Common Eye Problems

Total Page:16

File Type:pdf, Size:1020Kb

Common Eye Problems Jeffrey Stevens MD Averal Medical Group Ophthalmology Amare Stoudemire More than 30,000 children sustain sports related eye injuries each year. The average professional baseball fastball travels at 95 miles per hour. The average hockey puck travels at 95 mph. 90 percent of eye injuries are prevented by using protective eyewear. Roughly 30% of these injuries are from individuals playing basketball. Don’t Worry!! The eye is easy!! Remember these points!! • Know the Basic Exam • Know Basic Anatomy • Know Basic Differential • If in doubt (Wills Eye Manual) and or call your friendly eye specialist. History Past Eye History Vision-near card Pupils Confrontation Visual fields (Count fingers in periphery) Eye Movement Eye Pressure (tonopen) External exam topical- anesthetic (fluorescein/ cobalt blue light source- if needed.) External exam Direct Ophthalmoscope- Fundus Exam Near Card Smart Phone App Light Source to see if equal in size and response and symmetry. Light source can even be your smart phone in a pinch. Have patient cover one eye Have him/her fixate on your nose. Check each side inferior and superior quadrant with movement or number of fingers. Have patient follow finger movement in up, down and each lateral side gaze. Look at pupillary reflex in both eyes to see if it is displaced in either eye during movement. Displaced light reflex on left gaze Normal 8-21 mmHg. Tonopen easiest method in emergency setting Topical anesthetic needed. No pressure on eyelid or eye when taking pressure Repeat if pressure is high, or not repeatable. Tonopen may need to be recalibrated. With concern for ruptured globe do not take pressure. For Swollen lids, patients in intense pain or photophobia a lid speculum or lid retractor can be helpful to inspect the eye. If there is suspicion of ruptured globe, and the patient is not being cooperative, it is better to CT scan the patient and call the Ophthalmologist instead of risk more damage to the globe. Shield the eye and call. Look at all external eye structures, Compare between eyes. For internal structures, Intraocular Foreign body, ruptured globe, CT scan can be helpful. For Lid lacerations important to identify if medial lacrimal canaliculi/punctum are affected. Direct exam- Easier with a panoptic. Difficult for most non eye specialists without dilation. If you can’t see the fundus, that is OK, just go off of history and the rest of the exam and call if there is any suspicion the patient needs to be seen right away. If you would like practice, ask an eye specialist to allow you to follow him/her for a couple of hours to practice the direct ophthalmoscope on dilated patients. Anyone is welcome at any time at our office • Avera Medical Group Ophthalmology, Plaza 2, Suite 202, Sioux Falls, SD 57105. Phone: 605-322-3790. Corneal/Conjunctival abrasion Subconjunctival hemorrhage Orbital fracture Hyphema-(blood in the eye) Ruptured globe. Concussion 15 year old female while playing basketball. She has excruciating left eye pain after a teammate accidently poked her in her left eye. She has difficulty opening the left eye, tearing, 10/10 sharp pain, and 20/400 vision. Signs/Symptoms: Very Common- From direct trauma, or foreign body. Signs- Sudden severe sharp eye pain, foreign body sensation, decreased vision, tearing, redness, periocular edema (swelling), photophobia. Patient may want to hold eye shut. May spontaneously debride after healing days later. Diagnosis/Treatment: Direct exam- eye care providers and most urgent care/Emergency departments have flourescein and anesthetic to examine, stain the abrasion and observe with a woods lamp (cobalt blue light source). Topical antibiotic to prevent infection- erythromycin ointment TID. Drop- ofloxacin, polytrim QID until healed. If high risk of infection –vigamox, zymar 4xday Moxeza 2xday. Remove foreign body if it is the cause. Usually heal in 1-2 days. 12 year old boy poked in left eye while wrestling an opponent. What is it-Blood within or under the conjunctiva. “Eye Hematoma” Almost always benign. Conjunctiva may billow and prevent the eye from completely closing initially. Most common with trauma Can also be spontaneous with anticoagulation. Treatment- • Cool Compresses. • Artificial tears. 