Osmotic Power Plant High Efficiency Renewable Energy System D.Govarthan, R.Kathiresan, K.Eswaramoorthy*

Total Page:16

File Type:pdf, Size:1020Kb

Osmotic Power Plant High Efficiency Renewable Energy System D.Govarthan, R.Kathiresan, K.Eswaramoorthy* South Asian Journal of Engineering and Technology Vol.2, No.22 (2016) 112–117 ISSN No: 2454-9614 Osmotic Power Plant High Efficiency Renewable Energy System D.Govarthan, R.Kathiresan, K.Eswaramoorthy* Department of EEE, SASURIE College of Engineering, Vijayamangalam, Tiruppur, Tamilnadu, India. *Corresponding Author: K. Eswaramoorthy E-mail: [email protected] Received: 13/11/2015, Revised: 18/12/2015 and Accepted: 16/04/2016 Abstract The need of new energy sources has led to a number of alternatives. One of those alternatives is energy created by transportation of solutions, osmotic energy or salinity gradient energy. In the osmotic process two solutions with different salt-concentrations are involved (often freshwater and salt-water). A semi permeable membrane, which is an organic filter, separates the solutions. The membrane only lets small molecules like water- molecules pass. The water aspires to decrease the salt-concentration on the membrane side that contains more salt. The water therefore streams through the membrane and creates a pressure on the other side. This pressure can be utilized in order to gain energy, by using a turbine and a generator. 1. Introduction 1.1 Osmosis Principle Diffusion of molecules through a semi permeable membrane from a place of higher concentration to a place of lower concentration until the concentration on both sides is equal. Osmosis is a process by which water moves through a membrane which blocks other particles, which is used to purify water. For osmotic power it works in reverse, with osmosis drawing fresh water through the membrane to mix with salty water, thereby increasing its pressure which can be harnessed to drive electricity turbines. The main thing with osmotic energy is transportation of solutions (often pure water and salt-water), separated by a special filter, a membrane. In the osmotic process it is not possible to use an ordinary filter.which needs a "Semi permeable membrane". A semi permeable membrane is an organic filter with extremely small holes. The membrane will only allow small molecules, like water molecules, to pass through. The thin layers of material cause this effect thus called as osmotic energy process . 112 South Asian Journal of Engineering and Technology Vol.2, No.22 (2016) 112–117 Fig 2.1.a: Osmosis Process- Step 1 Fig 2.1.a shows a simple test rig in which the left side contains pure water. The right side contains a solvent with water and salt NaCl. Both pure and solvent water are separated by a semi permeable membrane. Fig 2.1.b: Osmosis Process -Step 2 When the process gets started the pure water on the left side aspires to decrease the salt-concentration on the right side of the membrane. The amount of water on the right side will now increase and create an "Osmotic head pressure". This pressure can be used to force a water- turbine to rotate. The amount of freshwater that will pass through the membrane depends on the salt-concentration in the salt-water, before the osmotic process begins. For instance, if the salt-concentration from the beginning is 3.5%, the osmotic pressure will be about 28 bars. The problem with the test rig is that the salt-concentration in the salt-water will decrease and the process will slow down. The only way to fix this is to continuously, empty and refill both the left and the right side. This must be done very quickly to avoid run-interference. Another problem is that the membrane may wear out because of all silt and other contamination that get stuck in the membrane. Recently in Reverse Osmosis, where a pressure is created larger than the osmotic head pressure in which the salt water is pushed through the membrane. From this process fresh water is gained out of salt-water. 1.2 Overall view of osmotic power plant The core process is like desalination which is in in reverse. In desalination fresh water is sepatared from from salt water, but in osmotic power the fresh water is combined with salt water. Which is called a pressure exchanger. 113 South Asian Journal of Engineering and Technology Vol.2, No.22 (2016) 112–117 The pressure exchanger works similarly to a heat exchanger, essentially transferring the increased pressure from the salty outflow from the osmosis membrane to the fresh-water diluted output so it can drive a turbine. Without the pressure exchanger, the efficiency of the process would be too low to create full-scale osmotic energy generators. The pressure exchanger transfers pressure from a high-pressure stream to a low-pressure stream with 98 percent efficiency. On the other hand Osmotic power plants, discharge fresh water diluted with salt water exactly with the same proportions .Statkraft plans to build plants where fresh water is already dumping into the sea but the output of desalination plants is twice as salty as seawater, .This doubles the energy generation capability, which is proportional to saltiness. 