Sb Mid-Infrared Quantum Dot Lasers

Total Page:16

File Type:pdf, Size:1020Kb

Sb Mid-Infrared Quantum Dot Lasers Photonics 2015, 2, 414-425; doi:10.3390/photonics2020414 OPEN ACCESS photonics ISSN 2304-6732 www.mdpi.com/journal/photonics Article Gain and Threshold Current in Type II In(As)Sb Mid-Infrared Quantum Dot Lasers Qi Lu *, Qiandong Zhuang and Anthony Krier Physics Department, Lancaster University, Lancaster LA1 4YB, UK; E-Mails: [email protected] (Q.Z.); [email protected] (A.K.) * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +44-015-24-597-50; Fax: +44-015-24-593-651. Received: 27 February 2015 / Accepted: 11 April 2015 / Published: 15 April 2015 Abstract: In this work, we improved the performance of mid-infrared type II InSb/InAs quantum dot (QD) laser diodes by incorporating a lattice-matched p-InAsSbP cladding layer. The resulting devices exhibited emission around 3.1 µm and operated up to 120 K in pulsed mode, which is the highest working temperature for this type of QD laser. The modal gain was estimated to be 2.9 cm−1 per QD layer. A large blue shift (~150 nm) was observed in the spontaneous emission spectrum below threshold due to charging effects. Because of the QD size distribution, only a small fraction of QDs achieve threshold at the same injection level at 4 K. Carrier leakage from the waveguide into the cladding layers was found to be the main reason for the high threshold current at higher temperatures. Keywords: quantum dots; mid-infrared; semiconductor lasers 1. Introduction The mid-infrared wavelength range (2–5 µm) continues to attract significant research interest due to its importance for various potential applications, such as optical gas sensing, environmental pollution monitoring, chemical process control, non-invasive medical diagnosis, tunable IR spectroscopy, laser surgery and infrared countermeasures [1]. Efficient and cost-effective solid-state laser sources emitting in this spectral range are required in many applications. In recent years, mid-infrared quantum well (QW) lasers have made significant progresses in reducing the threshold current density, increasing maximum working temperature and output power [2,3]. Moreover, the quantum cascade lasers (QCLs) and inter-band cascade lasers (ICLs), which make use of the inter sub-band transition, have achieved Photonics 2015, 2 415 superior performance [4,5]. However, these types of devices suffer from lower wall plug efficiency and higher turn-on voltages than QW lasers. In addition, QCLs and ICLs are typically composed of hundreds of thin layers, making their growth more challenging. From theoretical studies, due to their discrete density of states, QDs have higher material gain, narrower gain spectrum, and are less temperature sensitive than QWs [6], making them the ideal candidate as the gain medium in semiconductor lasers. Compared with QCLs and ICLs, QD lasers also have the advantage of less complicated growth. Although the growth conditions for successful realization of QDs needs careful attention to detail to obtain the correct size distribution and area density, once these conditions are established the active region growth can be easily completed and does not require an extended growth period. Despite these potential merits, to date there are still very few reports on QD lasers in the mid-infrared range and their performance lags behind the aforementioned types of lasers. However, type II InSb/InAs QDs grown by molecular beam epitaxy (MBE), which have exhibited room temperature mid-infrared photo-luminescence (PL) [7] and electro-luminescence (EL) [8], could be a route towards QD light sources and lasers emitting beyond 3 µm. In this work, we present broad area InSb QD laser diodes grown on InAs substrates, which emitted around 3.1 µm. The structure incorporated a p-InAs0.61Sb0.13P0.26 cladding layer grown by liquid phase epitaxy (LPE). The laser diodes worked up to 120 K in pulsed mode, which is a significant improvement compared with previous work [9,10]. The gain of these type II QDs was estimated and the different contributions to the threshold current were studied. 