Emergence of Forward Osmosis and Pressure-Retarded Osmotic Processes for Drinking Water Treatment

Total Page:16

File Type:pdf, Size:1020Kb

Emergence of Forward Osmosis and Pressure-Retarded Osmotic Processes for Drinking Water Treatment FWRJ Emergence of Forward Osmosis and Pressure-Retarded Osmotic Processes for Drinking Water Treatment Steven J. Duranceau Description of Emerging Processes from a solution of a lower concentration to a so - lution with a higher concentration. These three Steven J. Duranceau is associate professor of Approximately 97 percent of the Earth’s technologies (RO, FO, and PRO) are common environmental engineering in the civil, water takes the form of salt water in oceans, seas, in that they use semi-permeable membranes to environmental, and construction engineering and lakes. Because of a worldwide water short - separate dissolved solutes from water. The semi- department at the University of Central age, a need exists for alternative desalination permeable membrane acts as a barrier that al - Florida in Orlando. technologies that can produce inexpensive, reli - lows small molecules such as water to pass able, and sustainable sources of water for the through, while rejecting larger molecules like world’s growing population, as well as to meet salts, organics, and proteins, as well as viruses, its industrial and agricultural needs. Green en - bacteria, and other pathogenic material. Both solution on the permeate side of the mem - ergy is available wherever one finds a river that FO and PRO exploit the osmotic pressure dif - brane is the driving force in the FO process. flows into a sea, equivalent to the energy con - ference that develops when a semi-permeable The flux direction of the permeating water in tained in a 900-ft-high waterfall[1]. Desalina - membrane separates two solutions of different FO, PRO, and RO is demonstrated in Figure tion technologies, such as reverse osmosis (RO) concentrations. Instead of employing hydraulic 1[2,3,4]. The governing equation describing and electrodialysis reversal (EDR), have proven pressure as the driving force for separation in the water transport through FO and PRO mem - to be effective in removing a number of dis - RO process, FO and PRO use the osmotic pres - branes, and the volumetric flux of water into solved contaminants from water and wastewater sure gradient across the membrane to induce a the draw solution compartment of osmotic supplies, but require a significant electrical de - net flow of water through the membrane into pumps, can be described by the Kedem– mand and often experience fouling problems what is referred to as the “draw” solution, thus Katchalsky equation as shown below[5]: uncommon with more conventional water and efficiently separating the freshwater from its wastewater treatment methods[2]. Forward os - solutes. Driven by an osmotic pressure gradient, Fw = k w(∆p - ∆ ) mosis (FO) and pressure-retarded osmosis FO and PRO do not require significant energy (PRO) are emerging membrane separations input as in the comparable case of RO. Where is the water flux, is the water technologies that have the potential to be inno - In osmosis, the osmotic pressure itself is mass transfer coefficient, is the applied pres - vative, sustainable, and affordable alternatives to the driving force for mass transport. The os - sure, and is the osmotic pressure. For FO, is RO and EDR because of their ability to utilize motic potential depends on the molar con - zero; for PRO . the green energy available in natural systems[3]. centration, not the weight of dissolved species. In FO application for desalination and Both FO and PRO rely on osmotically-dri - Both FO and PRO use the osmotic pressure water treatment, the active layer of the mem - ven water flux across a semi-permeable dis - differential across the membrane, rather brane faces the feed solution and the porous solved solids rejecting membrane. The term than hydrauΔlic pressure differential p (as in support layer faces the draw solution. How - “osmosis” describes the natural diffusion of RO). The FO process results in dilu∆tion of a ever, in PRO application, the porous support water through a semi-permeable membrane highly concentrated stream. The concentrated Continued on page 34 Figure 1. Solvent flows in FO, PRO, and RO. 32 July 2012 • Florida Water Resources Journal Continued from page 32 systems. The limitations of plate-and-frame el - Tofte, Norway[11,12]. It is estimated that, each layer faces the feed solution and the active layer ements are lack of adequate membrane support year, 12 TWh could be generated in Norway, of the membrane faces the draw solution. The and low packing density. Spiral-wound config - sufficient to meet 10 percent of the country’s chemical potential, which is determined by the urations have been successfully modified for FO total demand for electricity, and 1600 TWh osmotic pressure difference across the mem - mode by placement of an additional glue line could be generated worldwide[13]. brane, is the effective driving force in making at the center of the