2.Types of Osmosis: a. Pressure Retarded osmosis (PRO) b. Reverse electro dialysis (RED) 2.1Pressure Retarded Osmosis: Salinity gradient power is a specific renewable energy alternative that creates power by using naturally occurring processes. Salinity gradient energy s based on using the resources of osmotic pressure.The energy which is proposed to use salinity gradient technology relies on the evaporation to separate water from salt. Osmotic pressure is the "chemical potential of concentrated and dilute solutions of salt". Salinity gradient energy is based on using the resources of “osmotic pressure difference between fresh water and sea water”. As a result of the osmotic pressure, the water from solution B will diffuse through the membrane in order to dilute the solution. Thus, the pressure drives the turbines which in turn produces the electrical energy. 2.2 Reversed Electro Dialysis (RED) Reversed electro dialysis (RED) is the salinity gradient energy retrieved from the difference in the salt concentration between sea water and river water In reversed electro dialysis (RED) a salt solution and fresh water are let through a stack of alternating cathode and anode exchange membranes. The chemical potential difference between salt and fresh water generates a voltage over each membrane and the total potential of the system is the sum of the potential differences over all membranes. It is important to note that the process works through difference in ion concentration instead of an electric field, which has implications for the type of membrane needed. In RED, as in a fuel cell, the cells are stacked. A module with a capacity of 250 kW has the size of a shipping container. 2.3 Osmotic Pressure 114 South Asian Journal of Engineering and Technology Vol.2, No.22 (2016) 112–117 Osmotic Pressure is the pressure that must be applied to a solution to prevent the inward flow of water across a semi permeable membrane. Jacobus Henrico van’t Hoff first proposed a formula for calculating the osmotic pressure, but this was later improved upon by Harmon Northrop Morse. On a related note, osmotic potential is the opposite of water potential, which is the degree to which a solvent tends to stay in a liquid. 2.4 Potential Osmotic Pressure Potential osmotic pressure is the maximum osmotic pressure that could develop in a solution if it were separated from distilled water by a selectively permeable membrane. It is the number of solute particles in a unit volume of the solution that directly determines its potential osmotic pressure. If one waits for equilibrium, osmotic pressure reaches potential osmotic pressure. Fig 2.4.a: Osmotic Pressure 2.5 Morse Equation The osmotic pressure Π of a dilute solution can be approximated using the Morse equation which is named after Harmon Northrop Morse. Π = iMRT Where, i -> is the dimensionless van’t Hoff factor M -> is the molarity R -> 0.08206 L · atm · mol-1 · K-1 is the gas constant T-> is the thermodynamic (absolute) temperature This equation gives the pressure on one side of the membrane; the total pressure on the membrane is given by the difference between the pressures on the two sides. Note the similarity of the above formula to the ideal gas law and also that osmotic pressure is not dependent on particle charge. This equation was derived by van’t Hoff. 3. Applications 115 South Asian Journal of Engineering and Technology Vol.2, No.22 (2016) 112–117 Osmotic pressure is necessary for many plant functions. It is the resulting turgor pressure on the cell wall that allows herbaceous plants to stand upright, and how plants regulate the aperture of their stomata. In animal cells which lack a cell wall however, excessive osmotic pressure can result in cytolysis. Cell wall - A rigid layer of polysaccharides enclosing the membrane of plant and prokaryotic cells; maintains the shape of the cell and serves as a protective barrier. Cytolysis- Pathological breakdown of cells by the destruction of their outer membrane. Plasmolysis – The study of parasitic protozoan of the genus Plasmodium that causes malaria in humans. Turgor pressure- The normal rigid state of fullness of a cell or blood vessel or capillary resulting from pressure of the contents against the wall or membrane. For the calculation of molecular weight by using colligative properties, osmotic pressure is the most preferred property. Osmotic pressure is an important factor affecting cells. Osmoregulation is the homeostasis mechanism of an organism to reach balance in osmotic pressure. Hypertonicity is the presence of a solution that causes cells to shrink. Hypotonicity is the presence of a solution that causes cells to swell. Isotonic is the presence of a solution that produces no change in cell volume.