2. Experimental Section The QD lasers were grown on (100) oriented p-InAs substrates. Firstly, a 2 µm thick InAs0.61Sb0.13P0.26 cladding layer was deposited by LPE from an indium-rich melt. The material was p-type doped with Zn to a concentration of ~2 × 1018 cm−3. The rest of the structure was then grown in a VG V80H MBE reactor. Ten layers of InSb QDs with 20 nm thick InAs spacers between each layer were deposited in the middle of a 1.2 µm thick undoped (1 × 1016 cm−3) InAs waveguide region. On top of that, an n-doped cladding layer was grown, which was composed of 0.3 µm thick n-InAs with a doping concentration of 1 × 1017 cm−3 and 1.7 µm thick n+-InAs with a doping concentration of 5 × 1018 cm−3 which had a lower refractive index to complete the waveguide. The structure and band alignment of the resulting lasers are sketched in Figure 1a. Current-voltage measurements from the fabricated lasers revealed good p-i-n diode rectifying characteristics. As shown in Figure 1b, the turn-on voltage decreased from 0.34 V at 4 K to 0.10 V at 300 K. The diode series resistance was ~2 Ω for all temperatures and the reverse leakage current was 4 mA (0.5 V reverse bias) at 300 K. Unlike the common Stranski-Krastanov growth of QDs, which mainly relies on the strain effect between the deposited material and the substrate [11], in this case the growth of the InSb QDs is based on the As-to-Sb anion exchange reaction, which is achieved by exposing the substrate to Sb2 flux for a very short time interval. The substrate temperature during dot formation can be adjusted in the interval 320–450 °C , resulting in InSb layers of thickness in the range 0.5–0.9 monolayer (ML). Ideally, larger QDs are required for use in lasers to maintain sufficient hole localization. For QDs grown using the exchange reaction, this is only possible at growth temperatures below 350 °C . However, it was found Photonics 2015, 2 416 that at growth temperatures in the range 320–350 °C the PL intensity decreased dramatically because of the poor material quality. Furthermore, strong Sb segregation can occur on the InAs surface forming rougher interfaces. Thus, to avoid this problem, in our laser structure the QDs were grown at higher substrate temperature (420 °C ). Then to increase the size of the QDs, InSb was deposited for 4 s following the Sb exchange reaction, resulting in QDs about 0.8 ML in thickness (i.e., a few nanometers in each dimension) but with a very high density (~1012 cm−2). More details of the QD exchange growth can be found in our earlier work [8]. In agreement with previous reports, no wetting layer was observed. The QDs grown using this method typically emitted in the 3–4 µm spectral range, and the emission wavelength was dependent upon the substrate temperature and Sb2 flux exposure time during the growth [8,9]. After growth, broad area laser stripes were fabricated from the sample using conventional photolithography and wet chemical etching. Ti/Au (20 nm/200 nm) metallization was thermally evaporated on both sides to form the ohmic contacts. The lasers were fabricated to be 75 µm in width and of selected varying cavity lengths. The diodes were mounted and wire-bonded on TO-46 headers for measurements and testing. Figure 1. (a) Illustration of the QD laser structure and the conduction and valence band alignments. (b) Current-voltage curves of the laser diode measured at 4 K and 300 K. 3. Results and Discussion 3.1. Gain from InSb QDs QD laser diodes with different cavity lengths were tested in pulsed mode (100 ns pulse width, 2 kHz −2 repetition rate) from 4 K to 120 K. The threshold current density (Jth) increased from 1.59 kAcm to 4.68 kAcm−2 as the cavity length was reduced from 1.17 mm to 0.33 mm. Using the same method as for QW lasers [12], the gain of our InSb QD lasers was estimated from the relation between Jth and different laser cavity lengths L, using: 1 1 훼 + 푙푛 ( ) 푛푤퐽푡푟 퐿 푅 퐽푡ℎ = 푒푥푝 ( ) (1) 휂 푛푤Γ푤퐺0 Photonics 2015, 2 417 where nw is the number of QD layers, Jtr is the transparency current density per layer, ηi is the internal quantum efficiency, αi is the waveguide loss, R is the reflection coefficient of the end facet, ΓwG0 is the modal gain in which Γw is the optical confinement factor per layer and G0 is the material gain coefficient. By making a linear fit between ln (Jth) and 1/L, the modal gain can be extracted. Figure 2. Threshold current density (Jth) vs. reciprocal cavity length (1/L) of the laser diodes at 4 K. The red line shows the linear fit between ln(Jth) and 1/L. From Figure 2, the modal gain of the QD laser was estimated to be ~29 cm−1, (i.e., 2.9 cm−1 per QD layer on average). This value is lower than typical (InAs) type I QDs emitting in the near-infrared range which is in the order of 10 cm−1 [13,14], but is close to that of type II QWs emitting at a similar wavelength [12]. The relatively lower modal gain from type II structures is closely related to the large spatial separation between electrons and holes compared with type I structures, which results in a much smaller electron-hole wave function overlap.
