Project Report DRAFT As Sent to John Twycross

Total Page:16

File Type:pdf, Size:1020Kb

Project Report DRAFT As Sent to John Twycross INTRODUCTION STARTS AROUND PAGE 10: GUIDANCE NOTES FOLLOW ON 23 JULY 2018 THE SECTION GUIDANCE FOR THE FINAL REPORT WAS UPDATED. IT IS NOW AS FOLLOWS: Title Page - Standard form obtained from project administrator or the Moodle website to include your course, module, student name and number, date of submission, title of dissertation and name of Supervisor. You may wish to create your own title page as part of your final report. Statement of originality – This statement confirms that the dissertation is a result of your own work and has not been submitted previously for a degree award either here at Brookes or any other institution. This statement can be found in Appendix 5. Abstract - Single page summary of report, this should include the main conclusion or recommendation. Acknowledgements – of individuals offering help towards your dissertation. Contents – This can be composed of the following chapters for the body of the report organised into numbered sections as well as a list of tables and figures etc. Introduction - Dissertation rationale, Outline of the problem, Objectives of the dissertation. A review of related work, both of an academic and commercial nature. The material in this section should directly relate to the construction of a framework that you will use for evaluation in the results and analysis section. Methodology – This section describes your personal approach to the research and which research method are chosen and why. It can include the following; a description of the scope and definition of terms relevant to your topic, how you have approached answering the research questions, what factors influenced your proposed schedule, how you tested and evaluated the product (the framework for evaluation). Process – Description of how the work was created. This should include development of workflows, pipelines and proof of concepts. This should clearly articulate activity in a conceptual form. What functions or processes were used and what effect did the choices made have on the artefact produced. This should not be a tutorial style list of actions to recreate the work. Results – Presentation of results. This could refer to media artefacts and contain screen grabs or other images in the text. Analysis – A contextualised critical discussion of the results in relation to your original aims. Conclusion - Summary of achievements, critical appraisal of the dissertation, lessons learnt, product, research methodology or deliverable evaluation. Consideration of legal, social, ethical, environmental, sustainability and risk management issues. Work plan review. Implications arising from your results and discussion: including suggestions for further work. References – to identify the sources of material you have directly cited. Bibliography – to identify material providing background or reference material but which is not directly cited. THIS REPLACES THE PASTED SECTION GUIDANCE SHOWN BELOW IN THIS VERSION OF THE DRAFT REPORT. TITLE PAGE HOLDER STILL MOVING: Contemporary digital techniques for animating still photographic images 17032698 Mark Egan MSc Digital Media Production (2017/2018) Module P01009 Project / Dissertation Submitted in time for final deadline of 21 September 2018 Supervisors: Diego Semerene / John Twycross STATEMENT OF ORIGINALITY PAGE HOLDER See Appendix 5 of the guide for the statement to be included here. ABSTRACT (Single page summary of the report) STILL MOVING: Contemporary digital techniques for animating still photographic images ABSTRACT V3 There are many ways in which still images can be considered to ‘move’, both figuratively and literally. With the proliferation of diverse screen-based media targeted at smartphones, laptops and advertising screens, the animation of stills is an art form in itself. Van Vuuren’s 2018 cinematic release ‘In Saturn’s Rings’ represents the pinnacle of this endeavour, comprising over 700,000 still photos animated to create a documentary. In this project the antecedents of today’s digital animation are reviewed and three contemporary techniques, 3d projection mapping, 2.5d parallax and 2d vector animation are used to create a documentary commemorating 100 years of the Royal Air Force. So, can these animation techniques be implemented using home user equipment and combined to create a short, engaging documentary using only animated photos, and what are the workflows that will enable this? ACKNOWLEDGEMENTS My thanks go to the MSc Digital Media Production class of 2018 at Oxford Brookes University. Your feedback at the weekly ‘scrums’ has been invaluable in steering me down a path towards this project submission! CONTENTS Page numbers to be added once correct formatting / line spacing has been applied and images have been included. Introduction Methodology Process Results Analysis Conclusion Appendices? Could be raw data from online questionnaire. INTRODUCTION REVISED GUIDANCE NOTES FOR THIS SECTION, 23 JULY 2018: Introduction - Dissertation rationale, Outline of the problem, Objectives of the dissertation. A review of related work, both of an academic and commercial nature. The material in this section should directly relate to the construction of a framework that you will use for evaluation in the results and analysis section. INTRODUCTION V3 CURRENTLY