Recommended publications
  • Osmotic Power. from Prototype to Industry
    3rd International Conference on Ocean Energy, 6 October, Bilbao Osmotic Power. From prototype to industry – what will it take? Simen Bræin, Øystein Skråmestø Sandvik and Stein Erik Skilhagen 1 Statkraft PO Box 200 Lilleaker 0216 Oslo, Norway Abstract of a new, renewable energy source. This potential represents a worldwide electricity production potential It has been known for centuries that mixing freshwater of more than 1600 TWh per year – equivalent to 50 % and seawater releases energy. Statkraft has utilised of the total electricity production in the EU. For Pressure Retarded Osmosis (PRO) to capture this Pressure Retarded Osmosis, also known as osmotic energy and proved that it is possible to produce power, the released chemical energy is transferred into electricity from mixing freshwater and saltwater. Fall pressure instead of heat. This was first considered by 2009 Statkraft completed and put in operation the Prof Sidney Loeb in the early 70’s, when he designed world’s first prototype of an osmotic power plant. The the world’s first semi-permeable membrane for global potential of this energy source represents a desalination purposes using reverse osmosis. worldwide electricity production of more than 1600 TWh per year. Large scale development of osmotic Osmotic power is in fact based on naturally occurring energy will not only give a completely renewable and osmosis, triggered by nature’s drive to establish emissions-free power, it will also provide baseload equilibrium between different concentrations in liquids. energy with minimal ecological footprint. Osmosis is a process by which solvent molecules pass through a semi-permeable membrane from a dilute Meeting future energy and climate needs requires solution into a more concentrated solution.
    [Show full text]
  • Three Pressure Retarded Osmosis (Pro) Processes
    THREE PRESSURE RETARDED OSMOSIS (PRO) PROCESSES Authors: Boris Liberman, Gal Greenberg, Vitaly Levitin, Tal Oz-Ari, Udi Tirosh Presenter: Dr. Boris Liberman CTO, VP Membrane Technology – IDE Technologies Ltd. – Israel [email protected] Abstract Pressure retarded osmosis (PRO) can be implemented on a number of water types, using different technologies and achieving various power outcomes. This paper presents the three most practical options: Option 1 - Seawater with river water, driving force 25 bar, power output 5-10 watt/m2 Option 2 - SWRO brine with wastewater, driving force 50 bar, power output 10-20 watt/m2 Option 3 - Dead Sea or salt lake with river water, driving force 250 bar, power output 50-100 watt/m2 Each of the above options requires a different PRO technology. Option 1 necessitates movement of huge water volumes with extremely low power losses. All water movement must be at seawater level. The pressure exchanger consumes 15 times less power than it does in RO technology. Pretreatment CAPEX and OPEX expenses are considerably less than those currently implemented by RO technology, while water quality has to be as good as that required from RO. Option 2 is the most economical and ready to use. This option uses already filtrated and pressurized brine from an SWRO plant. The main obstacle to the implementation of this option is finding a wastewater source with no cost. Option 3 implements natural exotic resources such as Dead Sea water with extremely high osmotic pressures. The PRO technology in this option requires membranes and pressure exchangers that are able to operate at extremely high pressures.
