Phase Equilibria: How to Calculate Oxygen Solubility in Cell

Total Page:16

File Type:pdf, Size:1020Kb

Phase Equilibria: How to Calculate Oxygen Solubility in Cell BE.360J/10.449J SUPPLEMENTARY HANDOUT FALL 2002 PHASE EQUILIBRIA:HOW TO CALCULATE OXYGEN SOLUBILITY IN CELL CULTURE MEDIUM 1. Phase Equilibria Introduction A collection of molecules is in equilibrium with its surroundings if there is no net transfer of energy or matter across the boundaries to the environment. Individual molecules may constantly be zinging across the boundaries, or bumping into neighbors and transferring heat, due to thermal motion. But if we average over millions of molecules, the number of molecules leaving the volume of interest ("control volume") gets cancelled out by an equal number returning to the control volume, so the net motion across the boundary is zero. This situation is analogous to chemical reaction equilibrium -- when equilibrium is reached, the rate of the forward reaction is equal to the rate of the reverse reaction, and there is no net measurable change in the concentration of reactants or products with time. In each case, the equilibrium is dynamic, meaning that forward and reverse reactions are constantly occurring. However, the overall measurable properties of the system do not change with time, and we consider the system at equilibrium1. Definitions and Measuring Equilibria (1) Consider first the situation where Phase I and Phase II are pure components A and B (phases are liquid, solid, or gas). Imagine that you put A & B together in a closed vial, shook the vial vigorously, then waited an "infinitely" long time, keeping the vial at constant temperature. At infinity, you should observe 2 separate phases (e.g., a layer of salt crystals at the bottom of a layer of water; oil layered on top of water, or liquid/gas). [Note -- if you do not observe 2 phases at infinite time, then you did not add enough of the component in the missing phase…i.e., you did not reach its solubility limit. Go back and add more until you see two phases at infinity…] You then carefully withdraw a small sample of Phase II and determine the concentration of A in it. This concentration is defined as the "solubility" of A in B -- it is the most A that will ever dissolve in B at that temperature. You also withdraw a small amount of Phase I and measure the concentration of B in it. This gives you the solubility of "B" in "A" at that temperature. How do you know you are at equilibrium? It is 1 [Note -- we reserve the term "equilibrium" for a system where no net transfer of stuff is occurring. We use "steady state" to refer to a system where there may be net transfer of mass or energy to designate that the rate of transfer does not change with time. Steady state of course also implies that concentration profiles or temperature profiles do not change with time. An equilibrium system is at steady state, but a steady state system is not always at equilibrium] -1- not always easy to tell! Systems come to equilibrium over anywhere from a few moments to a few days. Equilibrium is determined by careful sampling, always keeping the vial at a constant temperature. When the concentrations no longer change with time (may require many many points to determine you have a flat line within statistical significance), you are at equilibrium. If "A" (Phase I) is a liquid and "B" (Phase II) is a gas, the equilibrium concentration of A in B is usually reported as a vapor pressure of A, and is often designated as a "saturation" vapor pressure. Antoine's equation is a common correlation of the vapor pressures of various compounds as a function of temperature. Gasses (such as oxygen and nitrogen) are typically only sparingly soluble in liquids and their solubilities are typically reported as Henry's Law coefficients. Liquid/liquid solubilities are often reported as volume percents (vol%). [For example, when water and oil are mixed, a small amount of water dissolves in the oil, as in the homework problem]. The solubilities of solids in liquids are often reported as weight percents (wt%). There is no set, standard reporting structure, so just look at units carefully. (2) Now consider that Phase I and Phase II are pure components A & B and a small amount of component "C" is added. Component C distributes throughout the two phases according to its relative solubility in each phase. Visualize a container filled with an oil/water mix (A&B), to which a brilliant blue hydrophilic dye ("C") is added. The water phase will appear deep blue, but the oil phase will appear only faintly blue. Hydrophilic means "water-loving," and the dye partitions into the aqueous phase. [Note that such dyed, oil/water-filled devices were a commercial fad not too long ago as "instant ocean" (usually, the "oceans" contained a tiny air bubble to allow for thermal expansion/contraction).] Akeyfactorin understanding phase equilibria is to realize that there are two possible routes to determining the concentrations of