of the Cohen Labs, and to Damian Howells, for always being up for a pint. I also owe huge thanks to my office mates and fellow postgraduate students for their tolerance of me over the last three years, including; Chris Hubbard, Jenn Brooke, Ross Herbert, Mike Hollaway, Cat Scott, Amber Leeson, David Tupman, Ryan Hossaini, Eimear Dunne, James Pope for not being quite as good at sport as I am, Ben Parkes for his t-shirts bringing colour into an otherwise bland office, and Bradley Jemmett-Smith and Rachael Berman for their continued friendship over the last 6 years. For having the dubious honour of sitting next to me for the last two years special thanks must go to Sarah Wallace, who willingly provided me with all office supplies, a chronological banana skin decompositional time piece, cakes, mugs, plates, cutlery and rescued me from a dire Czech situation. Thanks are also due to all those who have helped me keep in touch with some form of reality over the years; Dave McClane, Rebecca “Pearbear” Perry, Andrew “Mexican” Mason and his beautiful geometric features, Phil Rooney, Oliver Wade, Jack “Jack-bot” Ellery, Felicity Ford, Jo Minnitt, Joseph Weiler for that ticket we were just talking about, Nishal Palawan and his gatecrasher hoodie, Nick Bell 10L and his love of small animals, Simon Burton, Tom Dawson and his paddle, Matt Charles and his pear juice, Dan Faben for always wanting to get married, everyone at Bradford Bulldogs IHC, and even Eli Rosenblatt. A huge thank you to my parents for always supporting me with whatever I decided to do and for funding my various exploits over the years, and to both my brothers. Special thanks are also owed to Mr Hamshaw for spending his free time all those years ago to teach me AS-level physical geography, without which I probably would never have started university. Finally, I would also like to thank “my muse, my flame” Ashlea “gets there in the end” Henshaw for helping me get there in the end, and in the words of Jimmy MacElroy: “if you can dream it, you can do it!” This project has been jointly funded by the University of Leeds School of Earth and Environment and the John Henry Garner Endowed Scholarship. Funding for XAS analysis at the Diamond Lightsource was awarded through Burke I. T., Stewart D. I., Mortimer R. J. G. and Whittleston R. A. (2009) Micro-focus XAS study of chromium behaviour in alkaline soil-water systems. STFC Diamond Light Source AP6-1493 (4 days). ABSTRACT The poorly controlled disposal of chromium ore processing residue (COPR) is a globally widespread problem due to its potential to form chromium contaminated hyperalkaline (pH > 12) leachates. These highly oxidising leachates typically contain 2- chromium in the Cr(VI) oxidation state as its chromate anion (CrO4 ). This anion is highly mobile, toxic, carcinogenic, and exhibits a high degree of bioavailability. Under reducing conditions chromium exists in the non-toxic and poorly soluble Cr(III) oxidation state. Thus, the reduction of Cr(VI) to Cr(III) is often the goal of remediative strategies. In anaerobic subsurface environments where reducing conditions are established by the indigenous microbial population, chromium reduction can occur naturally. The microbial transformation of Cr(VI) to Cr(III) can be both a result of its direct use in microbial metabolism, or through its indirect reaction with microbially produced reduced species, e.g. Fe(II). This study has used a multidisciplinary approach to investigate the biogeochemical influences on the fate and stability of Cr(VI) leaching from a site of COPR in the north of England. Reducing sediments encountered directly beneath the COPR waste were found contain elevated concentrations of chromium. These sediments were shown to be able to remove aqueous Cr(VI) from solution when incubated with contaminated site groundwater in microcosm incubation experiments. This removal is likely a result of the abiotic reduction by soil associated microbially produced Fe(II), followed by precipitation as insoluble Cr(III) hydroxides. X-ray absorption spectroscopy (XAS) and electron microscopy confirms the association of chromium as Cr(III) with iron in these soils, hosted as a mixed Cr(III)-Fe(III) oxyhydroxide phase. Upon air oxidation, only minor amounts of chromium was remobilised from these sediments as Cr(VI). A diverse population of alkaliphilic microorganisms are indigenous to this horizon, capable of successful metabolism despite elevated pH values. This population was found to contain a consortium of microorganisms capable of iron reduction when incubated at pH 9
