The Banach–Tarski Paradox and Amenability Lecture 25: Thompson's Group F

Total Page:16

File Type:pdf, Size:1020Kb

The Banach–Tarski Paradox and Amenability Lecture 25: Thompson's Group F The Banach{Tarski Paradox and Amenability Lecture 25: Thompson's Group F 30 October 2012 Thompson's groups F , T and V In 1965 Richard Thompson (a logician) defined 3 groups F ≤ T ≤ V Each is finitely presented and infinite, and Thompson used them to construct groups with unsolvable word problem. From the point of view of amenability F is the most important. The group F is not elementary amenable and does not have a subgroup which is free of rank ≥ 2. We do not know if F is amenable. The groups T and V are finitely presented infinite simple groups. The commutator subgroup [F ; F ] of F is finitely presented and ∼ 2 simple and F =[F ; F ] = Z . Definition of F We can define F to be the set of piecewise linear homeomorphisms f : [0; 1] ! [0; 1] which are differentiable except at finitely many a dyadic rationals (i.e. rationals 2n 2 (0; 1)), and such that on intervals of differentiability the derivatives are powers of 2. Examples See sketches of A and B. Lemma F is a subgroup of the group of all homeomorphisms [0; 1] ! [0; 1]. Proof. Let f 2 F have breakpoints 0 = x0 < x1 < ··· < xn = 1. Then f (x) = a1x on [0; x1] where a1 is a power of 2, so f (x1) = a1x1 is a dyadic rational. Hence f (x) = a2x + b2 on [x1; x2] where a2 is a power of 2 and b2 is dyadic rational. By induction f (x) = ai x + bi on [xi−1; xi ] with ai a power of 2 and bi a dyadic rational. It follows that f −1 2 F and that F is closed under composition. First properties of F Lemma F is nonabelian and torsion free. Proof. A does not commute with B. Consider a nontrivial f 2 F . Then there is a smallest dyadic rational x1 ≥ 0 such that f (x1) = x1 and on some interval [x1; x2], f is differentiable with slope not equal to 1. Consider powers of f on [x1; x2]. Lemma F has a subgroup isomorphic to F × F. Proof. Draw picture. Lemma F has a free abelian subgroup of rank 2, and a free abelian subgroup of infinite rank. Finite and infinite presentations for F Consider the finite presentation −1 −1 F = hx0; x1 j x1 x2x1 = x3; x1 x3x1 = x4i −1 −2 2 3 −3 where x2 = x0 x1x0, x3 = x0 x1x0 and x4 = x0 x1x0 and the infinite presentation −1 P = hxn; n ≥ 0 j xi xj xi = xj+1 if i < ji To see these presentations are equivalent, note that for all n > 1 −(n−1) (n−1) xn = x0 x1x0 so F is equivalent to F 0 defined by −1 −1 −(n−1) (n−1) hxn; n ≥ 0 j x1 x2x1 = x3; x1 x3x1 = x4; x0 x1x0 = xn8n > 1i Use induction to show that these relations imply −1 xi xj xi = xj+1 if i < j. Finite presentation for F Define a function φ from the group −1 −1 G = hx0; x1 j x1 x2x1 = x3; x1 x3x1 = x4i to F by φ(x0) = A, φ(x1) = B. Then φ is a group isomorphism. The proof uses a normal form for the elements of G and of F . Thus Thompson's group F has a finite presentation. In particular F is generated by A and B. Commutator subgroup of F Lemma 2 Let H be a 2-generator group and suppose ' : H ! Z is surjective. Then ker(') = [H; H]. We say an element f 2 F is trivial in neighbourhoods of 0 and 1 if f has slope 20 = 1 to the right of 0 and to the left of 1. Theorem [F ; F ] consists of all elements of F that are trivial in ∼ 2 neighbourhoods of 0 and 1. Also, F =[F ; F ] = Z . Proof. 