Le Rôle Des Collisions Avec L'hydrogène Dans La Determination

Total Page:16

File Type:pdf, Size:1020Kb

Le Rôle Des Collisions Avec L'hydrogène Dans La Determination Le rôle des collisions avec l’hydrogène dans la determination hors-ETL de l’abondance du fer dans les étoiles froides Rana Ezzeddine To cite this version: Rana Ezzeddine. Le rôle des collisions avec l’hydrogène dans la determination hors-ETL de l’abondance du fer dans les étoiles froides. Astrophysique [astro-ph]. Université Montpellier, 2015. Français. <NNT : 2015MONTS147>. <tel-01990687> HAL Id: tel-01990687 https://tel.archives-ouvertes.fr/tel-01990687 Submitted on 23 Jan 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Délivré par l’ Université de Montpellier Préparée au sein de l’école doctorale I2S Et du Laboratoire Univers et Particules de Montpellier Spécialité: Physique Présentée par EZZEDDINE Rana [email protected] Le rôle des collisions inélastique avec l’hydrogène dans la détermination hors-ETL de l’abondance du fer dans les étoiles froides M. Bertrand Plez Professeur Directeur de thèse M. Marwan Gebran Maître de conférences co-directeur de thèse M. Piercarlo Bonifacio Directeur de recherche CNRS Rapporteur M. Frédéric Thévenin Directeur de recherche CNRS Rapporteur M. Frédéric Paletou Astronome Examinateur M. Matthias Steffen Professeur Examinateur Non-LTE Iron abundance determination in cool stars: The role of Hydrogen collisions Rana Ezzeddine December, 2015 2 Résumé La détermination d’abondances stellaires très précises est un objectif majeur de la plu- part des études spectroscopiques. L’hypothèse de l’équilibre thermodynamique local (ETL), largement utilisée dans les analyses spectroscopiques, est souvent inadéquate pour déter- miner les abondances et les paramètres stellaires, particulièrement pour les étoiles géantes ou pauvres en métaux, où les effets hors-ETL dominent. C’est pourquoi, une modélisation hors-ETL des spectres stellaires est cruciale afin de reproduire les observations et ainsi déterminer avec précision les paramètres stellaires. Cette modélisation hors-ETL nécessite l’utilisation d’un grand jeu de données atomiques, qui ne sont pas toujours connues avec certitude. Les taux de collisions avec l’hydrogène sont une des sources d’incertitudes les plus fortes dans le cas des étoiles froides. Ces taux sont souvent approximés en considérant une approche classique (l’approximation de Drawin), et ceci seulement dans le cas de transi- tions permises liée-liée et d’ionisations. Cette approche classique, tend à surestimer le taux de collision et ne reproduit pas correctement le comportement en fonction de l’énergie de la transition. Je démontre dans cette thèse l’incapacité de l’approximation de Drawin à décrire le taux de collisions avec l’hydrogène. Je présente une nouvelle méthode empirique pour estimer ce taux, par le biais d’ajustement sur des taux quantiques existant pour d’autres éléments. Je montre ensuite que cette méthode d’ajustement quantique (que je nomme QFM) permet de reproduire les résultats des modélisations hors-ETL effectuées avec des taux quantiques existants (cas du Si). J’utilise ensuite cette nouvelle méthode, avec mon propre modèle d’atome de fer, sur des étoiles de référence issues du " Gaia-ESO survey", ce qui me permet de déterminer empiriquement les taux de collision avec l’hydrogène. En partant de paramètres photosphériques non-spectroscopiques, je détermine les abondances en fer de ces étoiles de référence dans le cas ETL comme hors-ETL. Les résultats dans le cas hors-ETL montrent un très bon accord entre les abondances de fer neutre et ionisé avec de faibles écarts raie à raie, particulièrement dans le cas des étoiles pauvres en métaux. Finalement cette méthode est validée par une comparaison avec des calculs quantiques très récents et encore non publiés. 3 Abstract Determination of high precision abundances has and will always be an important goal of all spectroscopic studies. The use of LTE assumption in spectroscopic analyses has been extensively shown in the literature to badly affect the determined abundances and stellar parameters, especially in metal-poor and giant stars which can be subject to large non-LTE effects. Non-LTE modeling of stellar spectra is therefore essential to accurately reproduce the observations and derive stellar abundances. Non-LTE calculations require the input of a bulk of atomic data, which may be subject to uncertainties. In cool stars, hydrogen collisional rates are a major source of uncertainty, which are often approximated using a classical recipe (the Drawin approximation) for allowed bound-bound, and ionization tran- sitions only. This approximation has been shown to overestimate the collisional rates, and does not reproduce the correct behavior with energies. I demonstrate in this dissertation the inability of the Drawin approximation to