the dye (aka, component "C") in each of the two phases. Both methods give you a parameter known as the partition coefficient -- the relative solubility in one phase compared to the other, or ceqm = = I eqm K partition coefficient eqm ,wherecI denotes the concentration of C in phase I cII eqm when the system is at equilibrium, and cII denotes the concentration of C in phase II when the system is at equilibrium. METHOD ONE: Conduct experiments such as those in part (a) where you determine the solubility of C in A and B respectively. In other words, you add C to A so that you have two phases, and measure the concentration of C in A to get its solubility, and do the same thing for C mixed with B. An alternative that saves on vials is to mix A, B, & C to get 3 phases (imagine adding enough dye to the "ocean" that it precipitates out) and measure the concentration of C in the A & B phases. The partition coefficient is then the ratio of the = solub ility limit so lubility limit solubilities of C in Phase I and Phase II respectively, or K cI / cII .A subtle assumption we make with this approach is that the solubilities of A&B in each other do not affect the solubility of C in either phase. This approach is generally used if you have tabulated solubilities of C in A and C in B, but no tabulated partition coefficient. So, if you are told for example that the solubility of the dye in water (phase I) is 100 mM and in the oil it is 0.1mM, the partition coefficient is 100/0.1 = 1000. -2- METHOD TWO: Simply measure the concentration of C in each phase after the system is at equilibrium, even if C is well below its solubility limit in the two phases. The chemical potential of C has to be the same in each phase, and thus the ratio of concentrations in the two phases is always the partition coefficient. For example, you add a small amount of the dye to the oil/water mix -- say, just enough to get a visible blue color in the water -- and find that the concentration in the water (phase I) is 20 mM. You then measure the concentration in the oil phase and find that it is 0.02 mM. Then K = 20/0.02 = 1000. You then decide to add more dye to get a deeper blue, and find that the concentration in the water phase (after the system came to equilibrium) is now 45 mM. You measure the concentration in the oil phase and find that it is 0.045mM. The partition coefficient is 45/0.045 = 1000. You could take a similar approach to determine the Henry's law coefficient for oxygen in water -- add water and a nitrogen/oxygen mix to the vial, and measure the final equilibrium concentrations in each phase as the nitrogen-oxygen ratio is varied. 2. Mass Transfer Across Interfaces Mass transfer is inherently a non-equilibrium process, characterized by the net motion of molecules down a concentration gradient. We study mass transfer at the continuum scale (i.e., anything we do is averaged over zillions of molecules), and the concentration profile of the diffusing solute is continuous within a single phase. Often, mass transfer occurs across the interface between two phases -- liquid/liquid (e.g., oil/water), liquid/gas (e.g., air/water), liquid/solid (e.g., water/polymer film), or gas/solid (e.g., air/polymer film). In this class, we will consider only diffusion of dilute solutes and "slow" mass transfer rates. The nature of the interface is not disrupted due to convective flow of material across the interface under these conditions. At the interface between two phases, the chemical potential of the diffusing solute in phase I must equal that in phase II. We imagine that the interface between the two phases is an infinitely thin plane and that the phases are in equilibrium in this plane. There is typically a discontinuity in concentration at the interface. Here at the interface, the concentration of the diffusing solute A in Phase I is related to that in Phase II via a partition coefficient, Henry's law coefficient, vapor pressure, etc. Note that the concentration of A at the interface is often well below its solubility limit, but that partition coefficients, etc., are simply the relative concentrations in each phase at equilibrium. -3- OXYGEN SOLUBILITY IN CELL CULTURE MEDIA and CELLULAR OXYGEN CONSUMPTION RATES The solubility of gasses in liquids is correlated in terms of “Henry’s Law,” which says the concentration of gas dissolved in the liquid is linearly proportional to the partial pressure (or concentration) of the gas in the vapor phase: Hcliq =Pgas Values of H for oxygen dissolved in select liquids: Solvent H (atm-L/mmol) Pure water (15°C) 0.65 Pure water (25°C) 0.79 Pure water (35°C) 0.92 1M NaCl (25°C) 1.12 Cell culture medium (37°C) 1.08 For cell culture medium in equilibrium with pure air at 37°C, the concentration of dissolved oxygen can be calculated as: CO2 = (0.21 atm)/ H = (0.21 atm)/(1.08atm-L/mmol) = 0.19 mmol/L Cell culture media typically use carbon dioxide at 5-10% in the gas phase as a buffer, and the air is usually humidified to prevent evaporation.