membrane envelope that In one study, the use of a custom-made energy and fresh water. This potential is usu - provides a path for the feed to flow inside the and laboratory-scale membrane module en - ally lower than the potential generated by the envelope. The feed flows into the first half of the abled the collection of experimental PRO data. osmotic pressure difference between the bulk perforated central pipe, is then forced to flow Results obtained with a flat-sheet cellulose tri - feed and bulk draw solution due to external into the envelope, and then flows out through acetate (CTA) FO membrane, and NaCl feed concentration polarization[6]. the second half of the perforated central pipe. and draw solutions, closely matched model The main advantages of using FO and PRO The limitation of spiral-wound FO configura - predictions[4]. Maximum power densities of are that they can be operated at low or no hy - tion is the difficulty to induce flow into the per - 2.7 and 5.1W/m 2 were observed for 35 and 60 draulic pressure and they possess a high rejection meate channels for the purpose of cleaning or g/L NaCl draw solutions, respectively, at 970 of a wide range of contaminants. Since the only backwashing[7]. In practical applications, hol - kPa of hydraulic pressure[4]. The authors re - pressure involved in the FO and PRO processes is low fibers for continuously operated FO and port that “power density was substantially re - due to flow resistance in the membrane module, PRO processes may have some advantage as duced due to internal concentration it may have a lower membrane fouling tendency compared to the other configuration. This is be - polarization in the asymmetric CTA mem - than pressure-driven membrane processes. The cause they can support high hydraulic pressure branes, and to a lesser degree, to salt passage. ideal material of membranes for FO and PRO without deformation and can be easily packed External concentration polarization was found would have a high active-layer density and result in bundles directly inside a pressure vessel. Also, to exhibit a relatively small effect on reducing in high solute rejection; the thin membrane film, hollow fiber membranes do not need a thick the osmotic pressure driving force.” having minimum porosity of the support layer, support layer as in flat sheet RO membranes, would minimize internal concentration polar - thereby reduce internal concentration polariza - Applications ization, and therefore, provide a higher water tion and enhance membrane performance. flux. In addition, it would be desired that the With PRO, the water potential between The FO application has thus drawn much membrane be hydrophilic for enhanced flux and fresh water and sea water corresponds to a attention, with applications developed in var - reduced membrane fouling; an important aspect pressure of 26 bars. This pressure is equivalent ious fields, such as desalination, wastewater of these alternative membranes would be high to a column of water (hydraulic head) of 885 treatment, and pharmaceutical and juice con - mechanical strength to sustain hydraulic pres - feet (270 meters) high[8]; however, the opti - centration, and even power generation and sure when used for PRO. mal working pressure is only half of this, rang - potable-water reuse in space. Recent studies Different module configurations for these ing from 11 to 15 bar[9]. This method of of applications of FO in the field of wastewater membrane technologies include plate-and- generating power was invented in 1973 by Pro - treatment and water purification include frame, spiral-wound, tubular, and bag configu - fessor Sidney Loeb at the Ben-Gurion Univer - treatment of landfill leachate, concentration of ration[2]. Plate-and-frame modules are the sity of the Negev, Beersheba, Israel[10]. This dilute industrial wastewater, potable reuse of simplest devices for packing flat sheet mem - concept was not realized until the world's first wastewater in advanced life support systems, branes and can be constructed in different sizes osmotic plant, with capacity of 4 kW, was and concentration of liquids from anaerobic and shapes, ranging from lab-scale to full-scale opened by Statkraft in November 2009, in sludge digestion at a domestic wastewater treatment facility. Desalination and Water Purification To date, the only viable commercial drinking water application for FO has been developed by Hydration Technology Innova - tions, which has developed a small water pu - rification bag (hydration bag), used mostly by the military[14]. The bag is made of a semi- permeable FO membrane and contains a solid glucose draw solution. When immersed in contaminated water from puddles and ponds, purified water diffuses into the bag, slowly di - luting the solid draw solution to produce a potable drink. With sufficient contact time, such water will permeate the membrane bag into the draw solution, leaving the undesirable feed constituents behind. The diluted draw so - lution may then be ingested directly. Typically, the draw solutes are sugars, such as glucose or Figure 2.