Recommended publications
  • Characterization of the Aerobic Anoxygenic Phototrophic Bacterium Sphingomonas Sp
    microorganisms Article Characterization of the Aerobic Anoxygenic Phototrophic Bacterium Sphingomonas sp. AAP5 Karel Kopejtka 1 , Yonghui Zeng 1,2, David Kaftan 1,3 , Vadim Selyanin 1, Zdenko Gardian 3,4 , Jürgen Tomasch 5,† , Ruben Sommaruga 6 and Michal Koblížek 1,* 1 Centre Algatech, Institute of Microbiology, Czech Academy of Sciences, 379 81 Tˇreboˇn,Czech Republic; [email protected] (K.K.); [email protected] (Y.Z.); [email protected] (D.K.); [email protected] (V.S.) 2 Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark 3 Faculty of Science, University of South Bohemia, 370 05 Ceskˇ é Budˇejovice,Czech Republic; [email protected] 4 Institute of Parasitology, Biology Centre, Czech Academy of Sciences, 370 05 Ceskˇ é Budˇejovice,Czech Republic 5 Research Group Microbial Communication, Technical University of Braunschweig, 38106 Braunschweig, Germany; [email protected] 6 Laboratory of Aquatic Photobiology and Plankton Ecology, Department of Ecology, University of Innsbruck, 6020 Innsbruck, Austria; [email protected] * Correspondence: [email protected] † Present Address: Department of Molecular Bacteriology, Helmholtz-Centre for Infection Research, 38106 Braunschweig, Germany. Abstract: An aerobic, yellow-pigmented, bacteriochlorophyll a-producing strain, designated AAP5 Citation: Kopejtka, K.; Zeng, Y.; (=DSM 111157=CCUG 74776), was isolated from the alpine lake Gossenköllesee located in the Ty- Kaftan, D.; Selyanin, V.; Gardian, Z.; rolean Alps, Austria. Here, we report its description and polyphasic characterization. Phylogenetic Tomasch, J.; Sommaruga, R.; Koblížek, analysis of the 16S rRNA gene showed that strain AAP5 belongs to the bacterial genus Sphingomonas M. Characterization of the Aerobic and has the highest pairwise 16S rRNA gene sequence similarity with Sphingomonas glacialis (98.3%), Anoxygenic Phototrophic Bacterium Sphingomonas psychrolutea (96.8%), and Sphingomonas melonis (96.5%).
    [Show full text]
  • And Saline-Tolerant Bacteria and Archaea in Kalahari Pan Sediments
    Mathematisch-Naturwissenschaftliche Fakultät Steffi Genderjahn | Mashal Alawi | Kai Mangelsdorf | Fabian Horn | Dirk Wagner Desiccation- and Saline-Tolerant Bacteria and Archaea in Kalahari Pan Sediments Suggested citation referring to the original publication: Frontiers in Microbiology 9 (2018) 2082 DOI https://doi.org/10.3389/fmicb.2018.02082 ISSN (online) 1664-302X Postprint archived at the Institutional Repository of the Potsdam University in: Postprints der Universität Potsdam Mathematisch-Naturwissenschaftliche Reihe ; 993 ISSN 1866-8372 https://nbn-resolving.org/urn:nbn:de:kobv:517-opus4-459154 DOI https://doi.org/10.25932/publishup-45915 fmicb-09-02082 September 19, 2018 Time: 14:22 # 1 ORIGINAL RESEARCH published: 20 September 2018 doi: 10.3389/fmicb.2018.02082 Desiccation- and Saline-Tolerant Bacteria and Archaea in Kalahari Pan Sediments Steffi Genderjahn1,2*, Mashal Alawi1, Kai Mangelsdorf2, Fabian Horn1 and Dirk Wagner1,3 1 GFZ German Research Centre for Geosciences, Helmholtz Centre Potsdam, Section 5.3 Geomicrobiology, Potsdam, Germany, 2 GFZ German Research Centre for Geosciences, Helmholtz Centre Potsdam, Section 3.2 Organic Geochemistry, Potsdam, Germany, 3 Institute of Earth and Environmental Science, University of Potsdam, Potsdam, Germany More than 41% of the Earth’s land area is covered by permanent or seasonally arid dryland ecosystems. Global development and human activity have led to an increase in aridity, resulting in ecosystem degradation and desertification around the world. The objective of the present work was to investigate and compare the microbial community structure and geochemical characteristics of two geographically distinct saline pan sediments in the Kalahari Desert of southern Africa. Our data suggest that these microbial communities have been shaped by geochemical drivers, including water content, salinity, and the supply of organic matter.