18 year old college football player sustaining facial trauma after getting tackled after his helmet fell off. Assessment: • Basic Eye exam: Focusing on these parts. • Vision- Risk for Traumatic optic Neuropathy. (Damage to Optic Nerve) • Eye Pressure: Increased eye pressure can occur from Retrobulbar hematoma. (Ocular compression syndrome) Emergent Canthotomy needed to relieve compression • Extraocular Movement: Muscle entrapment can be caused from a fracture, most common with small inferior fracture. • Enophthalmos- Eye is sunken in due to extensive posterior orbital fracture. • CT Scan of Orbits/Facial bones required. Treatment: Observation: • Edema of periocular tissue,mild proptosis, mild extraocular restriction/mild diplopia can be due to edema and can improve with time, usually 1-3 weeks. • Orbital heme and emphysema (air within orbit) will improve. Counsel patient not to blow nose for a time. Surgical repair of orbit: • Enophthalmos (more than 2 mm of difference. • Intraocular muscle entrapment- Needs to be urgent if stimulating the Oculocardiac reflex (tachycardia nausea) • Orbital Rim step off- Orbital rim fracture that is apparent by touch/exam. 12 year old with blurred vision and pain in his left eye after hockey game. In the concessions a teammates plastic spoon shattered while playing drums with it, and a splinter hit him in the left eye. Foreign body, sharp object, or blunt trauma, punctures the globe and causes an “Open Globe”. Signs- misshapen eye on examination and or CT/MRI study, new pupillary irregularity, Decreased vision, Corneal or scleral Laceration, Intraocular Foreign body on imaging study. +Seidel test -fluoroscien stain shows fluid draining from the . Treatment- Do not touch the eye. Shield the eye and emergently contact nearest ophthalmologist for evaluation and surgery. Antiemetics may be recommended to prevent vomiting and valsalva. Patient should be put NPO for surgery. Ophthalmologist may want IV antibiotics. After affirmation of ruptured globe full examination and surgical repair will be performed in the OR. Fluorescein is moving away from wound, showing fluid leaking from the intraocular contents. 8 year old boy playing baseball gets hit in the left eye with the baseball. Blood in the anterior chamber usually related to trauma. Can cause blockage of the trabecular meshwork, corneal blood staining, and amblyopia in children. Symptoms- Pain, decreased vision. Signs- Layered blood in the anterior chamber, 8 Ball (complete hyphema), poorly responsive pupil, increased intraocular pressure. Diagnostics-check intraocular pressure, Sickle Cell prep for African descent. Refer to Ophthalmology emergently. Restrict movement to prevent rebleed, stirring up blood cells. Pt. may need to be hospitalized and put on bed rest. Elevate head of patient to allow blood to settle. Lower increased intraocular pressure with topical medications, and or oral diamox, methazolamide or IV mannitol. • Surgery may be needed if IOP is elevated for too long if the blood is not receding. Low surgical threshhold for Sickle patients and pediatric patients. 25 year old semiproffesional basketball player gets hit in right eye with an elbow. He notices sudden inferior ”curtain” of lossed vision with multiple new floaters that do not resolve with time. Fundus examination is shown. Painless sudden loss or blurring of vision. Associated symptoms: New floaters, flashing lights, curtain of blurred vision that does not move or change. Gradual worsening of peripheral vision. Associated with trauma, High Myopes (near sighted) Family history, History in other eye. Retinal detachment can happen when blunt force causes vitreous adhesions to tear the retina causing a retinal break. Retinal breaks allow fluid to enter between the retina and underlying choroid causing the retina to detach. Lack of choroidal blood supply to the retina causes the retinal to degenerate and die, causing permanent loss of vision. Retinal death can decrease central vision in less than 48 hours. Assessment/Treatment • Urgent evaluation by an ophthalmologist/Retina specialist. Call nearest ophthalmologist or Emergency room with Ophthalmologist on call. • Counsel patient to limit activity, bed rest may be advisable if a retinal detachment is highly likely. • Retinal laser retinopexy, with or without gas retinopexy or retinal surgery may be required (scleral buckle, or pars plana vitrectomy.) Definition- Concussions are mild brain injuries usually due to head trauma. • Concussions can cause long term brain dysfunction, but usually are self limiting and can resolve without long term disability as long as the brain has time to recover/heal without sustaining repeated injury and or strain. Concussion Facts (CDC): >3 million US cases/ year. 5-10% athlete experience one in a sport season <10% of sport related concussions involve a Loss of Consciousness Football > risk for males (75% chance for concussion) Soccer > risk for females (50% chance for concussion) Ocular Findings • Decreased/Increased Saccades with less accuracy- Difficulty reading/ affect eye hand coordination. • Convergence/Divergence Insufficiency- Difficulty focusing to read or see in the distance. Variable or constant diplopia