Recommended publications
  • Development of Indium Arsenide Quantum Dot Solar Cells for High Conversion Efficiency Mohamed El-Emawy
    University of New Mexico UNM Digital Repository Electrical and Computer Engineering ETDs Engineering ETDs 1-29-2009 Development of indium arsenide quantum dot solar cells for high conversion efficiency Mohamed El-Emawy Follow this and additional works at: https://digitalrepository.unm.edu/ece_etds Recommended Citation El-Emawy, Mohamed. "Development of indium arsenide quantum dot solar cells for high conversion efficiency." (2009). https://digitalrepository.unm.edu/ece_etds/73 This Thesis is brought to you for free and open access by the Engineering ETDs at UNM Digital Repository. It has been accepted for inclusion in Electrical and Computer Engineering ETDs by an authorized administrator of UNM Digital Repository. For more information, please contact [email protected]. Mohamed Abdel Rahman El-Emawy Candidat e Department of Electrical and Computer Engineering Departmen t This thesis is approved, and it is acceptable in quality and form for publication on microfilm: Appro ved by the Thesis Committee: Prof. Luke F. Lester , Chairperson Dr. Andreas Stintz Dr. Frederic Grillot Dr. Ganesh Balakrishnan Accepted: Dean, Graduate School Date DEVELOPMENT OF INDIUM ARSENIDE QUANTUM DOT SOLAR CELLS FOR HIGH CONVERSION EFFICIENCY BY MOHAMED ABDEL RAHMAN EL-EMAWY B.S., ELECTRICAL ENGINEERING, UNIVERSITY OF NEW MEXICO, 2006 THESIS Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Science Electrical Engineering The University of New Mexico Albuquerque, New Mexico December, 2008 ©2008 , Mohamed Abdel Rahman El-Emawy iii DEDICATION To My Parents iv ACKNOWLEDGMENTS I would like to express my thanks to my advisor Professor Luke F. Lester for his guidance and assistance over the course of my research at the Center for High Technology Materials (CHTM).
    [Show full text]
  • Impact of Dot Size on Dynamical Characteristics of Inas/Gaas Quantum Dot Lasers
    Impact of dot size on dynamical characteristics of InAs/GaAs quantum dot lasers Esfandiar Rajaei* and Mahdi Ahmadi Borji** Department of Physics, The University of Guilan, Namjoo Street, Rasht, Iran * Corresponding author, E-mail: [email protected], ** Email: [email protected] Abstract: The purpose of this research is to study laser dynamics of InAs/GaAs Quantum Dot Lasers (QDLs) by changing QD energy levels. To date, most of the investigations have focused on only one of these circumstances, and hardly the result of change in the energy levels can be seen in lasing. In this work, in the first step, energy levels of lens-shape QDs are investigated by the eight-band k.p method, their variation for different QD sizes are surveyed, and recombination energies of the discrete levels are determined. Then, by representing a three-level InAs/GaAs QD laser, dynamics of such a laser device is numerically studied by rate equations in which homogeneous and inhomogeneous broadenings are taken into account. The lasing process for both Ground State (GS) and Excited States (ES) was found to be much sensitive to the QD size. It was observed that in larger QDs, photon number and bandwidth of the small signal modulation decrease but turn-on delay, maximum output power, and threshold current of gain increase. It was also found that for a good modulation, smaller QDs, and form the point of view of high-power applications, larger QDs seem better. Keywords: quantum dot lasers, QD size, energy level control, small signal modulation I. INTRODUCTION Study of the structure of semiconductors enables to control their parameters such as energy gap, energy levels, band structures, etc; control of the basic factors of these structures results in high-performance devices.