    [Show full text]
  • Metagenomic Insights Into the Uncultured Diversity and Physiology of Microbes in Four Hypersaline Soda Lake Brines
    Lawrence Berkeley National Laboratory Recent Work Title Metagenomic Insights into the Uncultured Diversity and Physiology of Microbes in Four Hypersaline Soda Lake Brines. Permalink https://escholarship.org/uc/item/9xc5s0v5 Journal Frontiers in microbiology, 7(FEB) ISSN 1664-302X Authors Vavourakis, Charlotte D Ghai, Rohit Rodriguez-Valera, Francisco et al. Publication Date 2016 DOI 10.3389/fmicb.2016.00211 Peer reviewed eScholarship.org Powered by the California Digital Library University of California ORIGINAL RESEARCH published: 25 February 2016 doi: 10.3389/fmicb.2016.00211 Metagenomic Insights into the Uncultured Diversity and Physiology of Microbes in Four Hypersaline Soda Lake Brines Charlotte D. Vavourakis 1, Rohit Ghai 2, 3, Francisco Rodriguez-Valera 2, Dimitry Y. Sorokin 4, 5, Susannah G. Tringe 6, Philip Hugenholtz 7 and Gerard Muyzer 1* 1 Microbial Systems Ecology, Department of Aquatic Microbiology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, Netherlands, 2 Evolutionary Genomics Group, Departamento de Producción Vegetal y Microbiología, Universidad Miguel Hernández, San Juan de Alicante, Spain, 3 Department of Aquatic Microbial Ecology, Biology Centre of the Czech Academy of Sciences, Institute of Hydrobiology, Ceskéˇ Budejovice,ˇ Czech Republic, 4 Research Centre of Biotechnology, Winogradsky Institute of Microbiology, Russian Academy of Sciences, Moscow, Russia, 5 Department of Biotechnology, Delft University of Technology, Delft, Netherlands, 6 The Department of Energy Joint Genome Institute, Walnut Creek, CA, USA, 7 Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences and Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia Soda lakes are salt lakes with a naturally alkaline pH due to evaporative concentration Edited by: of sodium carbonates in the absence of major divalent cations.