2 a Define ' : F ! Z by '(f ) = (a; b) where f has slope 2 to the right of 0 and slope 2b to the left of 1. Then ' is a group homomorphism. The map ' is surjective since '(A) = (−1; 1) and '(B) = (0; 1). So by the Lemma, ker(') = [F ; F ]. Subgroups of F Theorem Every nonabelian subgroup of F contains a free abelian group of infinite rank. Corollary F does not contain a nonabelian free group of rank 2. Let H be a subgroup of F generated by elements f and g such that fg 6= gf . Let I1;:::; In be the closed intervals in [0; 1] with nonempty interiors s.t. 8 1 ≤ k ≤ n if x is an endpoint of Ik then f (x) = g(x) = x, and if x is an interior point of Ik then either f (x) 6= x or g(x) 6= x. We claim that for all k, the endpoints of Ik are cluster points of the H-orbit of every interior point of Ik . Let x be in the interior of Ik and let y be the greatest lower bound of the H-orbit of x. If y is not the left endpoint of Ik then wlog f (y) 6= y, so f (y) < y or f −1(y) < y. But then there is a neighbourhood of y such that the image of this neighbourhood under either f or f −1 is less than y, so the H-orbit of x contains points less than y, a contradiction. Thus y is the left endpoint of Ik . Similarly for least upper bounds. Subgroups of F Define the support of h 2 H to be the subset of [0; 1] on which h is not x 7! x. Similarly for the support of h 2 H in Ik . Let h1 = [f ; g] 2 [H; H]. Then h1 is trivial in neighbourhoods of the endpoints of I1. Then since the left endpoint of I1 is a cluster point of the H-orbit of any interior point of I1, there is an h 2 H −1 such that the support in I1 of h2 = hh1h is disjoint from the support of h in I1. So we can find an infinite sequence of functions h1; h2; h3;::: in H whose supports in I1 are mutually disjoint. So [hi ; hj ] is trivial on I1 for all i; j. If [hi ; hj ] 6= 1 then there is a k > 1 on which [hi ; hj ] is nontrivial. Repeat the argument for [hi ; hj ] on Ik . After finitely many repetitions we get an infinite sequence of functions in H which generate a free abelian subgroup. Elementary amenability Theorem Thompson's group F is not elementary amenable. We use results of Chou. Define EG0 to be the collection of all finite and abelian groups. For each ordinal α i.e. 0; 1; 2; : : : ; !; ! + 1;! + 2;:::;! + ! = ! · 2;! · 2 + 1;:::;!2;:::; 3 ! ! ;:::;! , . , if α is a successor define EGα to be the collection of amenable groups obtained from groups in EGα−1 by the following processes: I forming group extensions I taking directed unions and if α is a limit define [ EGα = EGβ β<α By a result of Chou, it suffices to show that F is not in EGα for any ordinal α. Thompson's group F is not elementary amenable We will use transfinite induction. Let P(α) be the statement that F is not in EGα. To prove P(α) for all ordinals α, it suffices to prove: I P(0) and I P(α) follows from [P(β) for all β < α] Now F 62 EG0 since F is infinite and nonabelian. Assume that α > 0 and that F 62 EGβ for each ordinal β < α. If α is a limit ordinal then by definition of EGα we are done. So suppose α is a successor and F 62 EGα−1. We want to show F cannot be constructed from groups in EGα−1 as a group extension or directed union. Thompson's group F is not elementary amenable The group F is not a directed union of groups in EGα−1, because F is finitely generated. To show F is not obtained as a group extension from groups in EGα−1 we will use the following theorem which is proved using normal forms: Theorem Every proper quotient of F is abelian. Suppose there is a short exact sequence 1 −! N −! F −! Q ! 1 with N; Q 2 EGα−1. Then N is nontrivial since F 62 EGα−1. So Q is a proper quotient. Hence by the theorem above, Q is abelian. Thus [F ; F ] ⊂ N. Since [F ; F ] consists of elements of F which are trivial in neighbourhoods of 0 and 1, we can find a copy of F in N. By a result of Chou, subgroups of groups in EGα−1 are in EGα−1, so F is in EGα−1, a contradiction..