Recommended publications
  • Understanding Variation in Partition Coefficient, Kd, Values: Volume II
    United States Office of Air and Radiation EPA 402-R-99-004B Environmental Protection August 1999 Agency UNDERSTANDING VARIATION IN PARTITION COEFFICIENT, Kd, VALUES Volume II: Review of Geochemistry and Available Kd Values for Cadmium, Cesium, Chromium, Lead, Plutonium, Radon, Strontium, Thorium, Tritium (3H), and Uranium UNDERSTANDING VARIATION IN PARTITION COEFFICIENT, Kd, VALUES Volume II: Review of Geochemistry and Available Kd Values for Cadmium, Cesium, Chromium, Lead, Plutonium, Radon, Strontium, Thorium, Tritium (3H), and Uranium August 1999 A Cooperative Effort By: Office of Radiation and Indoor Air Office of Solid Waste and Emergency Response U.S. Environmental Protection Agency Washington, DC 20460 Office of Environmental Restoration U.S. Department of Energy Washington, DC 20585 NOTICE The following two-volume report is intended solely as guidance to EPA and other environmental professionals. This document does not constitute rulemaking by the Agency, and cannot be relied on to create a substantive or procedural right enforceable by any party in litigation with the United States. EPA may take action that is at variance with the information, policies, and procedures in this document and may change them at any time without public notice. Reference herein to any specific commercial products, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government. ii FOREWORD Understanding the long-term behavior of contaminants in the subsurface is becoming increasingly more important as the nation addresses groundwater contamination. Groundwater contamination is a national concern as about 50 percent of the United States population receives its drinking water from groundwater.
    [Show full text]
  • Henry's Law Constants and Micellar Partitioning of Volatile Organic
    38 J. Chem. Eng. Data 2000, 45, 38-47 Henry’s Law Constants and Micellar Partitioning of Volatile Organic Compounds in Surfactant Solutions Leland M. Vane* and Eugene L. Giroux United States Environmental Protection Agency, National Risk Management Research Laboratory, 26 West Martin Luther King Drive, Cincinnati, Ohio 45268 Partitioning of volatile organic compounds (VOCs) into surfactant micelles affects the apparent vapor- liquid equilibrium of VOCs in surfactant solutions. This partitioning will complicate removal of VOCs from surfactant solutions by standard separation processes. Headspace experiments were performed to quantify the effect of four anionic surfactants and one nonionic surfactant on the Henry’s law constants of 1,1,1-trichloroethane, trichloroethylene, toluene, and tetrachloroethylene at temperatures ranging from 30 to 60 °C. Although the Henry’s law constant increased markedly with temperature for all solutions, the amount of VOC in micelles relative to that in the extramicellar region was comparatively insensitive to temperature. The effect of adding sodium chloride and isopropyl alcohol as cosolutes also was evaluated. Significant partitioning of VOCs into micelles was observed, with the micellar partitioning coefficient (tendency to partition from water into micelle) increasing according to the following series: trichloroethane < trichloroethylene < toluene < tetrachloroethylene. The addition of surfactant was capable of reversing the normal sequence observed in Henry’s law constants for these four VOCs. Introduction have long taken advantage of the high Hc values for these compounds. In the engineering field, the most common Vast quantities of organic solvents have been disposed method of dealing with chlorinated solvents dissolved in of in a manner which impacts human health and the groundwater is “pump & treat”swithdrawal of ground- environment.