Recommended publications
  • Bouncebacks the Case of a 10-Year-Old Male with Eye Pain
    Bouncebacks The Case of a 10-Year-Old Male with Eye Pain Bouncebacks appears semimonthly in JUCM. Case presentations on each patient, along with case-by-case risk management commentary by Gregory L. Henry, past president of The American College of Emergency Physicians, and discussions by other nationally recognized experts are detailed in the book Bouncebacks! Emergency Department Cases: ED returns (2006, Anadem Publishing, www.anadem.com).] Also avail- able at www.amazon.com and www.acep.org. Ryan Longstreth, MD, FACEP and Michael B. Weinstock, MD his article is the third in a series scheduled returns. Tin which we will sequentially Other than these medical errors, dysp- answer the following questions: nea and advanced age were the two most I. What is the incidence of common factors associated with an un- bouncebacks? scheduled return visit. II. What is the incidence Another study looking at this is- of bounceback ad- sue was published in 1990 in missions? the Annals of Emergency Medi- III. What is the inci- cine by Pierce et al. During the dence of death in three-month study period, patients recently there were 17,214 new visits to discharged from the their ED with 569 unscheduled ED? returns (defined as ED return IV. What percent of within 48 hours), equating bouncebacks occur to a bounceback rate of just because of medical over 3%. errors? The researchers con- V. How can we use this © Barton Stabler / Images.com cluded that over 18% were information to im- due to physician-related prove patient safety? factors (e.g., misdiagnosis, This month, we will discuss treatment error, inappropriate Question IV: What percent of discharge on initial visit, radiol- bouncebacks occur because of medical errors? ogy over-reads, or lack of outpa- A 2006 case control study performed by Nunez tient analgesics when indicated).
    [Show full text]
  • CHQ-GDL-01074 Acute Management of Open Globe Injuries
    Acute management of Open Globe Injuries Document ID CHQ-GDL-01074 Version no. 2.0 Approval date 14/05/2020 Executive sponsor Executive Director Medical Services Effective date 14/05/2020 Author/custodian Director Infection Management and Prevention service, Review date 14/05/2022 Immunology and Rheumatology Supersedes 1.0 Applicable to All Children’s Health Queensland (CHQ) staff Authorisation Executive Director Clinical Services (QCH) Purpose This evidence-based guideline provides clinical practice advice for clinicians for the acute management of children with open globe injuries. A paediatric ophthalmology team must be actively involved in the management of all patients presenting with this condition. Scope This guideline applies to all Children’s Health Queensland (CHQ) Staff treating a child presenting for the management of open globe injury. Related documents • CHQ-GDL-01202 CHQ Paediatric Antibiocard: Empirical Antibiotic Guidelines • CHQ-PROC-01035 Antimicrobial Restrictions • CHQ Antimicrobial Restriction list • CHQ-GDL-01023 Tetanus Prophylaxis in Wound Management CHQ-GDL-01074- Acute management of Open Globe Injuries - 1 - Guideline Introduction Ocular trauma is an important cause of eye morbidity and is a leading cause of non-congenital mono-ocular blindness among children.1 A quarter of a million children present each year with serious ocular trauma. The vast majority of these are preventable.2 Open globe injuries are injuries where the cornea and/or sclera are breached and there is a full-thickness wound of the eye wall.3 It can be further delineated into globe rupture from blunt trauma and lacerations from sharp objects. When a large blunt object impacts onto the eye, there is an instant increase in intraocular pressure and the eye wall yields at its weakest point leading to tissue prolapse.4 Open globe lacerations are caused by sharp objects or projectiles and subdivided into either penetrating or perforating injuries.