AT 1400 WORDS. NEED TO AIM FOR 1250 MAX! As the Lumiere Brothers discovered when presenting their cinematographe in 1895, moving images can invoke an immediate, emotional response. It was as though that which was still had ‘come to life’. This project considers ways in which still images can be considered as moving as well as being made to move, before applying contemporary digital animation techniques to a collection of photos and producing a stills-derived screen-based documentary. The results are evaluated through personal critical reflection and peer review. In 2018 it takes only a few mouse clicks to extract a single frame from a video sequence. It is also possible to take a single photographic image and make it move within the frame using techniques such as pan and zoom (as popularised by Ken Burns in his Civil War series in 1990). The move to fully digital workflows has opened up new ways to animate digital images such that the divide between the still and the moving is no longer simply determined by questions of frame rate and exposure. Project Objectives • Consider and research what it means for an image to ‘move’ or ‘come to life’ • Identify the terminology and digital technologies that occupy the space between still and full motion images • Implement 2d plotagraph, 2.5d parallax and 3d projection mapping by applying them to selected still photographic images • Create a short documentary using only animated still images and evaluate it using reflective practice and peer review Perspectives and reference works Considering movement in the widest sense, there are diverse ways in which images (photographic or otherwise) can be considered as being ‘animated’. Cognitive psychology has considered how the brain perceives movement in a still image though none actually exists. For example: [dots moving image] [who invented optical illusions?] It is considered this effect occurs because of conflict between our visual system and cognitive processes. In the art of reportage photography, in accepting the creation of narrative as a kind of movement, the question is raised as to whether a single image can tell a story, and to what extent this will be differentiated in the mind of the viewer. The famous reportage photographer, Bresson, writes “Sometimes there is one unique picture whose composition possesses such vigour and richness, and whose content radiates so outward from it, that this single picture is a whole picture story in itself.” (Cartier-Bresson) Others are less convinced of this: ‘What does it take to make an image that would be considered to tell a story? Wow… that would be almost as difficult as describing what makes a good melody’ (Donald Giannatti, 2015). And from the perspective of both the photographer and the viewer: “What your mind does not know, your eyes can’t see.” (Kaushik Ghosh, documentary photographer, 19xx). Narratives are being constructed and therefore made to move, and discussion remains healthy in this area. Artists using photographic images at the centre of their work continue to take their own individual approaches to bringing images to life: Maurizio Anzeri finds discarded images and embroiders over the top of select areas in taught, geometric patterns, encouraging the viewer to explore the image anew.P41: image from anzeri. Jennifer West imbibes filmstrip segments with the sights, sounds and physical objects of the time and place it was recorded. Here sand, sunblock and tequila are used to make a short sequence titled Dawn Surf Jellybowl:P77 image. Infamously, Richard Prince re-photographed 1954 images from the Marlboro cigarette print advertising, before cropping and recoloring them and displaying them as gallery-sized prints. In bringing them to a new audience it can be considered he is giving them new life beyond their original place and time P59. IMAGE FROM REPHOTOGRAPHY For screen-based representation of photographic stills, techniques have seen ongoing evolution. Presenting a succession of still images with no literal movement is a legitimate and successful storytelling device, as seen in Chris Marker’s seminal La Jetee. Similarly, producing a rapid sequence of stills matched to the beat of a music track (referred to as ‘kinestasis’) is seen in short-form output such as ‘living
Recommended publications
  • Automatic 2.5D Cartoon Modelling
    Automatic 2.5D Cartoon Modelling Fengqi An School of Computer Science and Engineering University of New South Wales A dissertation submitted for the degree of Master of Science 2012 PLEASE TYPE THE UNIVERSITY OF NEW SOUTH WALES T hesis!Dissertation Sheet Surname or Family name. AN First namEY. Fengqi Orner namels: Zane Abbreviatlo(1 for degree as given in the University calendar: MSc School: Computer Science & Engineering Faculty: Engineering Title; Automatic 2.50 Cartoon Modelling Abstract 350 words maximum: (PLEASE TYPE) Declarat ion relating to disposition of project thesis/dissertation I hereby grant to the University of New South Wales or its agents the right to archive and to make available my thesis or dissertation in whole orin part in the University libraries in all forms of media, now or here after known, subject to the provisions of the Copyright Act 1968. I retain all property rights, such as patent rights. I also retain the right to use in future works (such as articles or books) all or part of thts thesis or dissertation. I also authorise University Microfilms to use the 350 word abstract of my thesis in Dissertation· Abstracts International (this is applicable to-doctoral theses only) .. ... .............. ~..... ............... 24 I 09 I 2012 Signature · · ·· ·· ·· ···· · ··· ·· ~ ··· · ·· ··· ···· Date The University recognises that there may be exceptional circumstances requiring restrictions on copying or conditions on use. Requests for restriction for a period of up to 2 years must be made in writi'ng. Requests for
