Codes and Their Conversions 33
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Hamming Code - Wikipedia, the Free Encyclopedia Hamming Code Hamming Code
Hamming code - Wikipedia, the free encyclopedia Hamming code Hamming code From Wikipedia, the free encyclopedia In telecommunication, a Hamming code is a linear error-correcting code named after its inventor, Richard Hamming. Hamming codes can detect and correct single-bit errors, and can detect (but not correct) double-bit errors. In contrast, the simple parity code cannot detect errors where two bits are transposed, nor can it correct the errors it can find. Contents [hide] • 1 History • 2 Codes predating Hamming ♦ 2.1 Parity ♦ 2.2 Two-out-of-five code ♦ 2.3 Repetition • 3 Hamming codes • 4 Example using the (11,7) Hamming code • 5 Hamming code (7,4) ♦ 5.1 Hamming matrices ♦ 5.2 Channel coding ♦ 5.3 Parity check ♦ 5.4 Error correction • 6 Hamming codes with additional parity • 7 See also • 8 References • 9 External links History Hamming worked at Bell Labs in the 1940s on the Bell Model V computer, an electromechanical relay-based machine with cycle times in seconds. Input was fed in on punch cards, which would invariably have read errors. During weekdays, special code would find errors and flash lights so the operators could correct the problem. During after-hours periods and on weekends, when there were no operators, the machine simply moved on to the next job. Hamming worked on weekends, and grew increasingly frustrated with having to restart his programs from scratch due to the unreliability of the card reader. Over the next few years he worked on the problem of error-correction, developing an increasingly powerful array of algorithms. -
Final-Del-Lab-Manual-2018-19
LAB MANUAL DIGITAL ELECTRONICS LABORATORY Subject Code: 210246 2018 - 19 INDEX Batch : - Page Date of Date of Signature of Sr.No Title No Conduction Submission Staff GROUP - A Realize Full Adder and Subtractor using 1 a) Basic Gates and b) Universal Gates Design and implement Code converters-Binary to Gray and BCD to 2 Excess-3 Design of n-bit Carry Save Adder (CSA) and Carry Propagation Adder (CPA). Design and Realization of BCD 3 Adder using 4-bit Binary Adder (IC 7483). Realization of Boolean Expression for suitable combination logic using MUX 4 74151 / DMUX 74154 Verify the truth table of one bit and two bit comparators using logic gates and 5 comparator IC Design & Implement Parity Generator 6 using EX-OR. GROUP - B Flip Flop Conversion: Design and 7 Realization Design of Ripple Counter using suitable 8 Flip Flops a. Realization of 3 bit Up/Down Counter using MS JK Flip Flop / D-FF 9 b. Realization of Mod -N counter using ( 7490 and 74193 ) Design and Realization of Ring Counter 10 and Johnson Ring counter Design and implement Sequence 11 generator using JK flip-flop INDEX Batch : - Design and implement pseudo random 12 sequence generator. Design and implement Sequence 13 detector using JK flip-flop Design of ASM chart using MUX 14 controller Method. GROUP - C Design and Implementation of 15 Combinational Logic using PLAs. Design and simulation of - Full adder , 16 Flip flop, MUX using VHDL (Any 2) Use different modeling styles. Design & simulate asynchronous 3- bit 17 counter using VHDL. Design and Implementation of 18 Combinational Logic using PALs GROUP - D Study of Shift Registers ( SISO,SIPO, 19 PISO,PIPO ) Study of TTL Logic Family: Feature, 20 Characteristics and Comparison with CMOS Family Study of Microcontroller 8051 : 21 Features, Architecture and Programming Model ` Digital Electronics Lab (Pattern 2015) GROUP - A Digital Electronics Lab (Pattern 2015) Assignment: 1 Title: Adder and Subtractor Objective: 1. -
A New Approach to the Snake-In-The-Box Problem
462 ECAI 2012 Luc De Raedt et al. (Eds.) © 2012 The Author(s). This article is published online with Open Access by IOS Press and distributed under the terms of the Creative Commons Attribution Non-Commercial License. doi:10.3233/978-1-61499-098-7-462 A New Approach to the Snake-In-The-Box Problem David Kinny1 Abstract. The “Snake-In-The-Box” problem, first described more Research on the SIB problem initially focused on applications in than 50 years ago, is a hard combinatorial search problem whose coding [14]. Coils are spread-k circuit codes for k =2, in which solutions have many practical applications. Until recently, techniques n-words k or more positions apart in the code differ in at least k based on Evolutionary Computation have been considered the state- bit positions [12]. (The well-known Gray codes are spread-1 circuit of-the-art for solving this deterministic maximization problem, and codes.) Longest snakes and coils provide the maximum number of held most significant records. This paper reviews the problem and code words for a given word size (i.e., hypercube dimension). prior solution techniques, then presents a new technique, based on A related application is in encoding schemes for analogue-to- Monte-Carlo Tree Search, which finds significantly better solutions digital converters including shaft (rotation) encoders. Longest SIB than prior techniques, is considerably faster, and requires no tuning. codes provide greatest resolution, and single bit errors are either recognised as such or map to an adjacent codeword causing an off- 1 INTRODUCTION by-one error. -
