A Diet Study of Australia's Most Critically Endangered Mammal, Gilbert's Potoroo, Potorous Gilbertii (Marsupialia : Potoroidae)

Total Page:16

File Type:pdf, Size:1020Kb

A Diet Study of Australia's Most Critically Endangered Mammal, Gilbert's Potoroo, Potorous Gilbertii (Marsupialia : Potoroidae) Edith Cowan University Research Online Theses : Honours Theses 2000 A diet study of Australia's most critically endangered mammal, Gilbert's Potoroo, Potorous Gilbertii (Marsupialia : Potoroidae) Vinh Nguyen Edith Cowan University Follow this and additional works at: https://ro.ecu.edu.au/theses_hons Part of the Zoology Commons Recommended Citation Nguyen, V. (2000). A diet study of Australia's most critically endangered mammal, Gilbert's Potoroo, Potorous Gilbertii (Marsupialia : Potoroidae). https://ro.ecu.edu.au/theses_hons/534 This Thesis is posted at Research Online. https://ro.ecu.edu.au/theses_hons/534 Edith Cowan University Copyright Warning You may print or download ONE copy of this document for the purpose of your own research or study. The University does not authorize you to copy, communicate or otherwise make available electronically to any other person any copyright material contained on this site. You are reminded of the following: Copyright owners are entitled to take legal action against persons who infringe their copyright. A reproduction of material that is protected by copyright may be a copyright infringement. Where the reproduction of such material is done without attribution of authorship, with false attribution of authorship or the authorship is treated in a derogatory manner, this may be a breach of the author’s moral rights contained in Part IX of the Copyright Act 1968 (Cth). Courts have the power to impose a wide range of civil and criminal sanctions for infringement of copyright, infringement of moral rights and other offences under the Copyright Act 1968 (Cth). Higher penalties may apply, and higher damages may be awarded, for offences and infringements involving the conversion of material into digital or electronic form. EDITH COWAN UNIVERSITY LIBRARY Department of Conservation and Land Management A Diet Study of Australia's Most Critically Endangered Mammal, Gilbert's Potoroo, Potorous gilbertii (Marsupialia : Potoroidae) Vinh Nguyen THESIS SUBMITTED IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE AWARD OF B. SC. (BIOLOGICAL SCIENCE) HONOURS FACULTY OF HEALTH, COMMUNICATION AND SCIENCE SCHOOL OF NATURAL SCIENCES EDITH COWAN UNIVERSITY NOVEMBER 2000 USE OF THESIS The Use of Thesis statement is not included in this version of the thesis. 1. ABSTRACT After 125 years of presumed extinction, Gilbert's Potoroo (Potorous gilbertii) was rediscovered in 1994 in Two Peoples Bay Nature Reserve, Albany. As only one population is known to exist, conservation is of prime importance. Faecal analysis was used to examine the diet of P. gilbertii. The species was found to be predominantly mycophagous (fungus-feeding) with invertebrate and plant matter fanning only a small part of its diet. Fungal material made up more than 90% of faecal matter throughout the year. A total of 44 fungal spore types were discerned. Of these, five were tentatively identified to species level with the remaining spores identified to genus, or assigned a representative name. The fungal genera Mesophellia and Hysterangium were the most frequently found and occurred in all faecal samples. Other fungal types in the faeces were found to change seasonally. Invertebrate and plant material comprise the minor dietary items with proportions of 2.4% and !.6% respectively. The large amount of fungus in the diet of P. gi/bertii closely resembles that of another endangered Potoroid, the Long-footed Potoroo (P. longipes). Diet studies of P. longipes indicate that it too is a specialised mycophagist. Consequently, conservation and diet issues of P. longipes could be incorporated into existing conservation strategies of P. gilbertii. ii Declaration· I certify that this thesis does not, to the best of my knowledge and belief: (i) incorporate without acknowledgement any material previously submitted for a degree or diploma in any institution or higher education; (ii) contain any material previously published or written by another person except where due reference is made in the text; or (iii) contain any defamatory material. Signed: . 