Recommended publications
  • Categories, Functors, and Natural Transformations I∗
    Lecture 2: Categories, functors, and natural transformations I∗ Nilay Kumar June 4, 2014 (Meta)categories We begin, for the moment, with rather loose definitions, free from the technicalities of set theory. Definition 1. A metagraph consists of objects a; b; c; : : :, arrows f; g; h; : : :, and two operations, as follows. The first is the domain, which assigns to each arrow f an object a = dom f, and the second is the codomain, which assigns to each arrow f an object b = cod f. This is visually indicated by f : a ! b. Definition 2. A metacategory is a metagraph with two additional operations. The first is the identity, which assigns to each object a an arrow Ida = 1a : a ! a. The second is the composition, which assigns to each pair g; f of arrows with dom g = cod f an arrow g ◦ f called their composition, with g ◦ f : dom f ! cod g. This operation may be pictured as b f g a c g◦f We require further that: composition is associative, k ◦ (g ◦ f) = (k ◦ g) ◦ f; (whenever this composition makese sense) or diagrammatically that the diagram k◦(g◦f)=(k◦g)◦f a d k◦g f k g◦f b g c commutes, and that for all arrows f : a ! b and g : b ! c, we have 1b ◦ f = f and g ◦ 1b = g; or diagrammatically that the diagram f a b f g 1b g b c commutes. ∗This talk follows [1] I.1-4 very closely. 1 Recall that a diagram is commutative when, for each pair of vertices c and c0, any two paths formed from direct edges leading from c to c0 yield, by composition of labels, equal arrows from c to c0.
    [Show full text]
  • GROUPS with MINIMAX COMMUTATOR SUBGROUP Communicated by Gustavo A. Fernández-Alcober 1. Introduction a Group G Is Said to Have
    International Journal of Group Theory ISSN (print): 2251-7650, ISSN (on-line): 2251-7669 Vol. 3 No. 1 (2014), pp. 9-16. c 2014 University of Isfahan www.theoryofgroups.ir www.ui.ac.ir GROUPS WITH MINIMAX COMMUTATOR SUBGROUP F. DE GIOVANNI∗ AND M. TROMBETTI Communicated by Gustavo A. Fern´andez-Alcober Abstract. A result of Dixon, Evans and Smith shows that if G is a locally (soluble-by-finite) group whose proper subgroups are (finite rank)-by-abelian, then G itself has this property, i.e. the commutator subgroup of G has finite rank. It is proved here that if G is a locally (soluble-by-finite) group whose proper subgroups have minimax commutator subgroup, then also the commutator subgroup G0 of G is minimax. A corresponding result is proved for groups in which the commutator subgroup of every proper subgroup has finite torsion-free rank. 1. Introduction A group G is said to have finite rank r if every finitely generated subgroup of G can be generated by at most r elements, and r is the least positive integer with such property. It follows from results of V.V. Belyaev and N.F. Sesekin [1] that if G is any (generalized) soluble group of infinite rank whose proper subgroups are finite-by-abelian, then also the commutator subgroup G0 of G is finite. More recently, M.R. Dixon, M.J. Evans and H. Smith [4] proved that if G is a locally (soluble-by-finite) group in which the commutator subgroup of every proper subgroup has finite rank, then G0 has likewise finite rank.