    [Show full text]
  • The Potential of Chemical-Osmotic Energy for Renewable Power Generation
    The potential of chemical-osmotic energy for renewable power generation Adel O. Sharif*, Ali. A. Merdaw, Mohammed. I. Sanduk, Sami. M. Al-Aibi, Zena Rahal Centre for Osmosis Research & Applications, Chemical & Process Engineering Department, University of Surrey, UK * Corresponding author. T:+44(0)1483686584; F: +44(0)1483686584 email: [email protected] Abstract: This paper presents a study on the potential of osmotic energy for power production. The study includes both pilot plant testing and theoretical modelling including cost estimation. A projected cost of 30 $/MWh of clean electricity could be achieved by using a Hydro-Osmotic Power (HOP) plant if a suitable membrane is used and the osmotic potential difference between the two solutions is greater than 25 bar; a condition that can be achieved in a number of ways. Results have shown that the membrane system account for 50% - 80% of the HOP plant cost depending on the osmotic pressure difference level. Thus, further development in membrane technology and identifying suitable membranes would have significant impact on the feasibility of the process and the route to market. The results have shown the strong dependency of the produeced power cost on the membrane permeability. The results have also shown that a substantial reduction in the membrane area requirment for a given power output can be acheived as the osmotic pressure differnece between the two solutions increases beyoned 50 bar. Keywords: Osmotic Power, Salinity Gradient, Osmotic Energy, Renewable Energy 1. Introduction The world’s searching for cost-effective renewable energy (RE) sources is continuous and has taken many dimensions and directions.
    [Show full text]
  • The Water-Energy Nexus: Challenges and Opportunities Overview
    U.S. Department of Energy The Water-Energy Nexus: Challenges and Opportunities JUNE 2014 THIS PAGE INTENTIONALLY BLANK Table of Contents Foreword ................................................................................................................................................................... i Acknowledgements ............................................................................................................................................. iii Executive Summary.............................................................................................................................................. v Chapter 1. Introduction ...................................................................................................................................... 1 1.1 Background ................................................................................................................................................. 1 1.2 DOE’s Motivation and Role .................................................................................................................... 3 1.3 The DOE Approach ................................................................................................................................... 4 1.4 Opportunities ............................................................................................................................................. 4 References ..........................................................................................................................................................
    [Show full text]
  • Improving Fuel Cell Durability and Reliability
    V.M.1 Improving Fuel Cell Durability and Reliability – Surface and interface phenomena related to surface Prabhakar Singh adsorption, interfacial compound formation, and Center for Clean Energy Engineering electron/ion generation and transport, electrodics, University of Connecticut (UConn) and electrochemistry. 44 Weaver Road, Unit 5233 Novel membranes, heterogeneous catalyst materials, Storrs, CT 06268-5233 and structures will be developed and validated through Phone: (860) 486-8379 experimentation. Collaborative research projects with Email: [email protected] industry will be developed to improve the performance DOE Managers stability and long-term reliability of advanced fuel cells and Dimitrios Papageorgopoulos other power generations systems. Phone: (202) 586-5463 Email: [email protected] Fiscal Year (FY) 2013 Objectives Reg Tyler Phone: (720) 356-1805 • Quantify the role of fuel impurities on degradation Email: [email protected] processes in advanced electrochemical energy conversion systems. Technical Advisor • Optimize novel cell and stack structural and functional Thomas Benjamin materials from a durability, cost, and performance Phone: (720) 356-1805 perspective. Email: [email protected] • Demonstrate and improve performance stability and Contract Number: DE-EE00003226 reliability through advanced materials and fabrication Project Start Date: August 1, 2010 processes. Project End Date: October 31, 2013 Technical Barriers This project addresses the following technical Overall Objectives barriers from the Fuel Cells section of the Fuel Cell Technologies Office Multi-Year Research, Development, and Overall objective of the research project is to develop Demonstration Plan: an in-depth understanding of the degradation processes in (A) Durability advanced electrochemical energy conversion systems. It is also the objective of the research project to transfer the (B) Cost technology to participating industries for implementation (C) Performance in manufacturing of cost-effective and reliable integrated systems.