'I Date: .........; ,/: .................... zj··ry . iii Acknowledgements I would like to thank first and foremost my two supervisors Dr A. Needham (Edith Cowan University) and Dr. J.A. Friend (Department of Conservation and Land Management). Dr Needham made everything possible and I owe him so much for his guidance, time, patience and most of all, confidence in me. Many thanks also to Dr Friend for his guidance, time and for sharing his wealth of knowledge and years of experience with me. Although there was a distance gap, he was still influential and it was a privilege to have worked with him. I would also like to thank my many work colleagues and friends, notably Bryan Duff, Julia Wilson, Derek Swarts, Ben Bradshaw, Cathy Arrese, Dana Hince and Dr. J. Courtenay for collectively providing constructive criticism and statistical assistance on this paper. They were always there when I cried help. These people will probably be better remembered for keeping me on track and making sure I knew how much time I had left. I will never forget their help. I'm sure they will not only be scientists, but great scientists. Thank you to the many other people who contributed their time for consultations. Special mention goes to Dr. A. Cochrane (Perth Herbarium) for identifying those mysterious seeds, Dr. Sivasitharnpararn and Dr. Park (University of Western Australia) for their time and David Mcdougall for statistical advice. Thanks to my many friends who have made me smile and kept me sane throughout this year. Finally, my loving parents who have always supported me in all situations. iv Table of Contents Abstract ......................................................................... .ii . .. Dec Iaratton ..................................................................... 111 Acknowledgements ........................................................... .iv Table of Contents ...............................................................v List of Tables ................................................................. viii List of Figures ................................................................... x List of Plates ...................................................................xii 2.0 INTRODUCTION ...................... oo o o o o 0 0 o0 o0 0 o.. o.. oo o o o o ....... 1 2.1 Taxonomy and Description of Potorous sp ............................. 2. 2.2 Early Discovery of Gilbert's Potoroo .................................... 3. 2.3 Past and Present Distribution .............................................5. 2.4 History of Two Peoples Bay ............................................. 6. 2.5 Current Status ...............................................................7. 3.0 LITERATURE REVIEW o.o.ooooo ....... ooooooooo.oo ........... ooooo,9. 3.1 Plant, Fungi and Mammals: A Tripartite Relationship ............... 9. 3.2 The Gastrointestinal Tract of a Potoroid and Macropod o•••oo••o•········ .............. o................... 13. v 3.3 Nutritional Quality and Spore Viability after Digestion ............. 17. 3.4 Effect of Fire on Fungal Abundance ................................... 20. 3.5 Mycophagy in North America ........................................... 22. 3.5.1 Chipmunks and Squirrels ....................................... 22. 3.5.2 Fungus Consumption by Voles (Clethrionomys sp.) ....... 24. 3.6 Mycophagous Mammals in Australia ..................................26. 3.6.1 Family Muridae .................................................. 26. 3.6.2 Mycophagy in Bush Rats ....................................... 28. 3.6.3 Family Peramelidae ..............................................29. 3.6.4 Sub-Family Hypsiprymnodontinae and Potoroinae .......... 30. 3.6.4.1 Bettongia sp ......................................... 31. 3.6.4.2 Potorous sp .......................................... 33. 4.0 MATERIALS AND METHODS .................................. 37. 4.1 Study Site .................................................................. 37. 4.2 Climate Conditions in Albany ...........................................39. 4.3 Trapping Procedure ...................................................... .40. 4.4 Faecal Collection and Sampling Regime ............................. .41. 4.5 Fine Fraction Analysis .................................................. .42. 4.6 Coarse Fraction Analysis ............................................... .43. 4.7 Statistical Analysis ...................................................... .43. 4.8 Experimental Considerations .............................................44. vi 5.0 RESULTS .............................................................46. 