    [Show full text]
  • Article-Associated Bac- Teria and Colony Isolation in Soft Agar Medium for Bacteria Unable to Grow at the Air-Water Interface
    Biogeosciences, 8, 1955–1970, 2011 www.biogeosciences.net/8/1955/2011/ Biogeosciences doi:10.5194/bg-8-1955-2011 © Author(s) 2011. CC Attribution 3.0 License. Diversity of cultivated and metabolically active aerobic anoxygenic phototrophic bacteria along an oligotrophic gradient in the Mediterranean Sea C. Jeanthon1,2, D. Boeuf1,2, O. Dahan1,2, F. Le Gall1,2, L. Garczarek1,2, E. M. Bendif1,2, and A.-C. Lehours3 1Observatoire Oceanologique´ de Roscoff, UMR7144, INSU-CNRS – Groupe Plancton Oceanique,´ 29680 Roscoff, France 2UPMC Univ Paris 06, UMR7144, Adaptation et Diversite´ en Milieu Marin, Station Biologique de Roscoff, 29680 Roscoff, France 3CNRS, UMR6023, Microorganismes: Genome´ et Environnement, Universite´ Blaise Pascal, 63177 Aubiere` Cedex, France Received: 21 April 2011 – Published in Biogeosciences Discuss.: 5 May 2011 Revised: 7 July 2011 – Accepted: 8 July 2011 – Published: 20 July 2011 Abstract. Aerobic anoxygenic phototrophic (AAP) bac- detected in the eastern basin, reflecting the highest diver- teria play significant roles in the bacterioplankton produc- sity of pufM transcripts observed in this ultra-oligotrophic tivity and biogeochemical cycles of the surface ocean. In region. To our knowledge, this is the first study to document this study, we applied both cultivation and mRNA-based extensively the diversity of AAP isolates and to unveil the ac- molecular methods to explore the diversity of AAP bacte- tive AAP community in an oligotrophic marine environment. ria along an oligotrophic gradient in the Mediterranean Sea By pointing out the discrepancies between culture-based and in early summer 2008. Colony-forming units obtained on molecular methods, this study highlights the existing gaps in three different agar media were screened for the production the understanding of the AAP bacteria ecology, especially in of bacteriochlorophyll-a (BChl-a), the light-harvesting pig- the Mediterranean Sea and likely globally.
    [Show full text]
  • Sporulation Evolution and Specialization in Bacillus
    bioRxiv preprint doi: https://doi.org/10.1101/473793; this version posted March 11, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC 4.0 International license. Research article From root to tips: sporulation evolution and specialization in Bacillus subtilis and the intestinal pathogen Clostridioides difficile Paula Ramos-Silva1*, Mónica Serrano2, Adriano O. Henriques2 1Instituto Gulbenkian de Ciência, Oeiras, Portugal 2Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Oeiras, Portugal *Corresponding author: Present address: Naturalis Biodiversity Center, Marine Biodiversity, Leiden, The Netherlands Phone: 0031 717519283 Email: [email protected] (Paula Ramos-Silva) Running title: Sporulation from root to tips Keywords: sporulation, bacterial genome evolution, horizontal gene transfer, taxon- specific genes, Bacillus subtilis, Clostridioides difficile 1 bioRxiv preprint doi: https://doi.org/10.1101/473793; this version posted March 11, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC 4.0 International license. Abstract Bacteria of the Firmicutes phylum are able to enter a developmental pathway that culminates with the formation of a highly resistant, dormant spore. Spores allow environmental persistence, dissemination and for pathogens, are infection vehicles. In both the model Bacillus subtilis, an aerobic species, and in the intestinal pathogen Clostridioides difficile, an obligate anaerobe, sporulation mobilizes hundreds of genes.