    [Show full text]
  • Uniform Simplicity of Groups with Proximal Action
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, SERIES B Volume 4, Pages 110–130 (September 6, 2017) http://dx.doi.org/10.1090/btran/18 UNIFORM SIMPLICITY OF GROUPS WITH PROXIMAL ACTION SWIATOS´ LAW R. GAL AND JAKUB GISMATULLIN, WITH AN APPENDIX BY NIR LAZAROVICH Abstract. We prove that groups acting boundedly and order-primitively on linear orders or acting extremely proximally on a Cantor set (the class in- cluding various Higman-Thomson groups; Neretin groups of almost automor- phisms of regular trees, also called groups of spheromorphisms; the groups of quasi-isometries and almost-isometries of regular trees) are uniformly simple. Explicit bounds are provided. Contents 1. Introduction 110 2. Burago-Ivanov-Polterovich method 115 3. Bounded actions on ordered sets 116 4. Proximality, primitivity, and double-transitivity 118 5. Extremely proximal actions on a Cantor set and uniform simplicity 120 6. Groups almost acting on trees 123 7. Appendix by Nir Lazarovich: Simplicity of AI(Tq)andQI(Tq) 127 Acknowledgments 129 References 129 1. Introduction Let Γ be a group. It is called N-uniformly simple if for every nontrivial f ∈ Γ and nontrivial conjugacy class C ⊂ Γ the element f istheproductofatmost N elements from C±1. A group is uniformly simple if it is N-uniformly simple for some natural number N. Uniformly simple groups are called sometimes, by other authors, groups with finite covering number or boundedly simple groups (see, e.g., [15, 19, 22]). We call Γ boundedly simple if N is allowed to depend on C. The purpose of this paper is to prove results on uniform simplicity, in particular Received by the editors June 14, 2016, and, in revised form, February 27, 2017.
    [Show full text]
  • Math 594: Homework 4
    Math 594: Homework 4 Due February 11, 2015 First Exam Feb 20 in class. 1. The Commutator Subgroup. Let G be a group. The commutator subgroup C (also denoted [G; G]) is the subgroup generated by all elements of the form g−1h−1gh. a). Prove that C is a normal subgroup of G, and that G=C is abelian (called the abelization of G). b). Show that [G; G] is contained in any normal subgroup N whose quotient G=N is abelian. State and prove a universal property for the abelianization map G ! G=[G; G]. c). Prove that if G ! H is a group homomorphism, then the commutator subgroup of G is taken to the commutator subgroup of H. Show that \abelianization" is a functor from groups to abelian groups. 2. Solvability. Define a (not-necessarily finite) group G to be solvable if G has a normal series feg ⊂ G1 ⊂ G2 · · · ⊂ Gt−1 ⊂ Gt = G in which all the quotients are abelian. [Recall that a normal series means that each Gi is normal in Gi+1.] a). For a finite group G, show that this definition is equivalent to the definition on problem set 3. b*). Show that if 1 ! A ! B ! C ! 1 is a short exact sequence of groups, then B if solvable if and only if both A and C are solvable. c). Show that G is solvable if and only if eventually, the sequence G ⊃ [G; G] ⊃ [[G; G]; [G; G]] ⊃ ::: terminates in the trivial group. This is called the derived series of G.