    [Show full text]
  • Topical Serum for Treatment of Keratomalacia
    PROCEDURES PRO > OPHTHALMOLOGY > PEER REVIEWED Topical Serum for Treatment of Keratomalacia Amy Knollinger, DVM, DACVO Eye Care for Animals Salt Lake City, Utah Corneal Anatomy An understanding of corneal anatomy is vital to determine if serum therapy for the treatment of keratomalacia should be initiated. The cornea makes up the anterior por- tion of the globe and provides multiple functions for vision: it is transparent (despite originating from surface ectoderm), thereby allowing for clear vision; it acts as the major refractive (bending of light) surface of the globe; and it provides a protective barrier between the globe and the environment The cornea consists of 4 layers in domestic species, being approximately 0.45–0.55 mm thick in the normal dog. The corneal epithelium is the most external layer overly- What You Will Need ing the stromal layer, which accounts for 90% of the total corneal thickness. The cor- n Sterile gloves neal epithelium in the dog and cat is 5–11 cells thick and has a turnover rate of n approximately 7 days.1 The stroma is made up of collagen fibers, which are precisely Clean #40 clipper blade arranged in parallel sheets running the entire diameter of the cornea, allowing for its n Chlorhexidine scrub and solution transparency. The third layer is an acellular membrane (ie, Descemet’s membrane), n Sterile needle and syringe which forms the basement membrane for the innermost layer, the endothelium. The n corneal endothelium is a single layer of hexagonally shaped cells forming the internal Red top sterile blood collection or barrier between the anterior chamber and the cornea.2 serum separator tube n Centrifuge Corneal Disease n Sterile pipette Corneal ulcers are classified by underlying cause.
    [Show full text]
  • Two Cases of Endogenous Endophthalmitis That Progressed To
    rine to more distal vessels may have led to vasoconstric- References tion and subsequent vasospasm. In conclusion, epinephrine can lead to OAO following 1. Niemi G. Advantages and disadvantages of adrenaline in accidental intra-arterial injection of subcutaneously ad- regional anaesthesia. Best Pract Res Clin Anaesthesiol ministered local anesthetics. Hence, physicians should 2005;19:229-45. carefully administer local anesthesia while considering the 2. Park KH, Kim YK, Woo SJ, et al. Iatrogenic occlusion of possibility that such a complication may occur. the ophthalmic artery after cosmetic facial filler injections: a national survey by the Korean Retina Society. JAMA Byung Gil Moon Ophthalmol 2014;132:714-23. Retina Center, Department of Ophthalmology, HanGil Eye 3. Lazzeri D, Agostini T, Figus M, et al. Blindness following Hospital, Incheon, Korea cosmetic injections of the face. Plast Reconstr Surg 2012;129:995-1012. June-Gone Kim 4. Savino PJ, Burde RM, Mills RP. Visual loss following intra- Department of Ophthalmology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea nasal anesthetic injection. J Clin Neuroophthalmol E-mail: [email protected] 1990;10:140-4. 5. Webber B, Orlansky H, Lipton C, Stevens M. Complica- tions of an intra-arterial injection from an inferior alveolar Conflict of Interest nerve block. J Am Dent Assoc 2001;132:1702- 4. No potential conflict of interest relevant to this article was reported. Korean J Ophthalmol 2017;31(3):279-281 litus presented with blurred vision of the right eye for 10 https://doi.org/10.3341/kjo.2017.0002 days. Abdominal and chest computed tomography showed an emphysematous prostatic abscess with multiple pulmo- nary lesions.
    [Show full text]
  • Globe Rupture and Protrusion of Intraocular Contents from Fall in Elderly Patient
    Open Access Case Report DOI: 10.7759/cureus.5988 Globe Rupture and Protrusion of Intraocular Contents from Fall in Elderly Patient Andrew Hanna 1 , Rohan Mangal 2 , Tej G. Stead 3 , Latha Ganti 4, 5, 6 1. Emergency Medicine, Graduate Medical Education, University of Central Florida, Orlando, USA 2. Emergency Medicine, Johns Hopkins University, Baltimore, USA 3. Emergency Medicine, Brown University, Providence, USA 4. Emergency Medicine, Envision Physician Services, Orlando, USA 5. Emergency Medicine, University of Central Florida College of Medicine / Hospital Corporation of America Graduate Medical Education Consortium of Greater Orlando, Orlando, USA 6. Emergency Medicine, Polk County Fire Rescue, Bartow, USA Corresponding author: Rohan Mangal, [email protected] Abstract The authors present a case of globe rupture from a fall in an elderly patient. This patient had her intraocular contents protruding and experienced complete vision loss in her right eye. The emergency management and downstream surgical care is discussed, as well as the use of the Ocular Trauma Score to predict prognosis. Our patient had an Ocular Trauma Score of 1, considering right retinal detachment and perforating injury. Categories: Emergency Medicine, Ophthalmology Keywords: emergency medicine, ophthalmology, trauma, globe rupture Introduction Amongst serious eye injuries, 40% are attributable to penetrating and perforating injury [1]. Globe rupture occurs when the structure of the cornea or sclera is disrupted, usually due to trauma. Symptoms of globe rupture include eye deformity, eye pain, and vision loss. Sometimes, if blunt force directly impacts the eye, the sclera may rupture due to intraocular pressure. Globe injuries are relatively uncommon, with an incidence of 3.5 per 100,000 eye injuries [2].