    [Show full text]
  • Crystalline Iron Oxides Stimulate Methanogenic Benzoate Degradation in Marine Sediment-Derived Enrichment Cultures
    The ISME Journal https://doi.org/10.1038/s41396-020-00824-7 ARTICLE Crystalline iron oxides stimulate methanogenic benzoate degradation in marine sediment-derived enrichment cultures 1,2 1 3 1,2 1 David A. Aromokeye ● Oluwatobi E. Oni ● Jan Tebben ● Xiuran Yin ● Tim Richter-Heitmann ● 2,4 1 5 5 1 2,3 Jenny Wendt ● Rolf Nimzyk ● Sten Littmann ● Daniela Tienken ● Ajinkya C. Kulkarni ● Susann Henkel ● 2,4 2,4 1,3 2,3,4 1,2 Kai-Uwe Hinrichs ● Marcus Elvert ● Tilmann Harder ● Sabine Kasten ● Michael W. Friedrich Received: 19 May 2020 / Revised: 9 October 2020 / Accepted: 22 October 2020 © The Author(s) 2020. This article is published with open access Abstract Elevated dissolved iron concentrations in the methanic zone are typical geochemical signatures of rapidly accumulating marine sediments. These sediments are often characterized by co-burial of iron oxides with recalcitrant aromatic organic matter of terrigenous origin. Thus far, iron oxides are predicted to either impede organic matter degradation, aiding its preservation, or identified to enhance organic carbon oxidation via direct electron transfer. Here, we investigated the effect of various iron oxide phases with differing crystallinity (magnetite, hematite, and lepidocrocite) during microbial 1234567890();,: 1234567890();,: degradation of the aromatic model compound benzoate in methanic sediments. In slurry incubations with magnetite or hematite, concurrent iron reduction, and methanogenesis were stimulated during accelerated benzoate degradation with methanogenesis as the dominant electron sink. In contrast, with lepidocrocite, benzoate degradation, and methanogenesis were inhibited. These observations were reproducible in sediment-free enrichments, even after five successive transfers. Genes involved in the complete degradation of benzoate were identified in multiple metagenome assembled genomes.
    [Show full text]
  • 1 Microbial Transformations of Organic Chemicals in Produced Fluid From
    Microbial transformations of organic chemicals in produced fluid from hydraulically fractured natural-gas wells Dissertation Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University By Morgan V. Evans Graduate Program in Environmental Science The Ohio State University 2019 Dissertation Committee Professor Paula Mouser, Advisor Professor Gil Bohrer, Co-Advisor Professor Matthew Sullivan, Member Professor Ilham El-Monier, Member Professor Natalie Hull, Member 1 Copyrighted by Morgan Volker Evans 2019 2 Abstract Hydraulic fracturing and horizontal drilling technologies have greatly improved the production of oil and natural-gas from previously inaccessible non-permeable rock formations. Fluids comprised of water, chemicals, and proppant (e.g., sand) are injected at high pressures during hydraulic fracturing, and these fluids mix with formation porewaters and return to the surface with the hydrocarbon resource. Despite the addition of biocides during operations and the brine-level salinities of the formation porewaters, microorganisms have been identified in input, flowback (days to weeks after hydraulic fracturing occurs), and produced fluids (months to years after hydraulic fracturing occurs). Microorganisms in the hydraulically fractured system may have deleterious effects on well infrastructure and hydrocarbon recovery efficiency. The reduction of oxidized sulfur compounds (e.g., sulfate, thiosulfate) to sulfide has been associated with both well corrosion and souring of natural-gas, and proliferation of microorganisms during operations may lead to biomass clogging of the newly created fractures in the shale formation culminating in reduced hydrocarbon recovery. Consequently, it is important to elucidate microbial metabolisms in the hydraulically fractured ecosystem.
    [Show full text]
  • Which Organisms Are Used for Anti-Biofouling Studies
    Table S1. Semi-systematic review raw data answering: Which organisms are used for anti-biofouling studies? Antifoulant Method Organism(s) Model Bacteria Type of Biofilm Source (Y if mentioned) Detection Method composite membranes E. coli ATCC25922 Y LIVE/DEAD baclight [1] stain S. aureus ATCC255923 composite membranes E. coli ATCC25922 Y colony counting [2] S. aureus RSKK 1009 graphene oxide Saccharomycetes colony counting [3] methyl p-hydroxybenzoate L. monocytogenes [4] potassium sorbate P. putida Y. enterocolitica A. hydrophila composite membranes E. coli Y FESEM [5] (unspecified/unique sample type) S. aureus (unspecified/unique sample type) K. pneumonia ATCC13883 P. aeruginosa BAA-1744 composite membranes E. coli Y SEM [6] (unspecified/unique sample type) S. aureus (unspecified/unique sample type) graphene oxide E. coli ATCC25922 Y colony counting [7] S. aureus ATCC9144 P. aeruginosa ATCCPAO1 composite membranes E. coli Y measuring flux [8] (unspecified/unique sample type) graphene oxide E. coli Y colony counting [9] (unspecified/unique SEM sample type) LIVE/DEAD baclight S. aureus stain (unspecified/unique sample type) modified membrane P. aeruginosa P60 Y DAPI [10] Bacillus sp. G-84 LIVE/DEAD baclight stain bacteriophages E. coli (K12) Y measuring flux [11] ATCC11303-B4 quorum quenching P. aeruginosa KCTC LIVE/DEAD baclight [12] 2513 stain modified membrane E. coli colony counting [13] (unspecified/unique colony counting sample type) measuring flux S. aureus (unspecified/unique sample type) modified membrane E. coli BW26437 Y measuring flux [14] graphene oxide Klebsiella colony counting [15] (unspecified/unique sample type) P. aeruginosa (unspecified/unique sample type) graphene oxide P. aeruginosa measuring flux [16] (unspecified/unique sample type) composite membranes E.