    [Show full text]
  • The Chameleon Groups of Richards J. Thompson : Automorphisms and Dynamics
    PUBLICATIONS MATHÉMATIQUES DE L’I.H.É.S. MATTHEW G. BRIN The chameleon groups of Richards J. Thompson : automorphisms and dynamics Publications mathématiques de l’I.H.É.S., tome 84 (1996), p. 5-33 <http://www.numdam.org/item?id=PMIHES_1996__84__5_0> © Publications mathématiques de l’I.H.É.S., 1996, tous droits réservés. L’accès aux archives de la revue « Publications mathématiques de l’I.H.É.S. » (http:// www.ihes.fr/IHES/Publications/Publications.html) implique l’accord avec les conditions géné- rales d’utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou im- pression systématique est constitutive d’une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright. Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/ THE CHAMELEON GROUPS OF RICHARD J. THOMPSON: AUTOMORPHISMS AND DYNAMICS by MATTHEW G. BRIN CONTENTS Part I. Background........................................................................... 6 0. Introduction ............................................................................. Q 1. Statements, history and outline............................................................. 8 1.1. Definitions and statements ............................................................ 8 1.2. Outline of the paper ................................................................. 10 1:3. Prior and related work ............................................................... 10 1.4. Other literature on
    [Show full text]
  • The Center and the Commutator Subgroup in Hopfian Groups
    The center and the commutator subgroup in hopfian groups 1~. I-hRSHON Polytechnic Institute of Brooklyn, Brooklyn, :N.Y., U.S.A. 1. Abstract We continue our investigation of the direct product of hopfian groups. Through- out this paper A will designate a hopfian group and B will designate (unless we specify otherwise) a group with finitely many normal subgroups. For the most part we will investigate the role of Z(A), the center of A (and to a lesser degree also the role of the commutator subgroup of A) in relation to the hopficity of A • B. Sections 2.1 and 2.2 contain some general results independent of any restric- tions on A. We show here (a) If A X B is not hopfian for some B, there exists a finite abelian group iv such that if k is any positive integer a homomorphism 0k of A • onto A can be found such that Ok has more than k elements in its kernel. (b) If A is fixed, a necessary and sufficient condition that A • be hopfian for all B is that if 0 is a surjective endomorphism of A • B then there exists a subgroup B. of B such that AOB-=AOxB.O. In Section 3.1 we use (a) to establish our main result which is (e) If all of the primary components of the torsion subgroup of Z(A) obey the minimal condition for subgroups, then A • is hopfian, In Section 3.3 we obtain some results for some finite groups B. For example we show here (d) If IB[ -~ p'q~.., q? where p, ql q, are the distinct prime divisors of ]B[ and ff 0 <e<3, 0~e~2 and Z(A) has finitely many elements of order p~ then A • is hopfian.
    [Show full text]
  • Automorphism Group of the Commutator Subgroup of the Braid Group
    ANNALES DE LA FACULTÉ DES SCIENCES Mathématiques STEPAN YU.OREVKOV Automorphism group of the commutator subgroup of the braid group Tome XXVI, no 5 (2017), p. 1137-1161. <http://afst.cedram.org/item?id=AFST_2017_6_26_5_1137_0> © Université Paul Sabatier, Toulouse, 2017, tous droits réservés. L’accès aux articles de la revue « Annales de la faculté des sci- ences de Toulouse Mathématiques » (http://afst.cedram.org/), implique l’accord avec les conditions générales d’utilisation (http://afst.cedram. org/legal/). Toute reproduction en tout ou partie de cet article sous quelque forme que ce soit pour tout usage autre que l’utilisation à fin strictement personnelle du copiste est constitutive d’une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright. cedram Article mis en ligne dans le cadre du Centre de diffusion des revues académiques de mathématiques http://www.cedram.org/ Annales de la faculté des sciences de Toulouse Volume XXVI, no 5, 2017 pp. 1137-1161 Automorphism group of the commutator subgroup of the braid group (∗) Stepan Yu. Orevkov (1) 0 ABSTRACT.— Let Bn be the commutator subgroup of the braid 0 group Bn. We prove that Aut(Bn) = Aut(Bn) for n > 4. This answers a question asked by Vladimir Lin. 0 RÉSUMÉ.— Soit Bn le groupe dérivé du groupe de tresses Bn. On 0 montre que Aut(Bn) = Aut(Bn) pour n > 4, ce qui répond à une question posée par Vladimir Lin. 1. Introduction Let Bn be the braid group with n strings. It is generated by σ1, . , σn−1 (called standard or Artin generators) subject to the relations σiσj = σjσi for |i − j| > 1 ; σiσjσi = σjσiσj for |i − j| = 1.
