Combinatorial Group Theory George D. Torres Spring 2021 1 Introduction 2 2 Free Products 3 2.1 Free Groups . .3 2.2 Residual Finiteness . .6 2.3 Free Products . .8 2.4 Free Products with Amalgamation and HNN Extensions . 14 These are lecture notes from the Spring 2021 course M392C Combinatorial Group Theory at the University of Texas at Austin taught by Prof. Cameron Gordon. The recommended prerequisites for following these notes are a first course in algebraic topology and an undergraduate level knowledge of group theory. Not strictly re- quired, but beneficial, is a familiarity with low-dimensional topology. Note: the theorem/definition/lemma etc. numbers in these notes don’t necessarily coincide with those in Cameron’s notes. Please email me at
[email protected] with any typos and suggestions. Any portions marked TODO are on my to-do list to finish time permitting. Last updated March 4, 2021 1 1. Introduction v (from the syllabus) We will discuss some topics in combinatorial group theory, withan emphasis on topological methods and applications. The topics covered will include:free groups, free products, free products with amalgamation, HNN extensions, Grushko’sTheorem, group presentations, Tietze transformations, Dehn’s decision problems: the word, conjugacy and isomorphism problems, residual finiteness, coherence, 3-manifoldgroups, 1-relator groups, the Andrews-Curtis Conjecture, recursive presentations, the Higman Embedding Theorem, the Adjan- Rabin Theorem, the unsolvability of the homeomorphism problem for manifolds of dimension ≥ 4. The association X π1(X) defines a useful relationship between topology and group theory. For example, covering spaces of a space X correspond to subgroups of π1(X).