describe the hydrogen collisional rates. I intro- duce a new method to estimate these rates based on fitting the existing quantum rates of several elements. I show that this quantum fitting method (QFM) performs well in non-LTE calculations when detailed quantum rates are not available, and is able to reproduce the results obtained with the quantum rates (the case of Si). I test the newly proposed method, with a complete iron model atom that I developed, on a reference set of stars from the "Gaia-ESO survey". Starting from well determined non-spectroscopic atmospheric parame- ters, I determine 1D, non-LTE, and LTE iron abundances for this set of stars. The non-LTE results show excellent agreement between Fe I and Fe II abundances and small line-by-line dispersions, especially for the metal-poor stars. The method is validated upon comparison with new preliminary Fe I+H quantum calculations, whose fits show an excellent agreement with ours. 4 “And you run and you run to catch up with the sun but it’s sinking. Racing around to come up behind you again. The sun is the same in a relative way, but you’re older. Shorter of breath and one day closer to death." — Pink Floyd 5 Acknowledgements First and foremost I would like to thank my Ph.D. advisors Bertrand Plez and Marwan Gebran. They helped me realize my dream of becoming a researcher and an Astrophysicist. And for that I am immensely thankful. Bertrand taught me how to think critically and not to "go with the flow", and not be afraid to take risks and try new ideas. He was supportive and caring. I appreciate all his contributions of time, ideas, and funding and opportunities to make my Ph.D. experience productive. The enthusiasm he has for his research was contagious and motivational for me, even during tough times in the Ph.D. pursuit. Marwan was the reason I applied for this Ph.D. scholarship and where I stand today. He helped me forever change my life and for that I am greatly indebted. He provided the support and positivity to keep going in the good and tough times all throughout his acquain- tance. His immense patience and scientific knowledge and advices were very important to the completion of this work. One of the most important people contributing to this thesis that I would equally like to thank is Thibault Merle (Brussels). He generously provided me with so much knowledge on non-LTE calculations, the radiative transfer code MULTI, atomic data and models and much much more. Without his help, this thesis would have been much more difficult to accomplish. His respectfulness, kindness and enthusiasm for science made the work all the more interesting. It was a pleasure working and collaborating with you these past three years. I thank the members of the jury who accepted to asses my work: Frédéric Thévenin, Piercarlo Bonifacio, Frédéric Paletou and Matthias Steffen. Their time and valuable com- ments are highly appreciated. In addition to my advisors and collaborators, I am greatly thankful to all the colleagues of LUPM 1 (permanent and non-permanent, administration and technicians). Thank you, first of all, for the directors and co-directors of the lab throughout the past three years: Fabrice Feinstein, Bertrand Plez, Denis Puy, Agnes Lèbre and Georges Vasileiadis for their support and help in solving all encountered administrative problems. A special thank you for the AS 2 team members who have been my surrogate family throughout the last three years when I was away from mine: Fabrice Martins, Ana Palacios, Eric Josselin, Dhabia Tahlbi, Yohann Scribano, Henri Reboul, Nicolas Mauron, Gérard Jasniewicz, Olivier Richard, and Julien Morin (his holy figure for Julianism ©) for their immense support, kindness, knowledge, guidance and very good sense of humour. I was very happy to be part of your team for the past three years. A very big thank you goes equally to all the fellow Ph.D. students and postdocs with whome I have spent time at LUPM and outside it throughout these past three years and left a pleasant impact on my life. The great times spent together and your friendship means a lot to me! Thank you for Pierre Ghesquiere, Louis Amard, Anthony Hervé, Lola Faletti, Diane Fernandez, Dimitri Douchin, Morgan Deal, Thibaut Desgardin, Nigel Maxted, Johanna Itam-Pasquet, Marco Padovani, Manal Yassine, Benjamin Tessore (pourquoi t’es malheureux?) and Stephano Magni for all your support. Thank you for the administration members of the lab and all their help and support: Carole Prevot, Amel Chennouf-Salhi, Sylvianne Colaiocco, Lydie Le-Clainche, Christophe 1Laboratoire Univers et Particules de Montpellier 2Astrophysique Stellaire Mercier and all the others. Also I wish to thank the computer technicians for all their help (for the countless number of times my laptop/s decided to stop functioning properly): Nicolas Clementin, Samuel Viscapi, and Claude Zurbach.