    [Show full text]
  • The Structure of the Abelian Groups F,/(F,, F’)
    JOURNAL OF ALGEBRA 40, 301-308 (1976) The Structure of the Abelian Groups F,/(F,, f’) DENNIS SPELLMAN Fact&ad de C&&as, Departamento de Matemdticas, Universidad de Los Andes, M&da-Ed0 M&da, Venezuela Communicated by Marshall Hall, Jr. Received November 14, 1974 Let F be a free group of rank k with 2 < k < tu. Let n > 2 be a positive integer also. Let F, be the nth term in the lower central series of F and F’ the commutator subgroup of F. Then (F,, , F’) Q F, and the quotient group F,,/(F,, , F’) is abelian. The two main results are: (1) Fn/(Fn ,F’) zz T x A, where T is a finite abelian group and A is free abelian of countably infinite rank. (2) If n = 2, 3, or 4 and 2 < k < cc is arbitrary, or if n = 5 and k = 2, then F,/(F, , F’) is free abelian of countably infinite rank. I do not know whether F,/(F, , F’) is torsion free for arbitrary values of n. (I) DEFINITIONS AND NOTATION Let G be a group and a, b E G. Then (a, b) = a-W%& If S Z G, then gp(S) is the subgroup of G generated by S. If A, B C G, then (A, B) = gp((a,b)IaEA,bEB).IfA,B~G,then(A,B)~~ABand(A,B)(lG. G’ = (G, G) and G” = (G’)‘. The lower central series of G is defined inductively by: Gl = G G v+l = (Gv , (3 Evidently, G, = G’. Moreover, Gl 3 G, 3 ..
    [Show full text]
  • On Closed Subgroups of the R. Thompson Group F
    On closed subgroups of the R. Thompson group F G. Golan-Polak, M. Sapir∗ Abstract We prove that Thompson’s group F has a subgroup H such that the conjugacy problem in H is undecidable and the membership problem in H is easily decidable. The subgroup H of F is a closed subgroup of F . That is, every function in F which is a piecewise-H function belongs to H. Other interesting examples of closed −→ subgroups of F include Jones’ subgroups F n and Jones’ 3-colorable subgroup F. By a recent result of the first author, all maximal subgroups of F of infinite index are closed. In this paper we prove that if K ≤ F is finitely generated then the closure of K, i.e., the smallest closed subgroup of F which contains K, is finitely generated. We also prove that all finitely generated closed subgroups of F are undistorted in F . In particular, all finitely generated maximal subgroups of F are undistorted in F . 1 Introduction Recall that R. Thompson’s group F is the group of all piecewise-linear homeomorphisms of the interval [0, 1] with finitely many breakpoints, where all breakpoints are finite Z 1 dyadic (i.e., elements of the set [ 2 ] ∩ (0, 1)) and all slopes are integer powers of 2. The group F has a presentation with two generators and two defining relations [13]. Algorithmic problems in F have been extensively studied. It is well known that the word problem in F is decidable in linear time [13, 34, 21] and that the conjugacy problem is decidable in linear time [21, 3, 4].
    [Show full text]
  • Central Sequences in the Factor Associated with Thompson's Group F
    ANNALES DE L’INSTITUT FOURIER PAUL JOLISSAINT Central sequences in the factor associated with Thompson’s group F Annales de l’institut Fourier, tome 48, no 4 (1998), p. 1093-1106 <http://www.numdam.org/item?id=AIF_1998__48_4_1093_0> © Annales de l’institut Fourier, 1998, tous droits réservés. L’accès aux archives de la revue « Annales de l’institut Fourier » (http://annalif.ujf-grenoble.fr/) implique l’accord avec les conditions gé- nérales d’utilisation (http://www.numdam.org/conditions). Toute utilisa- tion commerciale ou impression systématique est constitutive d’une in- fraction pénale. Toute copie ou impression de ce fichier doit conte- nir la présente mention de copyright. Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/ Ann. Inst. Fourier, Grenoble 48, 4 (1998), 1093-1106 CENTRAL SEQUENCES IN THE FACTOR ASSOCIATED WITH THOMPSONS GROUP F by Paul JOLISSAINT 1. Introduction. The group F is the following subgroup of the group of homeomor- phisms of the interval [0,1]: it is the set of piecewise linear homeomor- phisms of [0,1] that are differentiable except at finitely many dyadic ratio- nal numbers and such that on intervals of differentiability the derivatives are integral powers of 2. It was discovered by R. Thompson in 1965 and re- discovered later by homotopy theorists. Its history is sketched in [6] where many results that we need here are proved. To begin with, it is known that F admits the following presentation F = (a;o,^i,... | x^XnXi =Xn+i 0 < i < n) . Since Xn = x'Q'~/x\x'1Q~l for n ^ 2, F is generated by XQ and a-i, and in the geometric realization above, the corresponding homeomorphisms Xn are defined by t if 0 <: t < 1 - 2-71 I + t(1 - 2-n) if 1 - 2-71 < ^ < 1 - 2-71-1 XnW -{ ^ _ ^_2 ^ ^ _ ^-n-i < ^ < 1 _ 2-n-2 2t-l ifl-2-71-2 <t<l.
