Review A Review on Surface-Enhanced Raman Scattering Roberto Pilot 1,2,*, Raffaella Signorini 1,2, Christian Durante 1,2, Laura Orian 1,2, Manjari Bhamidipati 3 and Laura Fabris 4 1 Department of Chemical Sciences, University of Padova, 35131 Padova, Italy;
[email protected] (R.S.);
[email protected] (C.D.);
[email protected] (L.O.) 2 Consorzio INSTM, via G. Giusti 9, 50121 Firenze, Italy 3 Department of Biomedical Engineering, Rutgers University, 599 Taylor Road, Piscataway, NJ 08854, USA;
[email protected] 4 Department of Materials Science and Engineering, Rutgers University, 607 Taylor Road, Piscataway, NJ 08854, USA;
[email protected] * Correspondence:
[email protected]; Tel: +39-049-827-5680 Received: 24 January 2019; Accepted: 10 April 2019; Published: 17 April 2019 Abstract: Surface-enhanced Raman scattering (SERS) has become a powerful tool in chemical, material and life sciences, owing to its intrinsic features (i.e., fingerprint recognition capabilities and high sensitivity) and to the technological advancements that have lowered the cost of the instruments and improved their sensitivity and user-friendliness. We provide an overview of the most significant aspects of SERS. First, the phenomena at the basis of the SERS amplification are described. Then, the measurement of the enhancement and the key factors that determine it (the materials, the hot spots, and the analyte-surface distance) are discussed. A section is dedicated to the analysis of the relevant factors for the choice of the excitation wavelength in a SERS experiment. Several types of substrates and fabrication methods are illustrated, along with some examples of the coupling of SERS with separation and capturing techniques.