    [Show full text]
  • Energy, Exergy, and Thermo-Economic Analysis of Renewable Energy-Driven Polygeneration Systems for Sustainable Desalination
    processes Review Energy, Exergy, and Thermo-Economic Analysis of Renewable Energy-Driven Polygeneration Systems for Sustainable Desalination Mohammad Hasan Khoshgoftar Manesh 1,2,* and Viviani Caroline Onishi 3,* 1 Energy, Environment and Biologic Research Lab (EEBRlab), Division of Thermal Sciences and Energy Systems, Department of Mechanical Engineering, Faculty of Technology & Engineering, University of Qom, Qom 3716146611, Iran 2 Center of Environmental Research, Qom 3716146611, Iran 3 School of Engineering and the Built Environment, Edinburgh Napier University, Edinburgh EH10 5DT, UK * Correspondence: [email protected] (M.H.K.M.); [email protected] (V.C.O.) Abstract: Reliable production of freshwater and energy is vital for tackling two of the most crit- ical issues the world is facing today: climate change and sustainable development. In this light, a comprehensive review is performed on the foremost renewable energy-driven polygeneration systems for freshwater production using thermal and membrane desalination. Thus, this review is designed to outline the latest developments on integrated polygeneration and desalination systems based on multi-stage flash (MSF), multi-effect distillation (MED), humidification-dehumidification (HDH), and reverse osmosis (RO) technologies. Special attention is paid to innovative approaches for modelling, design, simulation, and optimization to improve energy, exergy, and thermo-economic performance of decentralized polygeneration plants accounting for electricity, space heating and cool- ing, domestic hot water, and freshwater production, among others. Different integrated renewable Citation: Khoshgoftar Manesh, M.H.; energy-driven polygeneration and desalination systems are investigated, including those assisted Onishi, V.C. Energy, Exergy, and by solar, biomass, geothermal, ocean, wind, and hybrid renewable energy sources.
    [Show full text]
  • Emergence of Forward Osmosis and Pressure-Retarded Osmotic Processes for Drinking Water Treatment
    FWRJ Emergence of Forward Osmosis and Pressure-Retarded Osmotic Processes for Drinking Water Treatment Steven J. Duranceau Description of Emerging Processes from a solution of a lower concentration to a so - lution with a higher concentration. These three Steven J. Duranceau is associate professor of Approximately 97 percent of the Earth’s technologies (RO, FO, and PRO) are common environmental engineering in the civil, water takes the form of salt water in oceans, seas, in that they use semi-permeable membranes to environmental, and construction engineering and lakes. Because of a worldwide water short - separate dissolved solutes from water. The semi- department at the University of Central age, a need exists for alternative desalination permeable membrane acts as a barrier that al - Florida in Orlando. technologies that can produce inexpensive, reli - lows small molecules such as water to pass able, and sustainable sources of water for the through, while rejecting larger molecules like world’s growing population, as well as to meet salts, organics, and proteins, as well as viruses, its industrial and agricultural needs. Green en - bacteria, and other pathogenic material. Both solution on the permeate side of the mem - ergy is available wherever one finds a river that FO and PRO exploit the osmotic pressure dif - brane is the driving force in the FO process. flows into a sea, equivalent to the energy con - ference that develops when a semi-permeable The flux direction of the permeating water in tained in a 900-ft-high waterfall[1]. Desalina - membrane separates two solutions of different FO, PRO, and RO is demonstrated in Figure tion technologies, such as reverse osmosis (RO) concentrations.