    [Show full text]
  • Simplicity of Groups of Homeomorphisms
    SUBGROUP DYNAMICS AND C∗-SIMPLICITY OF GROUPS OF HOMEOMORPHISMS ADRIEN LE BOUDEC AND NICOLÁS MATTE BON Abstract. We study the uniformly recurrent subgroups of groups acting by homeomor- phisms on a topological space. We prove a general result relating uniformly recurrent subgroups to rigid stabilizers of the action, and deduce a C∗-simplicity criterion based on the non-amenability of rigid stabilizers. As an application, we show that Thompson’s group V is C∗-simple, as well as groups of piecewise projective homeomorphisms of the real line. This provides examples of finitely presented C∗-simple groups without free sub- groups. We prove that a branch group is either amenable or C∗-simple. We also prove the converse of a result of Haagerup and Olesen: if Thompson’s group F is non-amenable, then Thompson’s group T must be C∗-simple. Our results further provide sufficient con- ditions on a group of homeomorphisms under which uniformly recurrent subgroups can be completely classified. This applies to Thompson’s groups F , T and V , for which we also deduce rigidity results for their minimal actions on compact spaces. 1. Introduction Let G be a second countable locally compact group. The set Sub(G) of all closed sub- groups of G admits a natural topology, defined by Chabauty in [Cha50]. This topology turns Sub(G) into a compact metrizable space, on which G acts continuously by conjugation. The study of G-invariant Borel probability measures on Sub(G), named invariant ran- dom subgroups (IRS’s) after [AGV14], is a fast-developing topic [AGV14, ABB+12, Gla14, BDL16].
    [Show full text]
  • 0. Introduction to Categories
    0. Introduction to categories September 21, 2014 These are notes for Algebra 504-5-6. Basic category theory is very simple, and in principle one could read these notes right away|but only at the risk of being buried in an avalanche of abstraction. To get started, it's enough to understand the definition of \category" and \functor". Then return to the notes as necessary over the course of the year. The more examples you know, the easier it gets. Since this is an algebra course, the vast majority of the examples will be algebraic in nature. Occasionally I'll throw in some topological examples, but for the purposes of the course these can be omitted. 1 Definition and examples of a category A category C consists first of all of a class of objects Ob C and for each pair of objects X; Y a set of morphisms MorC(X; Y ). The elements of MorC(X; Y ) are denoted f : X−!Y , where f is the morphism, X is the source and Y is the target. For each triple of objects X; Y; Z there is a composition law MorC(X; Y ) × MorC(Y; Z)−!MorC(X; Z); denoted by (φ, ) 7! ◦ φ and subject to the following two conditions: (i) (associativity) h ◦ (g ◦ f) = (h ◦ g) ◦ f (ii) (identity) for every object X there is given an identity morphism IdX satisfying IdX ◦ f = f for all f : Y −!X and g ◦ IdX = g for all g : X−!Y . Note that the identity morphism IdX is the unique morphism satisfying (ii).
    [Show full text]