    [Show full text]
  • Downloaded from the NCBI Genome Portal (Table S1)
    J. Microbiol. Biotechnol. 2021. 31(4): 601–609 https://doi.org/10.4014/jmb.2012.12054 Review Assessment of Erythrobacter Species Diversity through Pan-Genome Analysis with Newly Isolated Erythrobacter sp. 3-20A1M Sang-Hyeok Cho1, Yujin Jeong1, Eunju Lee1, So-Ra Ko3, Chi-Yong Ahn3, Hee-Mock Oh3, Byung-Kwan Cho1,2*, and Suhyung Cho1,2* 1Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea 2KI for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea 3Biological Resource Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea Erythrobacter species are extensively studied marine bacteria that produce various carotenoids. Due to their photoheterotrophic ability, it has been suggested that they play a crucial role in marine ecosystems. It is essential to identify the genome sequence and the genes of the species to predict their role in the marine ecosystem. In this study, we report the complete genome sequence of the marine bacterium Erythrobacter sp. 3-20A1M. The genome size was 3.1 Mbp and its GC content was 64.8%. In total, 2998 genetic features were annotated, of which 2882 were annotated as functional coding genes. Using the genetic information of Erythrobacter sp. 3-20A1M, we performed pan- genome analysis with other Erythrobacter species. This revealed highly conserved secondary metabolite biosynthesis-related COG functions across Erythrobacter species. Through subsequent secondary metabolite biosynthetic gene cluster prediction and KEGG analysis, the carotenoid biosynthetic pathway was proven conserved in all Erythrobacter species, except for the spheroidene and spirilloxanthin pathways, which are only found in photosynthetic Erythrobacter species.
    [Show full text]
  • Table S5. the Information of the Bacteria Annotated in the Soil Community at Species Level
    Table S5. The information of the bacteria annotated in the soil community at species level No. Phylum Class Order Family Genus Species The number of contigs Abundance(%) 1 Firmicutes Bacilli Bacillales Bacillaceae Bacillus Bacillus cereus 1749 5.145782459 2 Bacteroidetes Cytophagia Cytophagales Hymenobacteraceae Hymenobacter Hymenobacter sedentarius 1538 4.52499338 3 Gemmatimonadetes Gemmatimonadetes Gemmatimonadales Gemmatimonadaceae Gemmatirosa Gemmatirosa kalamazoonesis 1020 3.000970902 4 Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Sphingomonas Sphingomonas indica 797 2.344876284 5 Firmicutes Bacilli Lactobacillales Streptococcaceae Lactococcus Lactococcus piscium 542 1.594633558 6 Actinobacteria Thermoleophilia Solirubrobacterales Conexibacteraceae Conexibacter Conexibacter woesei 471 1.385742446 7 Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Sphingomonas Sphingomonas taxi 430 1.265115184 8 Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Sphingomonas Sphingomonas wittichii 388 1.141545794 9 Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Sphingomonas Sphingomonas sp. FARSPH 298 0.876754244 10 Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Sphingomonas Sorangium cellulosum 260 0.764953367 11 Proteobacteria Deltaproteobacteria Myxococcales Polyangiaceae Sorangium Sphingomonas sp. Cra20 260 0.764953367 12 Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Sphingomonas Sphingomonas panacis 252 0.741416341
    [Show full text]