    [Show full text]
  • Partition Coefficients in Mixed Surfactant Systems
    Partition coefficients in mixed surfactant systems Application of multicomponent surfactant solutions in separation processes Vom Promotionsausschuss der Technischen Universität Hamburg-Harburg zur Erlangung des akademischen Grades Doktor-Ingenieur genehmigte Dissertation von Tanja Mehling aus Lohr am Main 2013 Gutachter 1. Gutachterin: Prof. Dr.-Ing. Irina Smirnova 2. Gutachterin: Prof. Dr. Gabriele Sadowski Prüfungsausschussvorsitzender Prof. Dr. Raimund Horn Tag der mündlichen Prüfung 20. Dezember 2013 ISBN 978-3-86247-433-2 URN urn:nbn:de:gbv:830-tubdok-12592 Danksagung Diese Arbeit entstand im Rahmen meiner Tätigkeit als wissenschaftliche Mitarbeiterin am Institut für Thermische Verfahrenstechnik an der TU Hamburg-Harburg. Diese Zeit wird mir immer in guter Erinnerung bleiben. Deshalb möchte ich ganz besonders Frau Professor Dr. Irina Smirnova für die unermüdliche Unterstützung danken. Vielen Dank für das entgegengebrachte Vertrauen, die stets offene Tür, die gute Atmosphäre und die angenehme Zusammenarbeit in Erlangen und in Hamburg. Frau Professor Dr. Gabriele Sadowski danke ich für das Interesse an der Arbeit und die Begutachtung der Dissertation, Herrn Professor Horn für die freundliche Übernahme des Prüfungsvorsitzes. Weiterhin geht mein Dank an das Nestlé Research Center, Lausanne, im Besonderen an Herrn Dr. Ulrich Bobe für die ausgezeichnete Zusammenarbeit und der Bereitstellung von LPC. Den Studenten, die im Rahmen ihrer Abschlussarbeit einen wertvollen Beitrag zu dieser Arbeit geleistet haben, möchte ich herzlichst danken. Für den außergewöhnlichen Einsatz und die angenehme Zusammenarbeit bedanke ich mich besonders bei Linda Kloß, Annette Zewuhn, Dierk Claus, Pierre Bräuer, Heike Mushardt, Zaineb Doggaz und Vanya Omaynikova. Für die freundliche Arbeitsatmosphäre, erfrischenden Kaffeepausen und hilfreichen Gespräche am Institut danke ich meinen Kollegen Carlos, Carsten, Christian, Mohammad, Krishan, Pavel, Raman, René und Sucre.
    [Show full text]
  • Estimation of Distribution Coefficients from the Partition Coefficient and Pka Douglas C
    Estimation of Distribution Coefficients from the Partition Coefficient and pKa Douglas C. Scott* and Jeffrey W. Clymer he use of partition coefficients has received much atten- tion in the assessment of relative lipophilicity and hy- drophilicity of a compound. Recent advances in com- putational chemistry have enabled scientists to estimate Tpartition coefficients for neutral species very easily. For ioniz- able species, the distribution coefficient is a more relevant pa- rameter; however, less effort has been applied to its assessment. Knowledge of the distribution coefficient and pKa is important The authors discuss for the basic characterization of a compound (1), particularly the relationship when assessing the compound’s potential to penetrate biolog- between the partition ical or lipid barriers (2). In addition, the majority of compounds coefficient and the are passively absorbed and a large number of new chemical en- distribution coefficient tities fail in the development stages because of related phar- and relate the two with the use of equations. macokinetic reasons (3). Assessing a compound’s relative lipophilicity dictates a formulation strategy that will ensure ab- To accurately explain this relationship, the sorption or tissue penetration, which ultimately will lead to de- authors consider the partitioning of both the livery of the drug to the site of action. In recognition of the ionized and un-ionized species.The presence value of knowing the extent of a drug’s gastrointestinal per- of both species in the oil phase necessitates a meation along with other necessary parameters, FDA has is- dissociative equilibrium among these species sued guidance for a waiver of in vivo bioavailability and bio- such as that in the water phase.