    [Show full text]
  • Acute Management of Penetrating Eye Injury and Ruptured Globe
    Acute management of penetrating eye injury and ruptured globe Disclaimer SEE ALSO: Endophthalmitis, Hyphaema, Peri- and post-operative Management of Penetrating Eye Injury and Ruptured Globe, Procedure for Management of Eye Trauma DESCRIPTION – The immediate management of penetrating eye injury (PEI), with or without intra-ocular foreign body (IOFB), and ruptured globe to maximise outcome. HOW TO ASSESS Red Flags: Immediate Advanced Trauma Life Support (ATLS) assessment: Airway, Breathing, Circulation, Disability, Exposure (ABCDE) Establish mechanism of injury to exclude other injuries which may require management at a general hospital, e.g. cervical spine, head injury Open globe should be examined carefully to avoid extrusion of intraocular contents Consider occult injury if mechanism suggestive Shield at all times (do not pad) Early referral for pre-anaesthetic assessment and medical review (if needed), to assess pre-existing or new medical issues and the patient’s suitability for management at RVEEH. Preoperative bloods, ECG and imaging as indicated. EXPECTED PATIENT Refer to and complete the ‘Emergency Expect Form’ (MR 37) in the Emergency Department. Make sure patient’s contact details (mobile) are recorded. Do not accept patients who have injuries other than ocular i.e. multi-trauma or who are medically unstable. Children under the age of 6 months should be referred directly to the Royal Children’s Hospital. Children aged from 6 months to 2 years with significant co-morbidities may not be appropriate to be managed at RVEEH. 1 Penetrating eye injury and ruptured globe CPG v4 19092017 All paediatric patients which may need referral to RCH, must be discussed with RCH Ophthalmology registrar or Consultant PRIOR to referral in order to confirm specialty coverage and operating theatre availability should surgery be required.
    [Show full text]
  • Eleventh Edition
    SUPPLEMENT TO April 15, 2009 A JOBSON PUBLICATION www.revoptom.com Eleventh Edition Joseph W. Sowka, O.D., FAAO, Dipl. Andrew S. Gurwood, O.D., FAAO, Dipl. Alan G. Kabat, O.D., FAAO Supported by an unrestricted grant from Alcon, Inc. 001_ro0409_handbook 4/2/09 9:42 AM Page 4 TABLE OF CONTENTS Eyelids & Adnexa Conjunctiva & Sclera Cornea Uvea & Glaucoma Viitreous & Retiina Neuro-Ophthalmic Disease Oculosystemic Disease EYELIDS & ADNEXA VITREOUS & RETINA Blow-Out Fracture................................................ 6 Asteroid Hyalosis ................................................33 Acquired Ptosis ................................................... 7 Retinal Arterial Macroaneurysm............................34 Acquired Entropion ............................................. 9 Retinal Emboli.....................................................36 Verruca & Papilloma............................................11 Hypertensive Retinopathy.....................................37 Idiopathic Juxtafoveal Retinal Telangiectasia...........39 CONJUNCTIVA & SCLERA Ocular Ischemic Syndrome...................................40 Scleral Melt ........................................................13 Retinal Artery Occlusion ......................................42 Giant Papillary Conjunctivitis................................14 Conjunctival Lymphoma .......................................15 NEURO-OPHTHALMIC DISEASE Blue Sclera .........................................................17 Dorsal Midbrain Syndrome ..................................45
    [Show full text]
  • Keratoconjunctivitis Sicca (KCS)