5.1 Overall Composition of Faecal Pellets ............................... ..46. 5.2 Comparison of Diet between Seasons ................................. 50. 5.3 Comparison of Faeces from Different Sites ........................... 52. 5.4 Faecal Analysis of Males and Females ................................53. 5.5 Diversity of Fungal Species in the Tbree Main Study Sites ........ 54. 5.6 Comparison of Spore Species Between Seasons ...................... 55. 5.7 Analysis of Fungal Species Between Sites ............................ 56. 5.8 Overall Fungal Species Observed in Faecal Samples ................58. 5.8.1 Seasonal Effect of Fungal Species in Faecal Samples ...... 60. 6.0 DISCUSSION .........................................................65. 6.1 Main Dietary Components ..............................................65. 6.2 Diet Rt'~tionship
Recommended publications
  • 090303 Long Footed Potoroo Skull Yalmy Rd
    Pre-Logging Report of Coupes 846-502-0003, 846-502-0010 and 846-502-0013 Orbost District Study location Between junction of Yalmy River and Little Yalmy River Coupee Numbers 846-502-0003, 846-502-0010, 846-502-0013 Date 3 March 2009 Organisation Fauna and Flora Research Collective - East Gippsland Permit No. 10004865 (File No: FF383119) Motive of research To ascertain the ecological significance of specific areas currently proposed for logging. Aim of study The aim of this study is to ascertain and verify if coupes 846-502- 0003, 846-502-0010 and 846-502-0013 support rare or endangered fauna listed in the East Gippsland Forest Management Plan. Table 1: Recorded Common name Scientific name species on 01-02/03/09 Long-Footed Potoroo Potorous longipes Sooty Owl Tyto tenebricosa Southern Boobook Owl Ninox novaehollandiae Greater Glider Petauroides volans Sugar Glider Petaurus breviceps Method of Study 1. Walking through the proposed coupes to observe tracks, habitat, and feeding and defecation signs of fauna. 2. The surveying of the key species with the aid of acoustic equipment and spotlights. The goal is to observe individual animals visually or identify them by their calls. The fieldwork is ideally preformed on warm nights without rain on which greater activity can be recorded. Fieldwork should be commenced at dusk. Poor conditions provide a greater false absence rate 1 in relation to good conditions that provide a lower false absence rate. Date of study 1 - 2 March 2009 Surveyors of Mr. P. Calle, Mr. A. Lincoln habitat Surveyors of Mr. P. Calle, Mr.
    [Show full text]
  • Project Deliverance the Response of ‘Critical-Weight-Range’ Mammals to Effective Fox Control in Mesic Forest Habitats in Far East Gippsland, Victoria
    Project Deliverance The response of ‘critical-weight-range’ mammals to effective fox control in mesic forest habitats in far East Gippsland, Victoria A Victorian Government Initiative Project Deliverance: the response of ‘critical-weight-range’ mammals to effective fox control in mesic forest habitats in far East Gippsland, Victoria Department of Sustainability and Environment Project Deliverance The response of ‘critical-weight-range’ mammals to effective fox control in mesic forest habitats in far East Gippsland, Victoria A Victorian Government Initiative Publisher/Further information - Department of Sustainability and Environment, PO Box 500, East Melbourne, Victoria, Australia, 3002. Web: http://www.dse.vic.gov.au First published 2006. © The State of Victoria, Department of Sustainability and Environment, 2006 All rights reserved. This document is subject to the Copyright Act 1968. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form, or by any means, electronic, mechanical, photocopying or otherwise without the prior permission of the publisher. Copyright in photographs remains with the photographers mentioned in the text. ISBN 1 74152 343 5 Disclaimer—This publication may be of assistance to you but the State of Victoria and its employees do not guarantee that the publication is without flaw of any kind or is wholly appropriate for your particular purpose and therefore disclaims all liability for any error, loss or other consequence which may arise from you relying on any information in this publication. Citation— Murray, A.J., Poore, R.N. and Dexter, N. (2006). Project Deliverance—the response of ‘critical weight range’ mammals to effective fox control in mesic forest habitats in far East Gippsland, Victoria.