    [Show full text]
  • 1 Supplementary Material to the Paper “The Temperature and Pressure Dependence of Nickel Partitioning Between Olivine and Sili
    SUPPLEMENTARY MATERIAL TO THE PAPER “THE TEMPERATURE AND PRESSURE DEPENDENCE OF NICKEL PARTITIONING BETWEEN OLIVINE AND SILICATE MELT” A. K. Matzen, M. B. Baker, J. R. Beckett, and E. M. Stolper. In this Supplement, we provide seven sections that expand and/or illustrate specific topics presented in the main text. The first section is a sample calculation using our preferred partitioning expression, equation (5), from the main text. Section 2 compares our fitted values of ∆ r HT ,P ∆ r ST ,P − ref ref and ref ref for equation (5) to those calculated using tabulated thermodynamic R R data. In Section 3, we present details of the mass-balance calculations used to evaluate the experiments from both this work and the literature, and in Section 4 we describe in detail the construction of the Filter-B dataset. Section 5 details the construction and fits of the regular solution partitioning models. Section 6 is a comparison of the results of this work and the Beattie-Jones family of models. Finally, Section 7 lists all of the references incorporated into our database on olivine-liquid Ni partitioning. 1. EXAMPLE CALCULATION USING OUR PREFERRED PARTITIONING EXPRESSION (EQUATION 5) FROM THE MAIN TEXT Although one of the simplest equations listed in the text, we think it useful to present a detailed accounting of how to use equation (5) along with the fitted parameters presented in Table 4 to ol /liq ol /liq ol liq predict DNi (where DNi = NiO /NiO , by wt.) given the temperature and compositions of the coexisting olivine and liquid. In our example calculation, we predict the partition coefficient for one of our 1.0 GPa experiments, Run 6.
    [Show full text]
  • Calculating the Partition Coefficients of Organic Solvents in Octanol/Water and Octanol/Air
    Article Cite This: J. Chem. Inf. Model. XXXX, XXX, XXX−XXX pubs.acs.org/jcim Calculating the Partition Coefficients of Organic Solvents in Octanol/ Water and Octanol/Air † ‡ § ∥ Miroslava A. Nedyalkova,*, Sergio Madurga, Marek Tobiszewski, and Vasil Simeonov † Inorganic Chemistry Department, Faculty of Chemistry and Pharmacy, University of Sofia, Sofia 1164, Bulgaria ‡ Departament de Ciencià de Materials i Química Física and Institut de Química Teoricà i Computacional (IQTCUB), Universitat de Barcelona, 08028 Barcelona, Catalonia, Spain § Department of Analytical Chemistry, Faculty of Chemistry, Gdansḱ University of Technology (GUT), 80-233 Gdansk,́ Poland ∥ Analytical Chemistry Department, Faculty of Chemistry and Pharmacy, University of Sofia, Sofia 1164, Bulgaria *S Supporting Information ABSTRACT: Partition coefficients define how a solute is distributed between two immiscible phases at equilibrium. The experimental estimation of partition coefficients in a complex system can be an expensive, difficult, and time-consuming process. Here a computa- tional strategy to predict the distributions of a set of solutes in two relevant phase equilibria is presented. The octanol/water and octanol/air partition coefficients are predicted for a group of polar solvents using density functional theory (DFT) calculations in combination with a solvation model based on density (SMD) and are in excellent agreement with experimental data. Thus, the use of quantum-chemical calculations to predict partition coefficients from free energies should be a valuable alternative for unknown solvents. The obtained results indicate that the SMD continuum model in conjunction with any of the three DFT functionals (B3LYP, M06-2X, and M11) agrees with the observed experimental values. The highest correlation to experimental data for the octanol/water partition coefficients was reached by the M11 functional; for the octanol/air partition coefficient, the M06-2X functional yielded the best performance.
    [Show full text]
  • Raoult's Law – Partition Law
    BAE 820 Physical Principles of Environmental Systems Henry’s Law - Raoult's Law – Partition law Dr. Zifei Liu Biological and Agricultural Engineering Henry's law • At a constant temperature, the amount of a given gas that dissolves in a given type and volume of liquid is directly proportional to the partial pressure of that gas in equilibrium with that liquid. Pi = KHCi • Where Pi is the partial pressure of the gaseous solute above the solution, C is the i William Henry concentration of the dissolved gas and KH (1774-1836) is Henry’s constant with the dimensions of pressure divided by concentration. KH is different for each solute-solvent pair. Biological and Agricultural Engineering 2 Henry's law For a gas mixture, Henry's law helps to predict the amount of each gas which will go into solution. When a gas is in contact with the surface of a liquid, the amount of the gas which will go into solution is proportional to the partial pressure of that gas. An equivalent way of stating the law is that the solubility of a gas in a liquid is directly proportional to the partial pressure of the gas above the liquid. the solubility of gases generally decreases with increasing temperature. A simple rationale for Henry's law is that if the partial pressure of a gas is twice as high, then on the average twice as many molecules will hit the liquid surface in a given time interval, Biological and Agricultural Engineering 3 Air-water equilibrium Dissolution Pg or Cg Air (atm, Pa, mol/L, ppm, …) At equilibrium, Pg KH = Caq Water Caq (mol/L, mole ratio, ppm, …) Volatilization Biological and Agricultural Engineering 4 Various units of the Henry’s constant (gases in water at 25ºC) Form of K =P/C K =C /P K =P/x K =C /C equation H, pc aq H, cp aq H, px H, cc aq gas Units L∙atm/mol mol/(L∙atm) atm dimensionless -3 4 -2 O2 769 1.3×10 4.26×10 3.18×10 -4 4 -2 N2 1639 6.1×10 9.08×10 1.49×10 -2 3 CO2 29 3.4×10 1.63×10 0.832 Since all KH may be referred to as Henry's law constants, we must be quite careful to check the units, and note which version of the equation is being used.