Recommended publications
  • Disertaciones Astronómicas Boletín Número 55 De Efemérides Astronómicas 28 De Octubre De 2020
    Disertaciones astronómicas Boletín Número 55 de efemérides astronómicas 28 de octubre de 2020 Realiza Luis Fernando Ocampo O. ([email protected]). Noticias de la semana. Osiris–Rex y el astroide Bennu. Imagen 1: Estas imágenes muestran los cuatro sitios de recolección de muestras candidatos en el asteroide Bennu: Nightingale, Kingfisher, Osprey y Sandpiper. Imagen: NASA / / Goddard / Universidad de Arizona. La misión OSIRIS-REx de la NASA está realizó un almacenamiento temprano el martes 27 de octubre de la gran muestra que recolectó la semana pasada de la superficie del asteroide Bennu para proteger y devolver la mayor cantidad posible de muestra. Su capacidad es hasta 2 kg. El 22 de octubre, el equipo de la misión OSIRIS-REx recibió imágenes que mostraban que la cabeza recolectora de la nave espacial rebosaba de material recolectado de la superficie de Bennu, muy por encima del requisito de la misión de dos onzas (60 gramos), y que algunas de estas partículas parecían estar escapar lentamente del cabezal de recolección, llamado Mecanismo de adquisición de muestras Touch-And-Go (TAGSAM). Una solapa de mylar en el TAGSAM permite que el material entre fácilmente en el cabezal del colector y debe sellar para cerrar una vez que las partículas pasan. Sin embargo, las rocas más grandes que no pasaron completamente a través de la solapa hacia el TAGSAM parecen haber abierto esta solapa, lo que permitió que se filtraran fragmentos de la muestra. Debido a que el primer evento de recolección de muestras fue tan exitoso, la Dirección de Misiones Científicas de la NASA le ha dado al equipo de la misión el visto bueno para acelerar el almacenamiento de muestras, originalmente programado para el 2 de noviembre, en la Cápsula de Retorno de Muestras (SRC) de la nave espacial para minimizar una mayor pérdida de muestras.
    [Show full text]
  • Sr.No LLPIN/Fllpinname of the Entity Date of Registration 1 AAB
    Sr.No LLPIN/FLLPINName of the entity Date of Registration 1 AAB-9711 VEGA LIVINGS LLP 1/1/2014 2 AAB-9712 DALE DAIRY PRODUCTS LLP 1/1/2014 3 AAB-9713 VSD HOLDINGS & ADVISORY LLP 1/1/2014 4 AAB-9714 SHARPERSUN INDUSTRIES LLP 1/1/2014 5 AAB-9715 XL PAPER CORE LLP 1/1/2014 6 AAB-9716 ZEE RPM PROPERTIES LLP 1/1/2014 7 AAB-9717 MAHAWAJRESHWARI AGRO HI TECH LLP 1/1/2014 8 AAB-9718 TRAILOKYA AGRI TECH LLP 1/1/2014 9 AAB-9719 VIDHYASHRI AGRI HI TECH LLP 1/1/2014 10 AAB-9720 CRYSTAL CLEAR VISION CENTRE LLP 1/1/2014 11 AAB-9721 SPECTASYS INFRA SERVICES LLP 1/1/2014 12 AAB-9722 INDE GLOBAL CONSULTING LLP 1/1/2014 13 AAB-9723 BLUE HEAVEN DEVELOPERS LLP 1/1/2014 14 AAB-9724 VAICHAL DEVELOPERS LLP 1/1/2014 15 AAB-9725 RURBAN INFRASTRUCTURE AND DEVELOPMENT CORPORATION LLP 1/1/2014 16 AAB-9726 EDGE REALTORS LLP 1/1/2014 17 AAB-9727 TRINETRA BUSINESS ADVISORS INDIA LLP 1/1/2014 18 AAB-9728 REBEL FASHION STUDIO LLP 1/1/2014 19 AAB-9729 ADPHLOX MEDIA LLP 1/1/2014 20 AAB-9730 JALAN STUDIOS LLP 1/1/2014 21 AAB-9731 NILMADHAV CONSTRUCTIONS LLP 1/1/2014 22 AAB-9732 KAPASHERA DEVELOPERS LLP 1/1/2014 23 AAB-9733 JUST TECHNICAL SOLUTIONS LLP 1/1/2014 24 AAB-9734 SHUBHAM PRINTS LLP 1/1/2014 25 AAB-9735 NBN FOODS LLP 1/1/2014 26 AAB-9736 ZYPSON ENGINEERING SERVICES LLP 1/1/2014 27 AAB-9737 BUILDCON PROMOTERS LLP 1/1/2014 28 AAB-9738 KNOSPE & CO.