    [Show full text]
  • Introduction Week 1, Lecture 1
    CS 430 Computer Graphics Introduction Week 1, Lecture 1 David Breen, William Regli and Maxim Peysakhov Department of Computer Science Drexel University 1 Overview • Course Policies/Issues • Brief History of Computer Graphics • The Field of Computer Graphics: A view from 66,000ft • Structure of this course • Homework overview • Introduction and discussion of homework #1 2 Computer Graphics I: Course Goals • Provide introduction to fundamentals of 2D and 3D computer graphics – Representation (lines/curves/surfaces) – Drawing, clipping, transformations and viewing – Implementation of a basic graphics system • draw lines using Postscript • simple frame buffer with PBM & PPM format • ties together 3D projection and 2D drawing 3 Interactive Computer Graphics CS 432 • Learn and program WebGL • Computer Graphics was a pre-requisite – Not anymore • Looks at graphics “one level up” from CS 430 • Useful for Games classes • Part of the HCI and Game Development & Design tracks? 5 Advanced Rendering Techniques (Advanced Computer Graphics) • Might be offered in the Spring term • 3D Computer Graphics • CS 430/536 is a pre-requisite • Implement Ray Tracing algorithm • Lighting, rendering, photorealism • Study Radiosity and Photon Mapping 7 ART Student Images 8 Computer Graphics I: Technical Material • Course coverage – Mathematical preliminaries – 2D lines and curves – Geometric transformations – Line and polygon drawing – 3D viewing, 3D curves and surfaces – Splines, B-Splines and NURBS – Solid Modeling – Color, hidden surface removal, Z-buffering 9
    [Show full text]
  • CS 4204 Computer Graphics 3D Views and Projection
    CS 4204 Computer Graphics 3D views and projection Adapted from notes by Yong Cao 1 Overview of 3D rendering Modeling: * Topic we’ve already discussed • *Define object in local coordinates • *Place object in world coordinates (modeling transformation) Viewing: • Define camera parameters • Find object location in camera coordinates (viewing transformation) Projection: project object to the viewplane Clipping: clip object to the view volume *Viewport transformation *Rasterization: rasterize object Simple teapot demo 3D rendering pipeline Vertices as input Series of operations/transformations to obtain 2D vertices in screen coordinates These can then be rasterized 3D rendering pipeline We’ve already discussed: • Viewport transformation • 3D modeling transformations We’ll talk about remaining topics in reverse order: • 3D clipping (simple extension of 2D clipping) • 3D projection • 3D viewing Clipping: 3D Cohen-Sutherland Use 6-bit outcodes When needed, clip line segment against planes Viewing and Projection Camera Analogy: 1. Set up your tripod and point the camera at the scene (viewing transformation). 2. Arrange the scene to be photographed into the desired composition (modeling transformation). 3. Choose a camera lens or adjust the zoom (projection transformation). 4. Determine how large you want the final photograph to be - for example, you might want it enlarged (viewport transformation). Projection transformations Introduction to Projection Transformations Mapping: f : Rn Rm Projection: n > m Planar Projection: Projection on a plane.
    [Show full text]
  • On the Dimensionality of Deformable Face Models
    On the Dimensionality of Deformable Face Models CMU-RI-TR-06-12 Iain Matthews, Jing Xiao, and Simon Baker The Robotics Institute Carnegie Mellon University 5000 Forbes Avenue Pittsburgh, PA 15213 Abstract Model-based face analysis is a general paradigm with applications that include face recognition, expression recognition, lipreading, head pose estimation, and gaze estimation. A face model is first constructed from a collection of training data, either 2D images or 3D range scans. The face model is then fit to the input image(s) and the model parameters used in whatever the application is. Most existing face models can be classified as either 2D (e.g. Active Appearance Models) or 3D (e.g. Morphable Models.) In this paper we compare 2D and 3D face models along four axes: (1) representational power, (2) construction, (3) real-time fitting, and (4) self occlusion reasoning. For each axis in turn, we outline the differences that result from using a 2D or a 3D face model. Keywords: Model-based face analysis, 2D Active Appearance Models, 3D Morphable Models, representational power, model construction, non-rigid structure-from-motion, factorization, real- time fitting, the inverse compositional algorithm, constrained fitting, occlusion reasoning. 1 Introduction Model-based face analysis is a general paradigm with numerous applications. A face model is first constructed from either a set of 2D training images [Cootes et al., 2001] or a set of 3D range scans [Blanz and Vetter, 1999]. The face model is then fit to the input image(s) and the model parameters are used in whatever the application is.