NOTE on GRAY CODES for PERMUTATION LISTS Seymour
PUBLICATIONS DE L’INSTITUT MATHEMATIQUE´ Nouvelle s´erie,tome 78(92) (2005), 87–92 NOTE ON GRAY CODES FOR PERMUTATION LISTS Seymour Lipschutz, Jie Gao, and Dianjun Wang Communicated by Slobodan Simi´c Abstract. Robert Sedgewick [5] lists various Gray codes for the permutations in Sn including the classical algorithm by Johnson and Trotter. Here we give an algorithm which constructs many families of Gray codes for Sn, which closely follows the construction of the Binary Reflexive Gray Code for the n-cube Qn. 1. Introduction There are (n!)! ways to list the n! permutations in Sn. Some such permutation lists have been generated by a computer, and some such permutation lists are Gray codes (where successive permutations differ by a transposition). One such famous Gray code for Sn is by Johnson [4] and Trotter [6]. In fact, each new permutation in the Johnson–Trotter (JT ) list for Sn is obtained from the preceding permutation by an adjacent transposition. Sedgewick [5] gave a survey of various Gray codes for Sn in 1977. Subsequently, Conway, Sloane and Wilks [1] gave a new Gray code CSW for Sn in 1989 while proving the existence of Gray codes for the reflection groups. Recently, Gao and Wang [2] gave simple algorithms, each with an efficient implementation, for two new permutation lists GW1 and GW2 for Sn, where the second such list is a Gray code for Sn. The four lists, JT , CSW , GW1 and GW2, for n = 4, are pictured in Figure 1. This paper gives an algorithm for constructing many families of Gray codes for Sn which uses an idea from the construction of the Binary Reflected Gray Code (BRGC) of the n-cube Qn. -
Other Binary Codes (3A)
Other Binary Codes (3A) Young Won Lim 1/3/14 Copyright (c) 2011-2013 Young W. Lim. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation License". Please send corrections (or suggestions) to [email protected]. This document was produced by using OpenOffice and Octave. Young Won Lim 1/3/14 Coding A code is a rule for converting a piece of information (for example, a letter, word, phrase, or gesture) into another form or representation (one sign into another sign), not necessarily of the same type. In communications and information processing, encoding is the process by which information from a source is converted into symbols to be communicated. Decoding is the reverse process, converting these code symbols back into information understandable by a receiver. Young Won Lim Other Binary Codes (4A) 3 1/3/14 Character Coding ASCII code BCD (Binary Coded Decimal) definitions for 128 characters: Number characters (0-9) 33 non-printing control characters (many now obsolete) 95 printable charactersi Young Won Lim Other Binary Codes (4A) 4 1/3/14 Representation of Numbers Fixed Point Number representation ● 2's complement +1234 ● 1's complement 0 -582978 coding ● sign-magnitude Floating Point Number representation +23.84380 ● IEEE 754 -1.388E+08 -
Loopless Gray Code Enumeration and the Tower of Bucharest
Loopless Gray Code Enumeration and the Tower of Bucharest Felix Herter1 and Günter Rote1 1 Institut für Informatik, Freie Universität Berlin Takustr. 9, 14195 Berlin, Germany [email protected], [email protected] Abstract We give new algorithms for generating all n-tuples over an alphabet of m letters, changing only one letter at a time (Gray codes). These algorithms are based on the connection with variations of the Towers of Hanoi game. Our algorithms are loopless, in the sense that the next change can be determined in a constant number of steps, and they can be implemented in hardware. We also give another family of loopless algorithms that is based on the idea of working ahead and saving the work in a buffer. 1998 ACM Subject Classification F.2.2 Nonnumerical Algorithms and Problems Keywords and phrases Tower of Hanoi, Gray code, enumeration, loopless generation Contents 1 Introduction: the binary reflected Gray code and the Towers of Hanoi 2 1.1 The Gray code . .2 1.2 Loopless algorithms . .2 1.3 The Tower of Hanoi . .3 1.4 Connections between the Towers of Hanoi and Gray codes . .4 1.5 Loopless Tower of Hanoi and binary Gray code . .4 1.6 Overview . .4 2 Ternary Gray codes and the Towers of Bucharest 5 3 Gray codes with general radixes 7 4 Generating the m-ary Gray code with odd m 7 5 Generating the m-ary Gray code with even m 9 arXiv:1604.06707v1 [cs.DM] 22 Apr 2016 6 The Towers of Bucharest++ 9 7 Simulation 11 8 Working ahead 11 8.1 An alternative STEP procedure . -