    [Show full text]
  • LGS AO Astronomy
    Astronomical Science with Laser Guide Star Adaptive Optics: A Brief Review, a Current Snapshot, and a Bright Future Michael C. Liua a Institute for Astronomy, University of Hawai`i, 2680 Woodlawn Drive, Honolulu, HI 96822; USA ABSTRACT We briefly discuss the past, present, and future state of astronomical science with laser guide star adaptive optics (LGS AO). We present a tabulation of refereed science papers from LGS AO, amounting to a total of 23 publications as of May 2006. The first decade of LGS AO science (1995{2004) was marked by modest science productivity (≈1 paper/year), as LGS systems were being implemented and commissioned. The last two years have seen explosive science growth (≈1 paper/month), largely due to the new LGS system on the Keck II 10- meter telescope, and point to an exciting new era for high angular resolution science. To illustrate the achievable on-sky performance, we present an extensive collection of Keck LGS performance measurements from the first year of our brown dwarf near-IR imaging survey. We summarize the current strengths and weaknesses of LGS compared to Hubble Space Telescope, offer a list of desired improvements, and look forward to a bright future for LGS given its wide-scale implementation on large ground-based telescopes. Keywords: Adaptive optics, laser guide stars, high angular resolution, brown dwarfs, Keck Telescope 1. INTRODUCTION Astronomers have envisioned using laser guide star adaptive optics (LGS AO) to achieve diffraction-limited observations from ground-based telescopes for over two decades.1{3 (See Refs. 4 and 5 for a historical review of LGS AO development.) The realization of these visions has been an arduous effort, but we are now entering a new epoch as LGS systems are commissioned on the largest ground-based telescopes.
    [Show full text]
  • Arxiv:2101.03433V1 [Astro-Ph.SR] 9 Jan 2021
    Draft version January 12, 2021 Typeset using LATEX twocolumn style in AASTeX63 TIC 168789840: A Sextuply-Eclipsing Sextuple Star System Brian P. Powell,1 Veselin B. Kostov,1, 2 Saul A. Rappaport,3 Tamas´ Borkovits,4, 5, 6 Petr Zasche,7 Andrei Tokovinin,8 Ethan Kruse,1, 9 David W. Latham,10 Benjamin T. Montet,11 Eric L. N. Jensen,12 Rahul Jayaraman,3 Karen A. Collins,10 Martin Maˇsek,13 Coel Hellier,14 Phil Evans,15 Thiam-Guan Tan,16 Joshua E. Schlieder,1 Guillermo Torres,10 Alan P. Smale,1 Adam H. Friedman,17, 1 Thomas Barclay,1, 18 Robert Gagliano,19 Elisa V. Quintana,1 Thomas L. Jacobs,20 Emily A. Gilbert,21, 18, 22, 1, 23 Martti H. Kristiansen,24, 25 Knicole D. Colon´ ,1 Daryll M. LaCourse,26 Greg Olmschenk,1, 9 Mark Omohundro,27 Jeremy D. Schnittman,1 Hans M. Schwengeler,28 Richard K. Barry,1 Ivan A. Terentev,29 Patricia Boyd,1 Allan R. Schmitt,30 Samuel N. Quinn,10 Andrew Vanderburg,31 Enric Palle,32, 33 James Armstrong,34 George R. Ricker,3 Roland Vanderspek,3 S. Seager,3, 35, 36 Joshua N. Winn,37 Jon M. Jenkins,38 Douglas A. Caldwell,38, 2 Bill Wohler,38, 2 Bernie Shiao,39 Christopher J. Burke,3 Tansu Daylan,3, 40 and Joel Villasenor~ 3 1NASA Goddard Space Flight Center, 8800 Greenbelt Road, Greenbelt, MD 20771, USA 2SETI Institute, 189 Bernardo Ave, Suite 200, Mountain View, CA 94043, USA 3Department of Physics, Kavli Institute for Astrophysics and Space Research, M.I.T., Cambridge, MA 02139, USA 4Baja Astronomical Observatory of University of Szeged, H-6500 Baja, Szegedi ´ut,Kt.