    Vision Matters A Focus on Keratoconjunctivitis Sicca (KCS) Brought to you by Bayer Keratoconjunctivitis sicca (KCS): The normal tear film explained The normal tear film (also called Ocular conditions account for about ten percent of canine consultations in first opinion Recent research into tear film dynamics 1 practice ; this means if twenty dogs come into your surgery in a day, two of them are likely the precorneal tear film) consists suggests that the three component to be presenting with an eye condition. of three major components: layers are not well defined, and that there is a possible fourth layer of glycocalyx With owners increasingly doing their own research before visiting their vet, it is vital to have in-depth that extends from the corneal epithelium.5,6 knowledge of commonly seen conditions. This report focuses on keratoconjunctivitis sicca (KCS), Mucous layer – produced by conjunctival also known as dry eye, a condition where early recognition can have a significant impact on prognosis. goblet cells, and also by the epithelial The aqueous layer of the tear film is 98.2% water cells of the cornea and conjunctiva “and 1.8% solids, including immunoglobulins“ (IgA, IgG, IgM), lysozyme, lactoferrin, Aqueous layer – produced by the lacrimal 7,8 and nictitans glands transferrin, ceruloplasmin and glycoproteins. Without a normal aqueous layer, the corneal Lipid layer – produced by meibomian surface is at risk from bacterial infection, glands in the eyelid margin hypoxia, toxic tissue metabolite accumulation and excessive degradation. 5% 20% 46% The tear film plays a vital role 46% of dog owners in maintaining ocular health: ...and up to 20% of in a recent survey Dry eye affects predisposed breeds3 were not aware that • Lubricates the cornea, 2 nearly 5% of all dogs their pet could suffer eyelids and conjunctiva from dry eye4 • Provides oxygen and nutrients (e.g.
    [Show full text]
  • Traumatic Keratoplasty Rupture Resulting from Continuous Positive Airway Pressure Mask
    CASE REPORT Traumatic Keratoplasty Rupture Resulting From Continuous Positive Airway Pressure Mask Miltiadis Fiorentzis, MD, Berthold Seitz, MD, and Arne Viestenz, MD We report an unusual case of traumatic wound Purpose: To report a rare case of traumatic wound dehiscence dehiscence due to a dislocation of a continuous positive caused by the use of a continuous positive airway pressure (CPAP) airway pressure (CPAP) mask during sleep after PKP. To the mask in a patient with chronic obstructive pulmonary disease best of our knowledge, this is the first report of this unusual (COPD) after penetrating keratoplasty (PKP). graft separation cause. Methods: Observational case report. CASE REPORT Case report: A 55-year-old man who was treated with uncompli- cated PKP due to pellucid marginal corneal degeneration in the right A 55-year-old man underwent an excimer laser-assisted PKP eye 9 months earlier presented to the emergency department after because of pellucid marginal corneal degeneration in the right eye. The postoperative course was uncomplicated (Fig. 1A). His medical a globe rupture caused by dislocation of his CPAP mask during history revealed chronic obstructive pulmonary disease (COPD), sleep. The best-corrected visual acuity (BCVA) was light perception treated with a CPAP mask. Three months after surgery and under in the right eye. The corneal graft was dehisced from 12 over 3 to 6 treatment with topical steroids 3 times a day, the BCVA was 20/32, o’clock (180 degrees) with interruption of the double running the corneal astigmatism approximately 1.8 diopters, and the central corneal sutures and nasal iris as well as vitreous incarceration.