    [Show full text]
  • Pressure Retarded Osmosis: from the Vision of Sidney Loeb to the first Experimental Installation — Review
    DES-10032; No of Pages 7 Desalination xxx (2010) xxx–xxx Contents lists available at ScienceDirect Desalination journal homepage: www.elsevier.com/locate/desal Pressure retarded osmosis: From the vision of Sidney Loeb to the first experimental installation — Review Andrea Achilli ⁎, Amy E. Childress Department of Civil and Environmental Engineering, University of Nevada Reno, Reno, NV 89557, USA article info abstract Available online xxxx The energy released from the mixing of freshwater with saltwater is a source of renewable energy that can be harvested using pressure retarded osmosis (PRO). In PRO, water from a low salinity solution permeates Keywords: through a membrane into a pressurized, high salinity solution; power is obtained by depressurizing the Pressure retarded osmosis permeate through a hydroturbine. The combination of increased interest in renewable and sustainable Osmotic power sources of power production and recent progress in membrane science has led to a spike in PRO interest in Osmotic membranes the last decade. This interest culminated in the first experimental installation of PRO which opened in Osmotically driven membrane processes Renewable energy Norway in late 2009. Although many investigators would suggest there is still lack of theoretical and experimental investigations to ensure the success of scaled-up PRO, the Norway installation has evoked several specialized and main-stream press news articles. Whether the installation and the press it has received will also boost competitive commercialization of membranes and modules for PRO applications remains to be seen. This state-of-the-art review paper tells the unusual journey of PRO, from the pioneering days in the middle of the 20th century to the first experimental installation.
    [Show full text]
  • An Assessment of Cavet Technologies' Lumismart
    KACHAN & Co. Osmotic Power: A Primer Examing the opportunities and risks of making baseload power from osmosis It’s still very early, but interest is growing in technologies to make electricity from osmosis. Osmotic-power technologies capture energy created when salt water and fresh water mix, a process that happens naturally in deltas and estuaries around the world. But can these technologies overcome efficiency, cost and scale-up challenges quickly enough to be commercially viable and make a difference? Jennifer Kho June 2010 www.kachan.com Purchased by , [email protected] #439021- Osmotic Power: A Primer pg. 2 © 2010 Kachan & Co. | www.kachan.com Contents Executive summary ............................................................................................................... 4 The basics: How it works ...................................................................................................... 5 Pressure-Retarded Osmosis (PRO) ................................................................................. 5 © 2010 Kachan & Co. Reverse Electrodialysis (RED) ......................................................................................... 6 Use of this report is limited solely to Advantages: Why it appears worth pursuing ....................................................................... 6 specific licensees including the individual watermarked below. Only Potential challenges .............................................................................................................. 8
    [Show full text]
  • INAUGURAL–DISSERTATION Zur Erlangung Der Doktorwürde Der Naturwissenschaftlich-Mathematischen Gesamtfakultät Der Ruprecht-Karls-Universität Heidelberg
    INAUGURAL–DISSERTATION zur Erlangung der Doktorwürde der Naturwissenschaftlich-Mathematischen Gesamtfakultät der Ruprecht-Karls-Universität Heidelberg vorgelegt von Valeria Malieva geboren am 23. Mai 1986 in Lipezk, Russland Tag der mündlichen Prüfung: Mathematical Modelling and Simulations of Brain Cell Swelling Under Ischaemic Conditions Betreuer: Prof. Dr. Dr. h. c. mult. Willi Jäger Acknowledgements First and foremost I would like to express my sincere gratitude to my supervisors Prof. Willi Jäger and Prof. Peter Bastian. I am especially thankful to Prof. Willi Jäger for granting me the opportunity to work on this fascinating topic, for believing in me and for his scientific as well as moral guidance. From Prof. Willi Jäger I learned not only what it takes to be an accomplished researcher, but also how important it is to stay true to oneself. I am very thankful to Prof. Peter Bastian for supporting my research, for being understanding and for always finding time to discuss my work. For allowing me to pursue my scientific work in an academically excellent environment, I would like to thank the Faculty of Mathematics and Computer Science of Heidelberg University. I am very grateful to Dr. Felix Heimann for his contribution to the development of the simulation framework for my thesis and for advising me on the subject of physics. The discussions that I had with Dr. Felix Heimann and his enthusiastic participation played a great role in the development of this work. I would also like to acknowledge the contribution of Prof. Maria Neuss-Radu to the early development of the mathematical model. I am grateful for her interest in the project and for helping in its advancement.