    [Show full text]
  • 3D Object Detection from a Single RGB Image Via Perspective Points
    PerspectiveNet: 3D Object Detection from a Single RGB Image via Perspective Points Siyuan Huang Yixin Chen Tao Yuan Department of Statistics Department of Statistics Department of Statistics [email protected] [email protected] [email protected] Siyuan Qi Yixin Zhu Song-Chun Zhu Department of Computer Science Department of Statistics Department of Statistics [email protected] [email protected] [email protected] Abstract Detecting 3D objects from a single RGB image is intrinsically ambiguous, thus re- quiring appropriate prior knowledge and intermediate representations as constraints to reduce the uncertainties and improve the consistencies between the 2D image plane and the 3D world coordinate. To address this challenge, we propose to adopt perspective points as a new intermediate representation for 3D object detection, defined as the 2D projections of local Manhattan 3D keypoints to locate an object; these perspective points satisfy geometric constraints imposed by the perspective projection. We further devise PerspectiveNet, an end-to-end trainable model that simultaneously detects the 2D bounding box, 2D perspective points, and 3D object bounding box for each object from a single RGB image. PerspectiveNet yields three unique advantages: (i) 3D object bounding boxes are estimated based on perspective points, bridging the gap between 2D and 3D bounding boxes without the need of category-specific 3D shape priors. (ii) It predicts the perspective points by a template-based method, and a perspective loss is formulated to maintain the perspective constraints. (iii) It maintains the consistency between the 2D per- spective points and 3D bounding boxes via a differentiable projective function. Experiments on SUN RGB-D dataset show that the proposed method significantly outperforms existing RGB-based approaches for 3D object detection.
    [Show full text]
  • DLA-RS4810 3D Enabled D-ILA Media Room Projector
    DLA-RS4810 3D Enabled D-ILA Media Room Projector An ideal media room 4K Precision 3D enabled D-ILA projector featuring 4K e-shift 2 technology with a native contrast ratio of 50,000:1 • 1080p Three Chip 3D Enabled D-ILA Projector • Upgraded lens memory function memorizes 5 positions of focus, zoom and shift enabling recall of a variety of • High definition e-shift2 4K Precision (3840 X 2160) aspect ratio configurations Projected Image • Control: LAN / RS-232C / IR / 12 V Screen Trigger • 50,000:1 Native Contrast Ratio Output / New remote control with 3D functions • Multiple Pixel Control with JVC's 8 Band Detection • New 230 Watt NSH Illumination System (improves lamp — 2K to 4K Upscaling Engine life to 4,000 hours in Normal Mode) • Highly customizable built-in 2D to 3D converter • Available exclusively through AVAD custom installers creates dynamic 3D images from 2D video content Certified Performance QC and 3 year parts & labor warranty • 1.4 to 2.8:1 motorized zoom lens with Horizontal and Vertical offset Note: Optional 3D Glasses (PK-AG3 or PK-AG2) and 3D Synchro Emitter (PK-EM2 or PK-EM1) are required for viewing images in 3D. JVC e-shift 2 Projection 4K Precision D-ILA 3D Projection* JVC’s totally revamped optical engine incorporating There's nothing like 3D to immerse you into the scene and the DLA-RS4810 uses the three D-ILA imaging devices and new 4K e-shift 2 frame sequential method which provides separate left-eye and right-eye images technology provides improved contrast and natural through synchronized active shutter glasses.