    [Show full text]
  • Local Population Structure of a Naturally Occurring Metapopulation of the Quokka (Setonix Brachyurus Macropodidae: Marsupialia)
    Biological Conservation 110 (2003) 343–355 www.elsevier.com/locate/biocon Local population structure of a naturally occurring metapopulation of the quokka (Setonix brachyurus Macropodidae: Marsupialia) Matt W. Haywarda,b,c,*, Paul J. de Toresb,c, Michael J. Dillonc, Barry J. Foxa aSchool of Biological, Earth and Environmental Science, University of New South Wales, Sydney, NSW 2052, Australia bDepartment of Conservation and Land Management, Wildlife Research Centre, PO Box 51 Wanneroo, WA6946, Australia cDepartment of Conservation and Land Management, Dwellingup Research Centre, Banksiadale Road, Dwellingup, WA6213, Australia Received 8 May 2002; received in revised form 18 July 2002; accepted 22 July 2002 Abstract We investigated the population structure of the quokka (Setonix brachyurus) on the mainland of Western Australia using mark– recapture techniques. Seven previously known local populations and one unconfirmed site supporting the preferred, patchy and discrete, swampy habitat of the quokka were trapped. The quokka is now considered as locally extinct at three sites. The five remaining sites had extremely low numbers, ranging from 1 to 36 individuals. Population density at these sites ranged from 0.07 to 4.3 individuals per hectare. There has been no response to the on-going, 6 year fox control programme occurring in the region despite the quokkas’ high fecundity and this is due to low recruitment levels. The remaining quokka populations in the northern jarrah forest appear to be the terminal remnants of a collapsing metapopulation. # 2002 Elsevier Science Ltd. All rights reserved. Keywords: Population structure; Predation; Reproduction; Setonix brachyurus; Vulnerable 1. Introduction The Rottnest Island quokka population fluctuates around 5000 with peaks of 10,000 individuals (Waring, The quokka (Setonix brachyurus Quoy & Gaimard 1956).
    [Show full text]
  • Platypus Collins, L.R
    AUSTRALIAN MAMMALS BIOLOGY AND CAPTIVE MANAGEMENT Stephen Jackson © CSIRO 2003 All rights reserved. Except under the conditions described in the Australian Copyright Act 1968 and subsequent amendments, no part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, duplicating or otherwise, without the prior permission of the copyright owner. Contact CSIRO PUBLISHING for all permission requests. National Library of Australia Cataloguing-in-Publication entry Jackson, Stephen M. Australian mammals: Biology and captive management Bibliography. ISBN 0 643 06635 7. 1. Mammals – Australia. 2. Captive mammals. I. Title. 599.0994 Available from CSIRO PUBLISHING 150 Oxford Street (PO Box 1139) Collingwood VIC 3066 Australia Telephone: +61 3 9662 7666 Local call: 1300 788 000 (Australia only) Fax: +61 3 9662 7555 Email: [email protected] Web site: www.publish.csiro.au Cover photos courtesy Stephen Jackson, Esther Beaton and Nick Alexander Set in Minion and Optima Cover and text design by James Kelly Typeset by Desktop Concepts Pty Ltd Printed in Australia by Ligare REFERENCES reserved. Chapter 1 – Platypus Collins, L.R. (1973) Monotremes and Marsupials: A Reference for Zoological Institutions. Smithsonian Institution Press, rights Austin, M.A. (1997) A Practical Guide to the Successful Washington. All Handrearing of Tasmanian Marsupials. Regal Publications, Collins, G.H., Whittington, R.J. & Canfield, P.J. (1986) Melbourne. Theileria ornithorhynchi Mackerras, 1959 in the platypus, 2003. Beaven, M. (1997) Hand rearing of a juvenile platypus. Ornithorhynchus anatinus (Shaw). Journal of Wildlife Proceedings of the ASZK/ARAZPA Conference. 16–20 March.
    [Show full text]
  • Post-Release Monitoring of Western Grey Kangaroos (Macropus Fuliginosus) Relocated from an Urban Development Site
    animals Article Post-Release Monitoring of Western Grey Kangaroos (Macropus fuliginosus) Relocated from an Urban Development Site Mark Cowan 1,* , Mark Blythman 1, John Angus 1 and Lesley Gibson 2 1 Biodiversity and Conservation Science, Department of Biodiversity, Conservation and Attractions, Wildlife Research Centre, Woodvale, WA 6026, Australia; [email protected] (M.B.); [email protected] (J.A.) 2 Biodiversity and Conservation Science, Department of Biodiversity, Conservation and Attractions, Kensington, WA 6151, Australia; [email protected] * Correspondence: [email protected]; Tel.: +61-8-9405-5141 Received: 31 August 2020; Accepted: 5 October 2020; Published: 19 October 2020 Simple Summary: As a result of urban development, 122 western grey kangaroos (Macropus fuliginosus) were relocated from the outskirts of Perth, Western Australia, to a nearby forest. Tracking collars were fitted to 67 of the kangaroos to monitor survival rates and movement patterns over 12 months. Spotlighting and camera traps were used as a secondary monitoring technique particularly for those kangaroos without collars. The survival rate of kangaroos was poor, with an estimated 80% dying within the first month following relocation and only six collared kangaroos surviving for up to 12 months. This result implicates stress associated with the capture, handling, and transport of animals as the likely cause. The unexpected rapid rate of mortality emphasises the importance of minimising stress when undertaking animal relocations. Abstract: The expansion of urban areas and associated clearing of habitat can have severe consequences for native wildlife. One option for managing wildlife in these situations is to relocate them.