Algorithms for Generating Binary Reflected Gray Code Sequence: Time Efficient Approaches
2009 International Conference on Future Computer and Communication Algorithms for Generating Binary Reflected Gray Code Sequence: Time Efficient Approaches Md. Mohsin Ali, Muhammad Nazrul Islam, and A. B. M. Foysal Dept. of Computer Science and Engineering Khulna University of Engineering & Technology Khulna – 9203, Bangladesh e-mail: [email protected], [email protected], and [email protected] Abstract—In this paper, we propose two algorithms for Coxeter groups [4], capanology (the study of bell-ringing) generating a complete n-bit binary reflected Gray code [5], continuous space-filling curves [6], classification of sequence. The first one is called Backtracking. It generates a Venn diagrams [7]. Today, Gray codes are widely used to complete n-bit binary reflected Gray code sequence by facilitate error correction in digital communications such as generating only a sub-tree instead of the complete tree. In this digital terrestrial television and some cable TV systems. approach, both the sequence and its reflection for n-bit is In this paper, we present the derivation and generated by concatenating a “0” and a “1” to the most implementation of two algorithms for generating the significant bit position of the n-1 bit result generated at each complete binary reflected Gray code sequence leaf node of the sub-tree. The second one is called MOptimal. It () ≤ ≤ n − is the modification of a Space and time optimal approach [8] G i ,0 i 2 1 , for a given number of bits n. We by considering the minimization of the total number of outer evaluate the performance of these algorithms and other and inner loop execution for this purpose. -
GRAPHS INDUCED by GRAY CODES 1. Introduction an N-Bit
GRAPHS INDUCED BY GRAY CODES ELIZABETH L. WILMER AND MICHAEL D. ERNST Abstract. We disprove a conjecture of Bultena and Ruskey [1], that all trees which are cyclic graphs of cyclic Gray codes have diameter 2 or 4, by producing codes whose cyclic graphs are trees of arbitrarily large diameter. We answer affirmatively two other questions from [1], showing that strongly Pn Pn- compatible codes exist and that it is possible for a cyclic code to induce× a cyclic digraph with no bidirectional edge. A major tool in these proofs is our introduction of supercomposite Gray codes; these generalize the standard reflected Gray code by allowing shifts. We find supercomposite Gray codes which induce large diameter trees, but also show that many trees are not induced by supercomposite Gray codes. We also find the first infinite family of connected graphs known not to be induced by any Gray code | trees of diameter 3 with no vertices of degree 2. 1. Introduction n An n-bit Gray code B = (b1; b2;:::; bN ), N = 2 , lists all the binary n-tuples (\codewords") so that consecutive n-tuples differ in one bit. In a cyclic code, the first and last n-tuples also differ in one bit. Gray codes can be viewed as Hamiltonian paths on the hypercube graph; cyclic codes correspond to Hamiltonian cycles. Two Gray codes are isomorphic when one is carried to the other by a hypercube isomorphism. The transition sequence τ(B) = (τ1; τ2; : : : ; τN 1) of an n-bit Gray code B lists − the bit positions τi [n] = 1; 2; : : : ; n where bi and bi+1 differ. -
Error-Correction and the Binary Golay Code
London Mathematical Society Impact150 Stories 1 (2016) 51{58 C 2016 Author(s) doi:10.1112/i150lms/t.0003 e Error-correction and the binary Golay code R.T.Curtis Abstract Linear algebra and, in particular, the theory of vector spaces over finite fields has provided a rich source of error-correcting codes which enable the receiver of a corrupted message to deduce what was originally sent. Although more efficient codes have been devised in recent years, the 12- dimensional binary Golay code remains one of the most mathematically fascinating such codes: not only has it been used to send messages back to earth from the Voyager space probes, but it is also involved in many of the most extraordinary and beautiful algebraic structures. This article describes how the code can be obtained in two elementary ways, and explains how it can be used to correct errors which arise during transmission 1. Introduction Whenever a message is sent - along a telephone wire, over the internet, or simply by shouting across a crowded room - there is always the possibly that the message will be damaged during transmission. This may be caused by electronic noise or static, by electromagnetic radiation, or simply by the hubbub of people in the room chattering to one another. An error-correcting code is a means by which the original message can be recovered by the recipient even though it has been corrupted en route. Most commonly a message is sent as a sequence of 0s and 1s. Usually when a 0 is sent a 0 is received, and when a 1 is sent a 1 is received; however occasionally, and hopefully rarely, a 0 is sent but a 1 is received, or vice versa. -