    [Show full text]
  • View-Dependent 3D Projection Using Depth-Image-Based Head Tracking
    View-dependent 3D Projection using Depth-Image-based Head Tracking Jens Garstka Gabriele Peters University of Hagen University of Hagen Chair of Human-Computer-Interaction Chair of Human-Computer-Interaction Universitatsstr.¨ 1, 58097 Hagen, Germany Universitatsstr.¨ 1, 58097 Hagen, Germany [email protected] [email protected] Abstract is also referred to as the signature. Subsequently for each depth image a signature is created and compared against The idea of augmenting our physical reality with virtual the signatures in the database. For the most likely matches entities in an unobtrusive, embedded way, i. e., without the a correlation metric is calculated between these and the im- necessity of wearing hardware or using expensive display age to find the best match. devices is exciting. Due to the development of new inexpen- Late in 2006, Nintendo released a game console with a sive depth camera systems an implementation of this idea new controller called the Wii Remote. This wireless con- became affordable for everyone. This paper demonstrates troller is used as a pointing device and detects movements an approach to capture and track a head using a depth cam- with its three axis accelerometers. Due to the low cost of era. From its position in space we will calculate a view- this controller and the possibility to be connected via Blue- dependent 3D projection of a scene which can be projected tooth, numerous alternative applications, such as those pro- on walls, on tables, or on any other type of flat surface. Our posed by Lee [4], Schlomer¨ et al.
    [Show full text]
  • Anamorphic Projection: Analogical/Digital Algorithms
    Nexus Netw J (2015) 17:253–285 DOI 10.1007/s00004-014-0225-5 RESEARCH Anamorphic Projection: Analogical/Digital Algorithms Francesco Di Paola • Pietro Pedone • Laura Inzerillo • Cettina Santagati Published online: 27 November 2014 Ó Kim Williams Books, Turin 2014 Abstract The study presents the first results of a wider research project dealing with the theme of ‘‘anamorphosis’’, a specific technique of geometric projection of a shape on a surface. Here we investigate how new digital techniques make it possible to simplify the anamorphic applications even in cases of projections on complex surfaces. After a short excursus of the most famous historical and contemporary applications, we propose several possible approaches for managing the geometry of anamorphic curves both in the field of descriptive geometry (by using interactive tools such as Cabrı` and GeoGebra) and during the complex surfaces realization process, from concept design to manufacture, through CNC systems (by adopting generative procedural algorithms elaborated in Grasshopper). Keywords Anamorphosis Anamorphic technique Descriptive geometry Architectural geometry Generative algorithms Free form surfaces F. Di Paola (&) Á L. Inzerillo Department of Architecture (Darch), University of Palermo, Viale delle Scienze, Edificio 8-scala F4, 90128 Palermo, Italy e-mail: [email protected] L. Inzerillo e-mail: [email protected] F. Di Paola Á L. Inzerillo Á C. Santagati Department of Communication, Interactive Graphics and Augmented Reality, IEMEST, Istituto Euro Mediterraneo di Scienza e Tecnologia, 90139 Palermo, Italy P. Pedone Polytechnic of Milan, Bulding-Architectural Engineering, EDA, 23900 Lecco, Italy e-mail: [email protected] C. Santagati Department of Architecture, University of Catania, 95125 Catania, Italy e-mail: [email protected] 254 F.
    [Show full text]
  • Projection Mapping Technologies for AR
    Projection Mapping Technologies for AR Daisuke iwai Osaka University, Machikaneyamacho 1-3, Toyonaka, Osaka 5608531, Japan Keywords: Projection mapping, augmented reality, computational display ABSTRACT collaborative works, and machine manipulations. This talk also introduces such systems that were proposed by This invited talk will present recent projection mapping our group. Figure 1 shows the representative images of technologies for augmented reality. First, fundamental researches introduced in this talk. technologies are briefly explained, which have been proposed to overcome the technical limitations of ordinary projectors. Second, augmented reality (AR) applications 2. FUNDAMENTAL TECHNOLOGIES using projection mapping technologies are introduced. We developed fundamental technologies to 1. INTRODUCTION overcome the technical limitations of current projection Projection mapping is one of the fundamental displays and to achieve robust user manipulation approaches to realize augmented reality (AR) systems. measurement under dynamic projection illuminations to Compared to other approaches such as video/optical realize flexible and robust interactive systems. see-through AR, it can provide AR experiences without We use cameras, ranging from normal RGB cameras restricting users by head-mounted/use-worn/hand-held to near and far infrared (IR) cameras, to measure user devices. In addition, the users can directly see the manipulation as well as scene geometry and reflectance augmentations with natural field-of-view. On the other properties. For the user measurement, we apply IR hand, there are several technical issues to be solved to cameras to robustly detect user's touch actions even display geometrically and photometrically correct images under projection-based dynamic illumination. In onto non-planar and textured surfaces. This invited talk particular, we propose two touch detection techniques; introduces various techniques that our group proposed so one measures finger nail color change by touch action far.