    [Show full text]
  • Modified Droplet Epitaxy Gaas/Algaas Quantum Dots Grown
    Journal of Crystal Growth 253 (2003) 71–76 Modified droplet epitaxy GaAs/AlGaAs quantum dots grown on a variable thickness wetting layer S. Sanguinettia,b,*, K. Watanabeb, T. Tatenob, M. Guriolia,c, P. Wernerd, M. Wakakie, N. Koguchib a I.N.F.M. Dipartimento di Scienza dei Materiali, Universita" di Milano Bicocca, Via Cozzi 53, I-20125 Milano, Italy b National Institute for Materials Science, 1–2–1 Sengen, Tsukuba, Ibaraki 305–0047, Japan c L.E.N.S., Via Sansone 1, I-50019 Sesto Fiorentino, Italy d Max-Planck-Institut fur. Mikrostrukturphysik, Weinberg 2, D-06120 Halle, Germany e Department of Electro-Photo Optics, Tokai University, Hiratsuka, Kanagawa 259-1292, Japan Received 7 February 2003; accepted 14 February 2003 Communicated by M. Schieber Abstract We show that the use of modified droplet epitaxy allows to tune the wetting layer thickness in GaAs quantum dot structures. Morphological observations demonstrate that the wetting layer at the base of the dots can be controlled or even removed by changing the surface stoichiometry of substrates before droplet formations. Spectroscopical measurements show that the variation of the wetting layer thickness strongly influences the optical properties of the dots. The experimental transition energies of the dots well agree with a theoretical model based on effective mass approximation. r 2003 Elsevier Science B.V. All rights reserved. PACS: 78.67.Hc; 68.35.Fx Keywords: A3. Molecular beam epitaxy; A3. Quantum dots; B2. Semiconducting III–V materials 1. Introduction Stranski–Krastanov (SK) growth mode [4,5], has triggered an in-depth research of the physical The discovery of the self–organized growth of phenomena related to the QD growth.
    [Show full text]
  • Excitons in Ingaas Quantum Dots Without Electron Wetting Layer States
    ARTICLE https://doi.org/10.1038/s42005-019-0194-9 OPEN Excitons in InGaAs quantum dots without electron wetting layer states Matthias C. Löbl 1, Sven Scholz2, Immo Söllner1, Julian Ritzmann2, Thibaud Denneulin3, András Kovács3, Beata E. Kardynał3, Andreas D. Wieck 2, Arne Ludwig 2 & Richard J. Warburton 1 1234567890():,; The Stranski–Krastanov growth-mode facilitates the self-assembly of quantum dots (QDs) by using lattice-mismatched semiconductors, for instance, InAs and GaAs. These QDs are excellent photon emitters: the optical decay of QD-excitons creates high-quality single- photons, which can be used for quantum communication. One significant drawback of the Stranski–Krastanov mode is the wetting layer. It results in a continuum close in energy to the confined states of the QD. The wetting-layer-states lead to scattering and dephasing of QD- excitons. Here, we report a slight modification to the Stranski–Krastanov growth-protocol of InAs on GaAs, which results in a radical change of the QD-properties. We demonstrate that the new QDs have no wetting-layer-continuum for electrons. They can host highly charged excitons where up to six electrons occupy the same QD. In addition, single QDs grown with this protocol exhibit optical linewidths matching those of the very best QDs making them an attractive alternative to conventional InGaAs QDs. 1 Department of Physics, University of Basel, Klingelbergstrasse 82, CH-4056 Basel, Switzerland. 2 Lehrstuhl für Angewandte Festkörperphysik, Ruhr- Universität Bochum, DE-44780 Bochum, Germany. 3 Ernst Ruska-Centre for Microscopy and Spectroscopy, Peter Grünberg Institute, Forschungszentrum Jülich, DE-52425 Jülich, Germany. Correspondence and requests for materials should be addressed to M.C.L.
    [Show full text]
  • Quantum Cascade Transitions in Nanostructures
    Advances in Physics, 2003, Vol. 52, No. 5, 455–521 Quantum cascade transitions in nanostructures Tapash Chakraborty1* and Vadim M. Apalkov2y 1Institute of Mathematical Sciences, Chennai 600 113, India 2University of Utah, Physics Department, Salt Lake City, UT 84112-0830, USA [Received 5 September 2002; revised 20 February 2003; accepted 24 April 2003] Abstract In this article we review the physical characteristics of quantum cascade transitions (QCTs) in various nanoscopic systems. The quantum cascade laser which utilizes such transitions in quantum wells is a brilliant outcome of quantum engineering that has already demonstrated its usefulness in various real-world applications. After a brief introduction to the background of this transition process, we discuss the physics behind these transitions in an externally applied magnetic field. This has unravelled many intricate phenomena related to intersub- band resonance and electron relaxation modes in these systems. We then discuss QCTs in a situation where the quantum wells in the active regions of a quantum cascade structure are replaced by quantum dots. The physics of quantum dots is a rapidly developing field with its roots in fundamental quantum mechanics, but at the same time, quantum dots have tremendous potential applications. We first present a brief review of those aspects of quantum dots that are likely to be reflected in a quantum-dot cascade structure. We then go on to demonstrate how the calculated emission peaks of a quantum-dot cascade structure with or without an external magnetic field are correlated with the properties of quantum dots, such as the choice of confinement potentials, shape, size and the low-lying energy spectra of the dots.