    [Show full text]
  • The Mahogany Glider
    ISSUE #3 – WINTER 2019 THE MAHOGANY GLIDER The mahogany glider is one of Australia’s most threatened mammals and Queensland’s only listed endangered glider species. Named for its mahogany-brown belly, this graceful glider has two folds of skin, called a patagium, which stretch A mahogany glider, Petaurus gracilis, venturing out at the Hidden Vale Wildlife Centre. between the front and rear legs. These act as a ‘parachute’ enabling the animal to glide distances of and the Hidden Vale Wildlife Centre is manipulate their patagium in order to 30 metres in open woodland habitat. one of just a few locations authorised land safely. Their long tail is used for mid-air for breeding. Breeding is undertaken The Centre recently received funding stabilisation. as an insurance against extinction. to purchase additional structures The Centre regularly exchanges They look similar to sugar or squirrel including climbing ropes and nets, gliders with other authorised gliders, however mahogany gliders ladders and ‘unstable’ branches to locations to ensure genetic are much larger. They are nocturnal, simulate the movement of small trees. diversity in captive populations. elusive and silent, making research on We are also planning to introduce free-ranging animals very difficult. We encourage our mahogany gliders a range of glider-suitable feeding to develop and display their normal Mahogany gliders appear to be enrichment, such as whole fruits, range of behaviours. That is why we monogamous and will actively mark puzzle-feeders, or feed in a hanging have set up one half of their enclosure and defend their territory. They use log. We hope that our gliders will not with climbing structures in the form hollows in large eucalypt trees, lined only breed well, but will also become of ‘stable’ branches, while the right with a thick mat of leaves, as dens.
    [Show full text]
  • Thylacinidae
    FAUNA of AUSTRALIA 20. THYLACINIDAE JOAN M. DIXON 1 Thylacine–Thylacinus cynocephalus [F. Knight/ANPWS] 20. THYLACINIDAE DEFINITION AND GENERAL DESCRIPTION The single member of the family Thylacinidae, Thylacinus cynocephalus, known as the Thylacine, Tasmanian Tiger or Wolf, is a large carnivorous marsupial (Fig. 20.1). Generally sandy yellow in colour, it has 15 to 20 distinct transverse dark stripes across the back from shoulders to tail. While the large head is reminiscent of the dog and wolf, the tail is long and characteristically stiff and the legs are relatively short. Body hair is dense, short and soft, up to 15 mm in length. Body proportions are similar to those of the Tasmanian Devil, Sarcophilus harrisii, the Eastern Quoll, Dasyurus viverrinus and the Tiger Quoll, Dasyurus maculatus. The Thylacine is digitigrade. There are five digital pads on the forefoot and four on the hind foot. Figure 20.1 Thylacine, side view of the whole animal. (© ABRS)[D. Kirshner] The face is fox-like in young animals, wolf- or dog-like in adults. Hairs on the cheeks, above the eyes and base of the ears are whitish-brown. Facial vibrissae are relatively shorter, finer and fewer than in Tasmanian Devils and Quolls. The short ears are about 80 mm long, erect, rounded and covered with short fur. Sexual dimorphism occurs, adult males being larger on average. Jaws are long and powerful and the teeth number 46. In the vertebral column there are only two sacrals instead of the usual three and from 23 to 25 caudal vertebrae rather than 20 to 21.