Recommended publications
  • Osmotic Power. from Prototype to Industry
    3rd International Conference on Ocean Energy, 6 October, Bilbao Osmotic Power. From prototype to industry – what will it take? Simen Bræin, Øystein Skråmestø Sandvik and Stein Erik Skilhagen 1 Statkraft PO Box 200 Lilleaker 0216 Oslo, Norway Abstract of a new, renewable energy source. This potential represents a worldwide electricity production potential It has been known for centuries that mixing freshwater of more than 1600 TWh per year – equivalent to 50 % and seawater releases energy. Statkraft has utilised of the total electricity production in the EU. For Pressure Retarded Osmosis (PRO) to capture this Pressure Retarded Osmosis, also known as osmotic energy and proved that it is possible to produce power, the released chemical energy is transferred into electricity from mixing freshwater and saltwater. Fall pressure instead of heat. This was first considered by 2009 Statkraft completed and put in operation the Prof Sidney Loeb in the early 70’s, when he designed world’s first prototype of an osmotic power plant. The the world’s first semi-permeable membrane for global potential of this energy source represents a desalination purposes using reverse osmosis. worldwide electricity production of more than 1600 TWh per year. Large scale development of osmotic Osmotic power is in fact based on naturally occurring energy will not only give a completely renewable and osmosis, triggered by nature’s drive to establish emissions-free power, it will also provide baseload equilibrium between different concentrations in liquids. energy with minimal ecological footprint. Osmosis is a process by which solvent molecules pass through a semi-permeable membrane from a dilute Meeting future energy and climate needs requires solution into a more concentrated solution.
    [Show full text]
  • Three Pressure Retarded Osmosis (Pro) Processes
    THREE PRESSURE RETARDED OSMOSIS (PRO) PROCESSES Authors: Boris Liberman, Gal Greenberg, Vitaly Levitin, Tal Oz-Ari, Udi Tirosh Presenter: Dr. Boris Liberman CTO, VP Membrane Technology – IDE Technologies Ltd. – Israel [email protected] Abstract Pressure retarded osmosis (PRO) can be implemented on a number of water types, using different technologies and achieving various power outcomes. This paper presents the three most practical options: Option 1 - Seawater with river water, driving force 25 bar, power output 5-10 watt/m2 Option 2 - SWRO brine with wastewater, driving force 50 bar, power output 10-20 watt/m2 Option 3 - Dead Sea or salt lake with river water, driving force 250 bar, power output 50-100 watt/m2 Each of the above options requires a different PRO technology. Option 1 necessitates movement of huge water volumes with extremely low power losses. All water movement must be at seawater level. The pressure exchanger consumes 15 times less power than it does in RO technology. Pretreatment CAPEX and OPEX expenses are considerably less than those currently implemented by RO technology, while water quality has to be as good as that required from RO. Option 2 is the most economical and ready to use. This option uses already filtrated and pressurized brine from an SWRO plant. The main obstacle to the implementation of this option is finding a wastewater source with no cost. Option 3 implements natural exotic resources such as Dead Sea water with extremely high osmotic pressures. The PRO technology in this option requires membranes and pressure exchangers that are able to operate at extremely high pressures.
    [Show full text]
  • The Potential of Chemical-Osmotic Energy for Renewable Power Generation
    The potential of chemical-osmotic energy for renewable power generation Adel O. Sharif*, Ali. A. Merdaw, Mohammed. I. Sanduk, Sami. M. Al-Aibi, Zena Rahal Centre for Osmosis Research & Applications, Chemical & Process Engineering Department, University of Surrey, UK * Corresponding author. T:+44(0)1483686584; F: +44(0)1483686584 email: [email protected] Abstract: This paper presents a study on the potential of osmotic energy for power production. The study includes both pilot plant testing and theoretical modelling including cost estimation. A projected cost of 30 $/MWh of clean electricity could be achieved by using a Hydro-Osmotic Power (HOP) plant if a suitable membrane is used and the osmotic potential difference between the two solutions is greater than 25 bar; a condition that can be achieved in a number of ways. Results have shown that the membrane system account for 50% - 80% of the HOP plant cost depending on the osmotic pressure difference level. Thus, further development in membrane technology and identifying suitable membranes would have significant impact on the feasibility of the process and the route to market. The results have shown the strong dependency of the produeced power cost on the membrane permeability. The results have also shown that a substantial reduction in the membrane area requirment for a given power output can be acheived as the osmotic pressure differnece between the two solutions increases beyoned 50 bar. Keywords: Osmotic Power, Salinity Gradient, Osmotic Energy, Renewable Energy 1. Introduction The world’s searching for cost-effective renewable energy (RE) sources is continuous and has taken many dimensions and directions.