The Binary Golay Code and the Leech Lattice
The binary Golay code and the Leech lattice Recall from previous talks: Def 1: (linear code) A code C over a field F is called linear if the code contains any linear combinations of its codewords A k-dimensional linear code of length n with minimal Hamming distance d is said to be an [n, k, d]-code. Why are linear codes interesting? ● Error-correcting codes have a wide range of applications in telecommunication. ● A field where transmissions are particularly important is space probes, due to a combination of a harsh environment and cost restrictions. ● Linear codes were used for space-probes because they allowed for just-in-time encoding, as memory was error-prone and heavy. Space-probe example The Hamming weight enumerator Def 2: (weight of a codeword) The weight w(u) of a codeword u is the number of its nonzero coordinates. Def 3: (Hamming weight enumerator) The Hamming weight enumerator of C is the polynomial: n n−i i W C (X ,Y )=∑ Ai X Y i=0 where Ai is the number of codeword of weight i. Example (Example 2.1, [8]) For the binary Hamming code of length 7 the weight enumerator is given by: 7 4 3 3 4 7 W H (X ,Y )= X +7 X Y +7 X Y +Y Dual and doubly even codes Def 4: (dual code) For a code C we define the dual code C˚ to be the linear code of codewords orthogonal to all of C. Def 5: (doubly even code) A binary code C is called doubly even if the weights of all its codewords are divisible by 4. -
Proposal for Addition of Group Mark Symbol Introduction
Proposal for addition of Group Mark symbol Ken Shirriff github.com/shirriff/groupmark Feb 14, 2015 Abstract The group mark symbol was part of the character set of important computers of the 1960s and 1970s, such as the IBM 705, 7070, 1401 and 1620. Books about these computers and manuals for them used the symbol to represent the group mark in running text. Unfortunately, this symbol does not exist in Unicode, making it difficult to write about technical details of these historical computers. Introduction The group mark was introduced in the 1950s as a separator character for I/O operations. In written text, the group mark is indicated by the symbol: . Unicode doesn't include this symbol, which is inconvenient when writing about the group mark or the character set of these computers. The group mark became part of IBM's Standard BCD Interchange Code (BCDIC) in 1962. [1, page 20 and figure 56]. This standard was used by the IBM 1401, 1440, 1410, 1460, 7010, 7040, and 7044 data processing systems [2]. The BCDIC standard provided consistent definitions of codes and the relation between these codes and printed symbols, including uniform graphics for publications.[2, page A-2]. Unicode can represent all the characters in BCDIC, except for the group mark. This proposal is for a Unicode code point for the group mark for use in running text with an associated glyph . This is orthogonal to the use of the group mark as a separator in data files. While the proposed group mark could be used in data files, that is not the focus of this proposal. -
OPTIMIZING SIZES of CODES 1. Introduction to Coding Theory Error
OPTIMIZING SIZES OF CODES LINDA MUMMY Abstract. This paper shows how to determine if codes are of optimal size. We discuss coding theory terms and techniques, including Hamming codes, perfect codes, cyclic codes, dual codes, and parity-check matrices. 1. Introduction to Coding Theory Error correcting codes and check digits were developed to counter the effects of static interference in transmissions. For example, consider the use of the most basic code. Let 0 stand for \no" and 1 stand for \yes." A mistake in one digit relaying this message can change the entire meaning. Therefore, this is a poor code. One option to increase the probability that the correct message is received is to send the message multiple times, like 000000 or 111111, hoping that enough instances of the correct message get through that the receiver is able to comprehend the original meaning. This, however, is an inefficient method of relaying data. While some might associate \coding theory" with cryptography and \secret codes," the two fields are very different. Coding theory deals with transmitting a codeword, say x, and ensuring that the receiver is able to determine the original message x even if there is some static or interference in transmission. Cryptogra- phy deals with methods to ensure that besides the sender and the receiver of the message, no one is able to encode or decode the message. We begin by discussing a real life example of the error checking codes (ISBN numbers) which appear on all books printed after 1964. We go on to discuss different types of codes and the mathematical theories behind their structures.