    [Show full text]
  • Inas/Alsb Based Mid-Infrared QCL Growth and XRD Simulation
    InAs/AlSb Based Mid-Infrared QCL Growth and XRD Simulation by Xueren Wang A thesis presented to the University of Waterloo in fulfillment of the thesis requirement for the degree of Master of Applied Science in Electrical and Computer Engineering Waterloo, Ontario, Canada, 2016 © Xueren Wang 2016 I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis, including any required final revisions, as accepted by my examiners. I understand that my thesis may be made electronically available to the public. ii Abstract In the past two decades, mid-infrared (MIR) quantum cascade laser (QCL) research has been rapidly developed and has resulted in an enabling platform for the remote sensing and metrology. QCL is designed by spatial confinement in quantum well structures on a nanometer scale, enabling the transitions between the electron confined states. In order to obtain the particular characteristics via quantum engineering, the material growth needs to be precisely controlled across the large number of layers. In this work, the growth condition of InAs/AlSb based MIR-QCL, grown by molecular beam epitaxy (MBE), is investigated. A low defect density growth result is observed by employing the optimized growth condition. Laser devices with disk mesa or ridge waveguide are fabricated, and the further electrical characterization exhibits the device lasing at 3.4 µm with a threshold current density of around 2.1 kA/cm2. The superlattice average layer thickness is determined by using high resolution X-ray diffraction (HRXRD), which is considered as one of the non-destructive analysis technique to extract the information about the thin film constructions.
    [Show full text]
  • Impacts of Wetting Layer and Excited State on the Modulation Response of Quantum-Dot Lasers Cheng Wang, Frederic Grillot, Jacky Even
    Impacts of Wetting Layer and Excited State on the Modulation Response of Quantum-Dot Lasers Cheng Wang, Frederic Grillot, Jacky Even To cite this version: Cheng Wang, Frederic Grillot, Jacky Even. Impacts of Wetting Layer and Excited State on the Modu- lation Response of Quantum-Dot Lasers. IEEE Journal of Quantum Electronics, Institute of Electrical and Electronics Engineers, 2012, 48 (9), pp.1144. 10.1109/JQE.2012.2205224. hal-00725665 HAL Id: hal-00725665 https://hal.archives-ouvertes.fr/hal-00725665 Submitted on 27 Aug 2012 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. 1144 IEEE JOURNAL OF QUANTUM ELECTRONICS, VOL. 48, NO. 9, SEPTEMBER 2012 Impacts of Wetting Layer and Excited State on the Modulation Response of Quantum-Dot Lasers Cheng Wang, Frédéric Grillot, Senior Member, IEEE, and Jacky Even Abstract— The modulation response of quantum-dot (QD) The resonance frequency is limited by the maximum modal lasers is studied. Based on a set of four rate equations, a gain and by gain compression effects [12] while the damping new analytical modulation transfer function is developed via a factor much stronger in QD lasers sets the limit of the small-signal analysis.
    [Show full text]
  • Physics of Intraband Quantum Dot Optoelectronic Devices
    Physics of intraband quantum dot optoelectronic devices Nenad Vukmirovi´c BSc (Hons) The University of Leeds School of Electronic and Electrical Engineering Institute of Microwaves and Photonics June 2007 Submitted in accordance with the requirements for the degree of Doctor of Philosophy. The candidate confirms that the work submitted is his own and that appropriate credit has been given where reference has been made to the work of others. This copy has been supplied on the understanding that it is copyright material and that no quoatation from the thesis may be published without proper acknowledgement. i Acknowledgments I would like to gratefully acknowledge the excellent supervision of Professor Paul Harrison and Dr Dragan Indjin during this work. I also thank Dr Zoran Ikoni´c for sharing his strong experience in physics of nanostructures. Both friendship and scientific support of Dr Ivana Savi´c and Dr Vladimir Jovanovi´c made me feel a member of the group from the first day I arrived at Leeds. I would also like to thank all my office mates for providing a pleasant research atmosphere. The work presented in this thesis would be impossible without the strong theoretical background in physics, mathematics and programming. I am grate- ful to all my teachers from Mathematical High School, Belgrade, as well as Fac- ulty of Physics and Faculty of Electrical Engineering, University of Belgrade. Special thanks to Professor Vitomir Milanovi´c, Faculty of Electrical Engineer- ing, who encouraged me to pursue a PhD in the field of nanostructures at Leeds. Thanks are also due to researchers from other institutions, that I visited or collaborated with.