    [Show full text]
  • A Species-Level Phylogenetic Supertree of Marsupials
    J. Zool., Lond. (2004) 264, 11–31 C 2004 The Zoological Society of London Printed in the United Kingdom DOI:10.1017/S0952836904005539 A species-level phylogenetic supertree of marsupials Marcel Cardillo1,2*, Olaf R. P. Bininda-Emonds3, Elizabeth Boakes1,2 and Andy Purvis1 1 Department of Biological Sciences, Imperial College London, Silwood Park, Ascot SL5 7PY, U.K. 2 Institute of Zoology, Zoological Society of London, Regent’s Park, London NW1 4RY, U.K. 3 Lehrstuhl fur¨ Tierzucht, Technical University of Munich, Alte Akademie 12, 85354 Freising-Weihenstephan, Germany (Accepted 26 January 2004) Abstract Comparative studies require information on phylogenetic relationships, but complete species-level phylogenetic trees of large clades are difficult to produce. One solution is to combine algorithmically many small trees into a single, larger supertree. Here we present a virtually complete, species-level phylogeny of the marsupials (Mammalia: Metatheria), built by combining 158 phylogenetic estimates published since 1980, using matrix representation with parsimony. The supertree is well resolved overall (73.7%), although resolution varies across the tree, indicating variation both in the amount of phylogenetic information available for different taxa, and the degree of conflict among phylogenetic estimates. In particular, the supertree shows poor resolution within the American marsupial taxa, reflecting a relative lack of systematic effort compared to the Australasian taxa. There are also important differences in supertrees based on source phylogenies published before 1995 and those published more recently. The supertree can be viewed as a meta-analysis of marsupial phylogenetic studies, and should be useful as a framework for phylogenetically explicit comparative studies of marsupial evolution and ecology.
    [Show full text]
  • Long-Nosed Potoroo (Northern Subspecies)
    NSW SCIENTIFIC COMMITTEE Preliminary Determination The Scientific Committee, established by the Threatened Species Conservation Act 1995 (the Act), has made a Preliminary Determination to support a proposal to list a population of the Long-nosed Potoroo (northern subspecies) Potorous tridactylus tridactylus (Kerr, 1792) in the Wardell area as an ENDANGERED POPULATION in Part 2 of Schedule 1 of the Act. Listing of Endangered populations is provided for by Part 2 of the Act. The Scientific Committee has found that: 1. The Long-nosed Potoroo Potorous tridactylus (Kerr, 1792) (family Potoroidae) is listed as Vulnerable in New South Wales (NSW) and Potorous tridactylus tridactylus is listed as Vulnerable under the federal Environment Protection and Biodiversity Conservation Act 1999. The Long-nosed Potoroo comprises three genetically distinct subspecies (Frankham et al. 2012a). On mainland southeastern Australia, the northern subspecies Potorous tridactylus tridactylus, is separated from the southern subspecies P. tridactylus trisulcatus by the Sydney Basin. A third subspecies, Potorous tridactylus apicalis, occurs in Tasmania and the Bass Strait islands (Frankham et al. 2012a, 2016). The population that is the subject of this determination is part of the northern sub-species P. t. tridactylus. 2. The Long-nosed Potoroo is a medium sized potoroid marsupial with brown-grey fur, a rufous tinge on the flanks and pale grey underparts (Menkhorst and Knight 2001). It has a long and tapering nose with a bare patch of skin extending onto the snout (Johnston 2008). Ears are short and rounded and dark grey on the outer surface. The tail is tapered with sparse fur and blackish in colour (Menkhorst and Knight 2001).