    [Show full text]
  • Le Rôle Des Collisions Avec L'hydrogène
    Le rôle des collisions avec l’hydrogène dans la determination hors-ETL de l’abondance du fer dans les étoiles froides Rana Ezzeddine To cite this version: Rana Ezzeddine. Le rôle des collisions avec l’hydrogène dans la determination hors-ETL de l’abondance du fer dans les étoiles froides. Astrophysique [astro-ph]. Université Montpellier, 2015. Français. NNT : 2015MONTS147. tel-01990687 HAL Id: tel-01990687 https://tel.archives-ouvertes.fr/tel-01990687 Submitted on 23 Jan 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Délivré par l’ Université de Montpellier Préparée au sein de l’école doctorale I2S Et du Laboratoire Univers et Particules de Montpellier Spécialité: Physique Présentée par EZZEDDINE Rana [email protected] Le rôle des collisions inélastique avec l’hydrogène dans la détermination hors-ETL de l’abondance du fer dans les étoiles froides M. Bertrand Plez Professeur Directeur de thèse M. Marwan Gebran Maître de conférences co-directeur de thèse M. Piercarlo Bonifacio Directeur de recherche CNRS Rapporteur M. Frédéric Thévenin Directeur de recherche CNRS Rapporteur M. Frédéric Paletou Astronome Examinateur M. Matthias Steffen Professeur Examinateur Non-LTE Iron abundance determination in cool stars: The role of Hydrogen collisions Rana Ezzeddine December, 2015 2 Résumé La détermination d’abondances stellaires très précises est un objectif majeur de la plu- part des études spectroscopiques.
    [Show full text]
  • CONSTELLATION CORONA BOREALIS the Northern Crown in Greek Mythology, Corona Borealis Was Linked to the Legend of Theseus and the Minotaur
    CONSTELLATION CORONA BOREALIS The Northern Crown In Greek mythology, Corona Borealis was linked to the legend of Theseus and the Minotaur. It represents the Golden Crown said to have been made by Hephaestus, the god of fire, inlaid with precious stones given by Dionysus (Roman Bacchus, or Liber) to Ariadne, the daughter of Minos of Crete. The constellation contains nine principal Stars, arranged in a semicircular form. [There is another crown in the heavens depicted in Corona Australis, the Southern Crown, it represents the crown given by Dionysus to his mother Semele]. The story relating to Corona Borealis tells how Daedalus built a labyrinth, an elaborate maze-like construction, to house the Minotaur, a creature half man and half bull. Here it devoured the seven youths and seven maidens which were sent to it from Athens in tribute to king Minos of Crete, who had conquered Athens. The tribute for the Minotaur was chosen by lot. When the third repetition of the nine-year tribute came around, Theseus (mythical founder-king of Athens) inserted himself as one of the youths in the line-up. He got from Ariadne, daughter of Minos, who had fallen in love with him, the famous thread that enabled him to retrace his steps back through the Labyrinth. Once in there he slew the Minotaur, then, following back the string, he left the maze, unchained the young Athenians, and taking Ariadne, whom he had promised to marry, along with him, they sailed off from Crete to Naxos. There Theseus deserted her as she lay sleeping and sailed off in his ship without her.
    [Show full text]
  • Evolutionary Status and Internal Structure of Μ
    Journal of the Korean Astronomical Society http://dx.doi.org/10.5303/JKAS.2015.48.3.165 48: 165 ∼ 175, 2015 June pISSN: 1225-4614 · eISSN: 2288-890X c 2015. The Korean Astronomical Society. All rights reserved. http://jkas.kas.org EVOLUTIONARY STATUS AND INTERNAL STRUCTURE OF µ CASSIOPEIAE Kiehunn Bach Department of Astronomy, Yonsei University, 50 Yonsei-ro, Seodaemun, Seoul, Korea; [email protected] Received February 11, 2015; accepted March 20, 2015 Abstract: We investigate physical properties of the nearby (∼ 7.5 pc) astrometric binary µ Cas in the context of standard evolutionary theory. Based on the spectroscopically determined relative abundances ([α/Fe] & +0.4 dex, [Fe/H] ∼ −0.7 dex), all physical inputs such as opacities and equation of state are consistently generated. By combining recent spectroscopic analyses with the astrometric observations from the HIPPARCOS parallaxes and the CHARA array, the evolutionary model grids have been con- structed. Through the statistical evaluation of the χ2-minimization among alternative models, we find a reliable evolutionary solution (MA, MB, tage) = (0.74 M⊙, 0.19 M⊙, 11 Gyr) which excellently satisfies observational constraints. In particular, we find that the helium abundance of µ Cas is comparable with the primordial helium contents (Yp ∼ 0.245). On the basis of the well-defined stellar parameters of the primary star, the internal structure and the p-mode frequencies have been estimated. From our seismic computation, µ Cas is expected to have a first order spacing ∆ν ∼ 169 µHz. The ultimate goal of this study is to describe physical processes inside a low-mass star through a complete modelling from the spectroscopic observation to the evolutionary computation.
    [Show full text]