    [Show full text]
  • Growth of Inas Quantum Dot Without Introducing Wetting Layer by Alternate Deposition of Inas and Gaas with Quasi-Monolayer
    Journal of the Korean Physical Society, Vol. 42, February 2003, pp. S476 S479 ∼ Growth of InAs Quantum Dot without Introducing Wetting Layer by Alternate Deposition of InAs and GaAs with Quasi-monolayer Jong Su Kim∗ and Nobuyuki Koguchi Nanomaterials Laboratory, National Institute for Materials Science, Ibaraki 305-0047, Japan D. Y. Lee and I. H. Bae Department of Physics, Yeungnam University, Kyungsan 712-749 J. I. Lee, Gu-Hyun Kim, S. K. Kang and S. I. Ban Korea Research Institute of Standards and Science, Daejon 305-600 Jin Soo Kim Basic Research Laboratory, Electronic and Telecommunication Research Institute, Daejon 305-350 S. H. Lee School of Electronic and Electrical Engineering, Kyungpook National University, Daegu 702-710 H. K. Choi, Minhyon Jeon and Jae-Young Leem Department of Optical Engineering, Inje University, Kimhae 621-749 The structural and optical properties of non-wetting layer InAs quantum dots (QDs) have been investigated by transmission electron microscopy (TEM), photoreflectance (PR) and photolumines- cence (PL). By alternate depositing 0.83 1.2 ML InAs and 1.2 1.5 ML Ga(Al)As with different period on GaAs surface, the wetting layer∼ of InAs QDs was controlled.∼ TEM images clearly show the formation of QDs by using quasi monolayer (QML) deposition and non-wetting layer of InAs QDs. The QDs formed by using QML could not be grown by Stranski-Krastanov (S-K) growth. In PR measurement, the wetting layer transition is not observed for all the QML QDs. These QML QDs growth mechanisms are explained by adatom migration effect due to surface chemical potential.
    [Show full text]
  • Quantum Dot Lasers
    Universidad de Sevilla Escuela Superior de Ingenieros Ingenier´ia de Telecomunicaciones Quantum Dot Lasers Candidato: Tutor en Espa˜na: Jaime P. Mora Pacheco Alejandro Carballar Tutora en Italia: Gabriella Cincotti A˜no Acad´emico: 2004/2005 Contents Introducci´on 1 0 Resumen espa˜nol 4 Resumen Capitulo 1: Conceptos Fundamentales . 4 0.1 Pozoscu´anticos................................. 5 0.2 PuntoCu´antico(QD) .............................. 7 0.2.1 DensidaddeEstados........................... 8 0.3 CristalesFot´onicos . 9 0.4 Definici´onyventajas. 12 0.5 Fabricaci´ondeQDs............................... 13 0.5.1 Elm´etodoStranski-Krastanow . 13 0.6 DOS:funci´ondedensidaddeestados . 15 0.7 EcuacionesdeestadodelQDLaser . 16 0.8 CorrienteUmbral................................. 17 0.9 Q-Switching.................................... 17 0.10VCSELs...................................... 19 Resumen Capitulo 2: L´aseres de Puntos Cu´anticos . ......... 11 I 0.11 EnsanchamientoHomog´eneo. 20 0.12 EnsanchamientoInhomog´eneo. 21 ResumenCapitulo3:EfectosNoLineales . 20 Resumen Capitulo 4: Aplicaci´on a Cristales Fot´onicos . ............ 24 Conclusiones ...................................... 27 1 Fundamental Concepts 30 1.1 PrinciplesofLasers.............................. 31 1.1.1 Populationinversion . 32 1.1.2 Threshold Conditions & Optical Gain . 34 1.2 Quantumwells .................................. 35 1.3 Quantumdot ................................... 38 1.4 DensityofStates:DOS............................. 39 1.5 ANewDevice:PhotonicCrystal . 40 2
    [Show full text]
  • Evolution of Inas Quantum Dots and Wetting Layer on Gaas (001): Peculiar Photoluminescence Near Onset of Quantum Dot Formation