    [Show full text]
  • Additional Teacher Resources and Support Websites • Project Numbat
    Additional Teacher Resources and Support Websites • Project Numbat: www.numbat.org.au • Perth Zoo: www.perthzoo.wa.gov.au • Department of Environment and Conservation: www.dec.wa.gov.au • Australian Wildlife Conservancy: www.australianwildlife.org • Conservation of Australia’s Biodiversity webpage on the Federal Department of the Environment, Water, Heritage and the Arts website: www.environment.gov.au/biodiversity • Invasive Animals Cooperative Research Centre: www.invasiveanimals.com • WWF-Australia: www.wwf.org.au • Carmel Charlton: www.carmelcharlton.com. Carmel has produced a great resource called “Out of This World” which includes 16 songs to educate students on a range of products. There’s a fantastic song on the CD about the Numbat, which is a fun and easy way for kids to learn about this special marsupial. Books Storybooks Noah’s Boat by Louise Elliott Publisher: Lothian (2003) This engaging story tells of an Australian Noah who, after hearing a voice in the night, begins to build a boat. As each new animal with different needs arrives, Noah adapts his design and creates an environment where they can all live together. Students of all ages will be intrigued by this variation on the Noah’s Ark story with its attractive collage of photographs and drawings and its themes about differences and meeting needs. Highly recommended. Useful for: Australian animals, endangered animals, habitats, environment, collage The Rabbits by John Marsden (author) and Shaun Tan (illustrator) Publisher: Simply Read Books (2003) A rich and haunting allegory of colonization for all ages and cultures, told from the viewpoint of native animals. This stunning picture book examines the consequences of the arrival of a group of rabbits with entirely unfamiliar ways.
    [Show full text]
  • Ba3444 MAMMAL BOOKLET FINAL.Indd
    Intot Obliv i The disappearing native mammals of northern Australia Compiled by James Fitzsimons Sarah Legge Barry Traill John Woinarski Into Oblivion? The disappearing native mammals of northern Australia 1 SUMMARY Since European settlement, the deepest loss of Australian biodiversity has been the spate of extinctions of endemic mammals. Historically, these losses occurred mostly in inland and in temperate parts of the country, and largely between 1890 and 1950. A new wave of extinctions is now threatening Australian mammals, this time in northern Australia. Many mammal species are in sharp decline across the north, even in extensive natural areas managed primarily for conservation. The main evidence of this decline comes consistently from two contrasting sources: robust scientifi c monitoring programs and more broad-scale Indigenous knowledge. The main drivers of the mammal decline in northern Australia include inappropriate fi re regimes (too much fi re) and predation by feral cats. Cane Toads are also implicated, particularly to the recent catastrophic decline of the Northern Quoll. Furthermore, some impacts are due to vegetation changes associated with the pastoral industry. Disease could also be a factor, but to date there is little evidence for or against it. Based on current trends, many native mammals will become extinct in northern Australia in the next 10-20 years, and even the largest and most iconic national parks in northern Australia will lose native mammal species. This problem needs to be solved. The fi rst step towards a solution is to recognise the problem, and this publication seeks to alert the Australian community and decision makers to this urgent issue.
    [Show full text]
  • Conservation Science Western Australia 5, 12–18
    Conservation Science W. Aust. 9 (3) : 239–248 (2015) The diet of foxes (Vulpes vulpes) in fragmented Wheatbelt reserves in Western Australia: implications for woylies (Bettongia penicillata) and other native fauna NICOLA J MARLOW ab *, ANDREW AE WILLIAMS ab, NEIL D THOMAS ab, BRIAN MACMAHON b AND JOHN LAWSON b a Department of Parks and Wildlife, PO Box 51 Wanneroo, WA 6946, Australia b Invasive Animals Co-operative Research Centre 48 Oxford Street, Adelaide, SA 5061, Australia * Corresponding author: [email protected] ABSTRACT The diet of foxes in two fragmented Wheatbelt reserves in south-west Western Australia, Dryandra Woodland (DW) and Tutanning Nature Reserve (TNR), was investigated. Fox baiting commenced in these reserves in the early 1980s and the trap success of woylies (Bettongia penicillata), a threatened species, increased significantly. Woylie capture rates were sustained in TNR until 1992 and in DW until 2000 but then decreased suddenly despite ongoing fox control. The diet of foxes was investigated as part of a larger study examining the reasons for the woylie decline. The contents of 283 fox scats from DW and TNR, and 167 scats from two unbaited sites, Quinns block (QB) and Highbury block (HB), were analysed volumetrically to determine the relative importance of each dietary item. The actual consumption of each item was calculated using digestibility estimates. In baited sites the foxes’ main dietary components were house mice (Mus domesticus, 28%), carrion (sheep, Ovis aries and western grey kangaroo, Macropus fuliginosus; 26%) and rabbits (Oryctolagus cuniculus, 17%). In unbaited sites the main components were carrion (predominately sheep, 60%) and some invertebrates (13%).
    [Show full text]