    [Show full text]
  • Structured Video and the Construction of Space
    In Proceedings of IS&T/SPIE’s Symposium on Electronic Imaging, February, 1995. Structured Video and the Construction of Space Judith S. Donath November 1994 Abstract Image sequences can now be synthesized by compositing elements - objects, backgrounds, people - from pre-existing source images. What are the rules that govern the placement of these elements in their new frames? If geometric projection is assumed to govern the composition, there is some freedom to move the elements about, but the range of placements is quite limited. Furthermore, projective geometry is not perceptually ideal – think of the distortions seen at the edges of wide angle photographs. These distortions are not found in perspective paintings: painters modify the portrayal of certain objects to make them perceptually correct. This paper first reviews projective geometry in the context of image compositing and then introduces perceptually based composition. Its basis in human vision is analyzed and its application to image compositing discussed. 1 Structured Video and Space In traditional video the frame is indivisible and the sequence – a recording of events occurring in a single place and time – is the basic editing unit. In structured video, events in a frame are no longer limited to simultaneous, collocated actions. The basic units in structured video are 2 or 3D image components, rather than the rectangular frames used in traditional video. New image sequences can be made by compositing actors and objects taken from a variety of source images onto a new background. Sequences can be synthesized that depict real, but previously unfilmable events: a discussion among several distant people, or the comings and goings of the members of an electronic community.
    [Show full text]
  • Geometric Transformation
    Geometric transformation References • http://szeliski.org/Book/ • http://www.cs.cornell.edu/courses/cs5670/2019sp/lectu res/lectures.html • http://www.cs.cmu.edu/~16385/ contents • 2D->2D transformations • 3D->3D transformations • 3D->2D transformations (3D projections) – Perspective projection – Orthographic projection Objective • Being able to do all of the below transformations with matrix manipulation: translation rotation scale shear affine projective • Why matrix manipulation? Objective • Being able to do all of the below transformations with matrix manipulation: translation rotation scale shear affine projective • Why matrix manipulation? Because then we can easily concatenate transformations (for example translation and then rotation). 2D planar transformations scale • How? Scale scale Scale scale matrix representation of scaling: scaling matrix S Scale Shear • How? Shear Shear or in matrix form: Shear Rotation • How? rotation 푟 around the origin 푟 φ Rotation Polar coordinates… x = r cos (φ) y = r sin (φ) x’ = r cos (φ + θ) y’ = r sin (φ + θ) Trigonometric Identity… x’ = r cos(φ) cos(θ) – r sin(φ) sin(θ) rotation y’ = r sin(φ) cos(θ) + r cos(φ) sin(θ) 푟 around the origin Substitute… x’ = x cos(θ) - y sin(θ) 푟 y’ = x sin(θ) + y cos(θ) φ Rotation or in matrix form: rotation around the origin Important rotation matrix features • det 푅 = 1 – If det 푅 = −1 then this is a roto-reflection matrix • 푅푇 = 푅−1 ՞ 푅푅푇 = 푅푇푅 = 퐼 ՞ orthogonal matrix ՞ a square matrix whose columns and rows are orthogonal unit vectors. Concatenation • How do we do concatenation of two or more transformations? Concatenation • How do we do concatenation of two or more transformations? • Easy with matrix multiplication! Translation • How? Translation ′ 푥 = 푥 + 푡푥 ′ 푦 = 푦 + 푡푦 What about matrix representation? Translation ′ 푥 = 푥 + 푡푥 ′ 푦 = 푦 + 푡푦 What about matrix representation? Not possible.
    [Show full text]
  • Better Pixels in Professional Projectors
    Better Pixels in Professional Projectors White Paper Better Pixels in Professional Projectors January, 2016 By Chris Chinnock Insight Media 3 Morgan Ave., Norwalk, CT 06851 USA 203-831-8464 www.insightmedia.info In collaboration with Insight Media www.insightmedia.info 3 Morgan Ave. 1 Copyright 2016 Norwalk, CT 06851 USA All rights reserved Better Pixels in Professional Projectors Table of Contents Introduction ................................................................................................................4 What are Better Pixels? ..............................................................................................4 Consumer TV vs. Professional Projection .................................................................................. 4 Higher Brightness ....................................................................................................................... 5 Benefits & Trade-offs .......................................................................................................................................... 5 Uniformity .................................................................................................................................. 6 Benefits & Trade-offs .......................................................................................................................................... 6 Enhanced Resolution .................................................................................................................. 6 Benefits & Trade-offs .........................................................................................................................................
    [Show full text]