    Evolution of InAs quantum dots and wetting layer on GaAs (001): Peculiar photoluminescence near onset of quantum dot formation Cite as: J. Appl. Phys. 127, 065306 (2020); https://doi.org/10.1063/1.5139400 Submitted: 19 November 2019 . Accepted: 25 January 2020 . Published Online: 11 February 2020 Rahul Kumar , Yurii Maidaniuk, Samir K. Saha, Yuriy I. Mazur , and Gregory J. Salamo ARTICLES YOU MAY BE INTERESTED IN Advanced Thermoelectrics Journal of Applied Physics 127, 060401 (2020); https://doi.org/10.1063/1.5144998 Mid-infrared electroluminescence from type-II In(Ga)Sb quantum dots Applied Physics Letters 116, 061103 (2020); https://doi.org/10.1063/1.5134808 Excitation intensity and thickness dependent emission mechanism from an ultrathin InAs layer in GaAs matrix Journal of Applied Physics 124, 235303 (2018); https://doi.org/10.1063/1.5053412 J. Appl. Phys. 127, 065306 (2020); https://doi.org/10.1063/1.5139400 127, 065306 © 2020 Author(s). Journal of Applied Physics ARTICLE scitation.org/journal/jap Evolution of InAs quantum dots and wetting layer on GaAs (001): Peculiar photoluminescence near onset of quantum dot formation Cite as: J. Appl. Phys. 127, 065306 (2020); doi: 10.1063/1.5139400 Submitted: 19 November 2019 · Accepted: 25 January 2020 · View Online Export Citation CrossMark Published Online: 11 February 2020 Rahul Kumar,1,2,a) Yurii Maidaniuk,1 Samir K. Saha,1 Yuriy I. Mazur,1 and Gregory J. Salamo1,2 AFFILIATIONS 1Institute for Nanoscience and Engineering, University of Arkansas, Fayetteville, Arkansas 72701, USA 2Department of Physics, University of Arkansas, Fayetteville, Arkansas 72701, USA a)Author to whom correspondence should be addressed: [email protected] ABSTRACT InAs quantum dots (QDs) have been grown on a GaAs (001) substrate in the subcritical region of InAs coverage for transition from a 2-dimensional (2D) to a 3-dimensional growth mode.
    [Show full text]
  • Scanning Tunneling Optical Resonance Microscopy Applied to Indium Arsenide Quantum Dot Structures
    Rochester Institute of Technology RIT Scholar Works Theses 6-1-2008 Scanning tunneling optical resonance microscopy applied to indium arsenide quantum dot structures Daniel P. Byrnes Follow this and additional works at: https://scholarworks.rit.edu/theses Recommended Citation Byrnes, Daniel P., "Scanning tunneling optical resonance microscopy applied to indium arsenide quantum dot structures" (2008). Thesis. Rochester Institute of Technology. Accessed from This Thesis is brought to you for free and open access by RIT Scholar Works. It has been accepted for inclusion in Theses by an authorized administrator of RIT Scholar Works. For more information, please contact [email protected]. SCANNING TUNNELING OPTICAL RESONANCE MICROSCOPY APPLIED TO INDIUM ARSENIDE QUANTUM DOT STRUCTURES By Daniel P. Byrnes B.A. State University of New York at Geneseo (2004) A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science in the Chester F. Carlson Center for Imaging Science of the College of Science June 2008 Signature of the Author_________________________________________________ Accepted by__________________________________________________________ Coordinator, M.S. Degree Program Date CHESTER F. CARLSON CENTER FOR IMAGING SCIENCE COLLEGE OF SCIENCE ROCHESTER INSTITUTE OF TECHNOLOGY ROCHESTER, NEW YORK CERTIFICATE OF APPROVAL ________________________________________________________________________ M.S. DEGREE THESIS ________________________________________________________________________ The M.S. Degree Thesis
    [Show full text]