    [Show full text]
  • Ocular Emergencies Brady Beale, VMD, DACVO (Ophthalmology) University of Pennsylvania School of Veterinary Medicine
    Ocular Emergencies Brady Beale, VMD, DACVO (Ophthalmology) University of Pennsylvania School of Veterinary Medicine From acute loss of vision to sudden pain, redness, and clouding of the eye, patients present to the emergency room for a variety of underlying causes. Uncovering the diagnosis can be difficult, but a thorough history coupled with basic ophthalmic tests and equipment can facilitate reaching an accurate conclusion. Obtaining a relevant ocular history uncovers how rapidly the clinical signs appeared, whether vision differs depending on lighting conditions, and whether an owner is currently administering any medications that might alter the diagnostic test results. When possible, the exam should begin with eliciting a menace response, pupillary light reflexes (PLR), dazzle reflexes, and palpebral reflex followed by a Schirmer tear test, fluorescein stain and tonometry. Evaluation of the eye should include the lids, conjunctiva, cornea, anterior chamber and lens, using diffuse light or a slit lamp. In small animals, the fundic exam is preferably performed with an indirect light source and hand held lens. While the sudden red, cloudy, squinting eye could represent glaucoma, corneal ulcer, lens luxation or sudden keratoconjunctivitis sicca, performing the eye exam in a routine, systematic fashion will help reveal the underlying cause. GLAUCOMA Glaucoma describes an increase in intraocular pressure that leads to vision loss. The elevated pressure disturbs the axoplasmic flow in the optic nerve and damages the inner retinal layers (retinal ganglion cells and nerve fiber layers) as well as the outer retinal layers (outer nuclear layers and the rods and cones). This damage leads to loss of vision and pain with sustained high intraocular pressures.
    [Show full text]
  • Chapter 71 – Ophthalmology Part B
    CrackCast Show Notes – Ophthalmology Part B – April 2017 www.canadiem.org/crackcast Chapter 71 – Ophthalmology Part B Episode Overview: 1. List 10 causes of ↓ vision post blunt eye trauma 2. What historical features are concerning for intra-ocular foreign body? 3. List 4 options for treatment of corneal abrasions 4. Describe the management of traumatic hyphema 5. What causes the finding of a ‘second pupil’ post-trauma? 6. Describe the physical findings of globe rupture and describe management 7. List 5 indications for ophtho consultation for eyelid lacerations 8. Describe diagnosis and treatment for orbital floor fractures: a. List 2 findings on X-ray of orbital floor fracture b. List indications for surgical repair of orbital floor fracture 9. Describe the clinical findings of retrobulbar hemorrhage and the steps in performing lateral canthotomy 10. List 3 complications of ocular trauma Rosen's in Perspective ● If you haven’t listened to Episode 21 and 22, check them out! ○ If you want to review how to do an eye exam... 1) List 10 causes of ↓ vision post blunt eye trauma 1) Globe rupture 2) Hyphema 3) Lens subluxation / dislocation 4) Iridodialysis 5) Traumatic uveitis 6) Vitreous hemorrhage 7) Retinal injury a. Hemorrhage, detachment, tear, “commotio retinae” (Berlin’s edema) 8) Orbital wall fracture 9) Retrobulbar hematoma 10) Optic nerve injury a. Causing avulsion, transection, compression, contusion of the optic nerve Lens subluxation and dislocation ● May occur in minor trauma in patients with: ○ Marfan syndrome, homocystinuria,
    [Show full text]
  • Uveitis Is Most Likely Because of an Immune Complex Hypersensitivity
    Isolated conjunctival neurofibromas S Fenton and MPh Mourits 665 uveitis is most likely because of an immune complex Sir, hypersensitivity reaction, and not because of any specific Isolated conjunctival neurofibromas at the puncta, 3 toxicity to the eye. It could possibly be related to the an unusual cause of epiphora individual’s previous exposure to streptococcal antigens. Eye (2003) 17, 665–666. doi:10.1038/sj.eye.6700429 Streptokinase may also be associated with other 4 immunological reactions such as serum sickness and We report an unusual case of epiphora caused by 5 Guillain–Barre syndrome. mechanical obstruction of the puncta by isolated Apart from streptokinase, this gentleman also had neurofibromas. diamorphine and cyclizine as part of his immediate medical treatment. Ocular side effects of these drugs include miosis for diamorphine and nonspecific Case report blurred vision for cyclizine. However, anterior uveitis is not a recognised or reported side effect of either A 45-year-old lady, originally from Surinam, presented of these drugs. Hence, streptokinase was thought to be with a 3 year history of epiphora and irritation of both the most likely culprit in this case. Other causes of eyes. There was no other relevant past medical or family acute bilateral hypopyon include Behcet’s disease, history. Visual acuity was normal. External examination HLA B-27 positive status and endogenous revealed ‘hypertrophy’ of the upper and lower puncta endophthalmitis. (Figure 1) of both eyes. Peripheral vascularization of the The widespread use of streptokinase as a thrombolytic cornea and hyperaemia of the conjunctiva were also agent could lead to an increased incidence of this noted.
    [Show full text]