    [Show full text]
  • A Review of Renewable Energy Options, Applications, Facilitating Technologies and Recent Developments
    European Journal of Sustainable Development Research 2020, 4(4), em0138 e-ISSN: 2542-4742 https://www.ejosdr.com/ Review Article OPEN ACCESS A Review of Renewable Energy Options, Applications, Facilitating Technologies and Recent Developments Seama Koohi-Fayegh 1*, Marc A. Rosen 1 1 Faculty of Engineering and Applied Science, University of Ontario Institute of Technology, 2000 Simcoe Street North, Oshawa, Ontario, L1G 0C5, CANADA *Corresponding Author: [email protected] Citation: Koohi-Fayegh, S. and Rosen, M. A. (2020). A Review of Renewable Energy Options, Applications, Facilitating Technologies and Recent Developments. European Journal of Sustainable Development Research, 4(4), em0138. https://doi.org/10.29333/ejosdr/8432 ARTICLE INFO ABSTRACT Received: 20 May 2020 A critical overview of renewable energy is provided, including descriptions of renewable energy sources, Accepted: 27 Jun. 2020 technologies, assessments, comparisons and planning as well as energy technologies that facilitate renewable energy sources. The renewable energy types considered include solar, wind, geothermal, bioenergy and waste- derived energy, ocean thermal energy, tidal, wave and hydraulic. Also covered for contextual and broader purposes are energy systems more generally and their sustainability. In addition, recent research on new renewable energy sources as well as important recent developments in renewable energy are considered. Keywords: renewable energy, status review INTRODUCTION Sunlight and heat from the sun are converted and received in the ambient environment in a number of ways, resulting in fossil fuels and renewable energy flows. For a long time, fossil fuels constituted the main energy source used by societies worldwide. However, fossil fuel reserves are decreasing over time and their utilization leads to pollution that harms ecosystem and human health and greenhouse gas (GHG) emissions that are linked to global warming.
    [Show full text]
  • Numerical Analysis of Dynamic Electro-Osmotic Flows of Non-Newtonian Fluids in Rectangular Microchannels
    Numerical analysis of dynamic electro-osmotic flows of non-Newtonian fluids in rectangular microchannels Cunlu Zhao* and Chun Yang School of Mechanical and Aerospace Engineering, Nanyang Technological University 50 Nanyang Avenue, 639798, Republic of Singapore Address correspondence to this author. E-mail: [email protected] Abstract Numerical analyses of transient electro-osmosis of a typical non-Newtonian liquid induced by DC and AC electric fields in a rectangular microchannel are conducted in the framework of continuum fluid mechanics. The famous power-law constitutive model is used to express the fluid dynamic viscosity in terms of the velocity gradient. Transient start-up characteristics of electro-osmotic power-law liquid flow in rectangular microchannels are simulated by using finite element method. Under a DC electric field, it is found out and the fluid is more inert to the external electric field and the steady-state velocity profile becomes more plug-like with decrease of the flow behavior index of the power-law liquids. The numerical calculations also confirm the validity of the generalized Smoluchowski slip velocity which can serve as the counterpart for the classic Smoluchowski slip velocity when dealing with electrokinetic flow of non-Newtonian power-law fluids. Under AC electric fields, the fluid is more obviously accelerated during oscillations and the amplitude of the oscillating velocity is closer to the magnitude of the generalized Smoluchowski velocity as the fluid behavior index increases. These dynamic predictions are of practical significance for the design of microfluidic devices that 1 manipulate non-Newtonian fluids such as biofluids, polymer solutions and colloidal suspensions.
    [Show full text]