    [Show full text]
  • Procedures to Implement the Texas Surface Water Quality Standards
    Procedures to Implement the Texas Surface Water Quality Standards Prepared by Water Quality Division RG-194 June 2010 1 Contents Introduction................................................................................................. 12 Determining Water Quality Uses and Criteria........................................ 14 Classified Waters .......................................................................................................... 14 Unclassified Waters ...................................................................................................... 14 Presumed Aquatic Life Uses......................................................................................... 14 Assigned Aquatic Life Uses...................................................................................... 16 Evaluating Impacts on Water Quality...................................................... 20 General Information...................................................................................................... 20 Minimum and Seasonal Criteria for Dissolved Oxygen............................................... 21 Federally Endangered and Threatened Species ............................................................ 21 Screening Process ..................................................................................................... 22 Additional Permit Limits .......................................................................................... 22 Edwards Aquifer ......................................................................................................
    [Show full text]
  • Calculation of the Water-Octanol Partition Coefficient of Cholesterol for SPC, TIP3P, and TIP4P Water
    Calculation of the water-octanol partition coefficient of cholesterol for SPC, TIP3P, and TIP4P water Cite as: J. Chem. Phys. 149, 224501 (2018); https://doi.org/10.1063/1.5054056 Submitted: 29 August 2018 . Accepted: 13 November 2018 . Published Online: 11 December 2018 Jorge R. Espinosa, Charlie R. Wand, Carlos Vega , Eduardo Sanz, and Daan Frenkel COLLECTIONS This paper was selected as an Editor’s Pick ARTICLES YOU MAY BE INTERESTED IN Common microscopic structural origin for water’s thermodynamic and dynamic anomalies The Journal of Chemical Physics 149, 224502 (2018); https://doi.org/10.1063/1.5055908 Improved general-purpose five-point model for water: TIP5P/2018 The Journal of Chemical Physics 149, 224507 (2018); https://doi.org/10.1063/1.5070137 Comparison of simple potential functions for simulating liquid water The Journal of Chemical Physics 79, 926 (1983); https://doi.org/10.1063/1.445869 J. Chem. Phys. 149, 224501 (2018); https://doi.org/10.1063/1.5054056 149, 224501 © 2018 Author(s). THE JOURNAL OF CHEMICAL PHYSICS 149, 224501 (2018) Calculation of the water-octanol partition coefficient of cholesterol for SPC, TIP3P, and TIP4P water Jorge R. Espinosa,1 Charlie R. Wand,2,3 Carlos Vega,1 Eduardo Sanz,1 and Daan Frenkel2 1Departamento de Quimica Fisica, Facultad de Ciencias Quimicas, Universidad Complutense de Madrid, 28040 Madrid, Spain 2Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom 3School of Chemical Engineering and Analytical Science, University of Manchester, Manchester M13 9PL, United Kingdom (Received 29 August 2018; accepted 13 November 2018; published online 11 December 2018) We present a numerical study of the relative solubility of cholesterol in octanol and water.