  • Prokaryotic Biodiversity of Lonar Meteorite Crater Soda Lake Sediment and Community Dynamics During Microenvironmental Ph Homeostasis by Metagenomics
    Prokaryotic Biodiversity of Lonar Meteorite Crater Soda Lake Sediment and Community Dynamics During Microenvironmental pH Homeostasis by Metagenomics Dissertation for the award of the degree "Doctor of Philosophy" Ph.D. Division of Mathematics and Natural Sciences of the Georg-August-Universität Göttingen within the doctoral program in Biology of the Georg-August University School of Science (GAUSS) Submitted by Soumya Biswas from Ranchi (India) Göttingen, 2016 Thesis Committee Prof. Dr. Rolf Daniel Department of Genomic and Applied Microbiology, Institute of Microbiology and Genetics, Faculty of Biology and Psychology, Georg-August-Universität Göttingen, Germany PD Dr. Michael Hoppert Department of General Microbiology, Institute of Microbiology and Genetics, Faculty of Biology and Psychology, Georg-August-Universität Göttingen, Germany Members of the Examination Board Reviewer: Prof. Dr. Rolf Daniel, Department of Genomic and Applied Microbiology, Institute of Microbiology and Genetics, Faculty of Biology and Psychology, Georg-August-Universität Göttingen, Germany Second Reviewer: PD Dr. Michael Hoppert, Department of General Microbiology, Institute of Microbiology and Genetics, Faculty of Biology and Psychology, Georg-August-Universität Göttingen, Germany Further members of the Examination Board: Prof. Dr. Burkhard Morgenstern, Department of Bioinformatics, Institute of Microbiology and Genetics, Faculty of Biology and Psychology, Georg-August-Universität Göttingen, Germany PD Dr. Fabian Commichau, Department of General Microbiology,
    [Show full text]
  • Population Changes in a Community of Alkaliphilic Iron-Reducing
    Water Air Soil Pollut (2015) 226:180 DOI 10.1007/s11270-015-2437-z Population Changes in a Community of Alkaliphilic Iron-Reducing Bacteria Due to Changes in the Electron Acceptor: Implications for Bioremediation at Alkaline Cr(VI)-Contaminated Sites Samuel J. Fuller & Ian T. Burke & Duncan G. G. McMillan & Weixuan Ding & Douglas I. Stewart Received: 6 November 2014 /Accepted: 27 April 2015 # The Author(s) 2015. This article is published with open access at Springerlink.com Abstract A serial enrichment culture has been grown Cr(VI) on growth, and thus attempt to understand the in an alkaline Fe(III)-citrate-containing medium from an factors that are controlling Cr(III) accumulation beneath initial inoculum from a soil layer beneath a chromium the COPR site. The culture can grow fermentatively at ore processing residue (COPR) disposal site where pH 9.2, but growth is stronger when it is associated with Cr(III) is accumulating from Cr(VI) containing leachate. Fe(III) reduction. It can withstand Cr(VI) in the medi- This culture is dominated by two bacterial genera in the um, but growth only occurs once Cr(VI) is removed order Clostridiales, Tissierella, and an unnamed Clos- from solution. Cr(VI) reduced the abundance of tridium XI subgroup. This paper investigates the growth Tissierella sp. in the culture, whereas the Clostridium characteristics of the culture when Cr(VI) is added to the XI sp. was Cr(VI) tolerant. In contrast, growth with solid growth medium and when aquifer sand is substituted for phase Fe(III)-oxyhydroxides (present as coatings on Fe(III)-citrate.
    [Show full text]