    [Show full text]
  • And Octanol-Water Partition Coefficient (Kow) Data for Hydrophobic Organic Compounds: DDT and DDE As a Case Study
    U.S. Department of the Interior U.S. Geological Survey The Search for Reliable Aqueous Solubility (Sw) and Octanol-Water Partition Coefficient (Kow) Data for Hydrophobic Organic Compounds: DDT and DDE as a Case Study By James Pontolillo and Robert P. Eganhouse U.S. Geological Survey Water-Resources Investigations Report 01-4201 Reston, Virginia 2001 U.S. DEPARTMENT OF THE INTERIOR BRUCE BABBITT, Secretary U.S. GEOLOGICAL SURVEY Charles G. Groat, Director The use of firm, trade, and brand names in this report is for identification purposes only and does not constitute endorsement by the U.S. Government. For additional information write to: Copies of this report can be purchased from: Branch Chief U.S. Geological Survey Branch of Regional Research Branch of Information Services Eastern Region Box 25286, Federal Center U.S. Geological Survey Denver, CO 80225-0286 12201 Sunrise Valley Drive Telephone: 1-888-ASK-USGS Mail Stop 432 Reston, VA 20192 This report can be accessed at: http://pubs.water.usgs.gov/wri01-4201/ CONTENTS Abstract............................................................................................................................................................................... 1 Introduction ........................................................................................................................................................................ 2 Background..............................................................................................................................................................
    [Show full text]
  • SVOC Partitioning Between the Gas Phase and Settled Dust Indoors
    Atmospheric Environment 44 (2010) 3609e3620 Contents lists available at ScienceDirect Atmospheric Environment journal homepage: www.elsevier.com/locate/atmosenv Review SVOC partitioning between the gas phase and settled dust indoors Charles J. Weschler a,b,*, William W Nazaroff c a Environmental and Occupational Health Sciences Institute, University of Medicine and Dentistry of New Jersey and Rutgers University, Piscataway, NJ 08854, USA b International Centre for Indoor Environment and Energy, Technical University of Denmark, DK-2800 Lyngby, Denmark c Department of Civil and Environmental Engineering, University of California, Berkeley, CA 94720-1710, USA article info abstract Article history: Semivolatile organic compounds (SVOCs) are a major class of indoor pollutants. Understanding SVOC Received 17 February 2010 partitioning between the gas phase and settled dust is important for characterizing the fate of these Received in revised form species indoors and the pathways by which humans are exposed to them. Such knowledge also helps in 11 June 2010 crafting measurement programs for epidemiological studies designed to probe potential associations Accepted 14 June 2010 between exposure to these compounds and adverse health effects. In this paper, we analyze published data from nineteen studies that cumulatively report measurements of dustborne and airborne SVOCs in Keywords: more than a thousand buildings, mostly residences, in seven countries. In aggregate, measured median Exposure pathways fi Flame retardants data are reported in these studies for 66 different SVOCs whose octanol-air partition coef cients (Koa) fi Indoor environment span more than ve orders of magnitude. We use these data to test a simple equilibrium model for Octanol-air partitioning estimating the partitioning of an SVOC between the gas phase and settled dust indoors.
    [Show full text]
  • Logp—Making Sense of the Value Sanjivanjit K
    Application Note LogP—Making Sense of the Value Sanjivanjit K. Bhal Advanced Chemistry Development, Inc. Toronto, ON, Canada www.acdlabs.com Introduction The fact that water and many organic substances do not mix but form separate layers when combined together has far-reaching implications for chemistry, biology, and the environment. The partition coefficient (P) describes the propensity of a neutral (uncharged) compound to dissolve in an immiscible biphasic system of lipid (fats, oils, organic solvents) and water. In simple terms, it measures how much of a solute dissolves in the water portion versus an organic portion. Solutes that are predominantly dissolved in the water layer are called hydrophilic (water liking) and those predominantly dissolved in lipids are lipophilic (lipid liking). The partition coefficient is an important measurement of the physical nature of a substance and thereby a predictor of its behavior in different environments. The logP value provides indications on whether a substance will be absorbed by plants, animals, humans, or other living tissue; or be easily carried away and disseminated by water.1 As a result of its wide and varied applications, the partition coefficient is also referred to as Kow or Pow. The logP value is a constant defined in the following manner: LogP = log10 (Partition Coefficient) Partition Coefficient, P = [organic]/[aqueous] Where [ ] indicates the concentration of solute in the organic and aqueous partition. A negative value for logP means the compound has a higher affinity for the aqueous phase (it is more hydrophilic); when logP = 0 the compound is equally partitioned between the lipid and aqueous phases; a positive value for logP denotes a higher concentration in the lipid phase (i.e., the compound is more lipophilic).
    [Show full text]