    [Show full text]
  • Exploration of an Innovative Draw Solution for a Forward Osmosis- Membrane Distillation Desalination Process
    University of Wollongong Research Online Faculty of Engineering and Information Faculty of Engineering and Information Sciences - Papers: Part B Sciences 2017 Exploration of an innovative draw solution for a forward osmosis- membrane distillation desalination process Nguyen Cong Nguyen Dalat University, National Taipei University of Technology Shiao-Shing Chen National Taipei University of Technology Shubham Jain VIT University Hau Thi Nguyen Dalat University, National Taipei University of Technology Saikat Sinha Ray National Taipei University of Technology See next page for additional authors Follow this and additional works at: https://ro.uow.edu.au/eispapers1 Part of the Engineering Commons, and the Science and Technology Studies Commons Recommended Citation Nguyen, Nguyen Cong; Chen, Shiao-Shing; Jain, Shubham; Nguyen, Hau Thi; Sinha Ray, Saikat; Ngo, Hao H.; Guo, Wenshan; Lam, Ngoc Tuan; and Duong, Hung, "Exploration of an innovative draw solution for a forward osmosis-membrane distillation desalination process" (2017). Faculty of Engineering and Information Sciences - Papers: Part B. 323. https://ro.uow.edu.au/eispapers1/323 Research Online is the open access institutional repository for the University of Wollongong. For further information contact the UOW Library: [email protected] Exploration of an innovative draw solution for a forward osmosis-membrane distillation desalination process Abstract Forward osmosis (FO) has emerged as a viable technology to alleviate the global water crisis. The greatest challenge facing the application of FO technology is the lack of an ideal draw solution with high water flux and low er verse salt flux. Hence, the objective of this study was to enhance FO by lowering reverse salt flux and maintaining high water flux; the method involved adding small concentrations of Al2(SO4)3 to a MgCl2 draw solution.
    [Show full text]
  • The Water-Energy Nexus: Challenges and Opportunities Overview
    U.S. Department of Energy The Water-Energy Nexus: Challenges and Opportunities JUNE 2014 THIS PAGE INTENTIONALLY BLANK Table of Contents Foreword ................................................................................................................................................................... i Acknowledgements ............................................................................................................................................. iii Executive Summary.............................................................................................................................................. v Chapter 1. Introduction ...................................................................................................................................... 1 1.1 Background ................................................................................................................................................. 1 1.2 DOE’s Motivation and Role .................................................................................................................... 3 1.3 The DOE Approach ................................................................................................................................... 4 1.4 Opportunities ............................................................................................................................................. 4 References ..........................................................................................................................................................
    [Show full text]
  • Improving Fuel Cell Durability and Reliability
    V.M.1 Improving Fuel Cell Durability and Reliability – Surface and interface phenomena related to surface Prabhakar Singh adsorption, interfacial compound formation, and Center for Clean Energy Engineering electron/ion generation and transport, electrodics, University of Connecticut (UConn) and electrochemistry. 44 Weaver Road, Unit 5233 Novel membranes, heterogeneous catalyst materials, Storrs, CT 06268-5233 and structures will be developed and validated through Phone: (860) 486-8379 experimentation. Collaborative research projects with Email: [email protected] industry will be developed to improve the performance DOE Managers stability and long-term reliability of advanced fuel cells and Dimitrios Papageorgopoulos other power generations systems. Phone: (202) 586-5463 Email: [email protected] Fiscal Year (FY) 2013 Objectives Reg Tyler Phone: (720) 356-1805 • Quantify the role of fuel impurities on degradation Email: [email protected] processes in advanced electrochemical energy conversion systems. Technical Advisor • Optimize novel cell and stack structural and functional Thomas Benjamin materials from a durability, cost, and performance Phone: (720) 356-1805 perspective. Email: [email protected] • Demonstrate and improve performance stability and Contract Number: DE-EE00003226 reliability through advanced materials and fabrication Project Start Date: August 1, 2010 processes. Project End Date: October 31, 2013 Technical Barriers This project addresses the following technical Overall Objectives barriers from the Fuel Cells section of the Fuel Cell Technologies Office Multi-Year Research, Development, and Overall objective of the research project is to develop Demonstration Plan: an in-depth understanding of the degradation processes in (A) Durability advanced electrochemical energy conversion systems. It is also the objective of the research project to transfer the (B) Cost technology to participating industries for implementation (C) Performance in manufacturing of cost-effective and reliable integrated systems.
    [Show full text]
  • Energy, Exergy, and Thermo-Economic Analysis of Renewable Energy-Driven Polygeneration Systems for Sustainable Desalination
    processes Review Energy, Exergy, and Thermo-Economic Analysis of Renewable Energy-Driven Polygeneration Systems for Sustainable Desalination Mohammad Hasan Khoshgoftar Manesh 1,2,* and Viviani Caroline Onishi 3,* 1 Energy, Environment and Biologic Research Lab (EEBRlab), Division of Thermal Sciences and Energy Systems, Department of Mechanical Engineering, Faculty of Technology & Engineering, University of Qom, Qom 3716146611, Iran 2 Center of Environmental Research, Qom 3716146611, Iran 3 School of Engineering and the Built Environment, Edinburgh Napier University, Edinburgh EH10 5DT, UK * Correspondence: [email protected] (M.H.K.M.); [email protected] (V.C.O.) Abstract: Reliable production of freshwater and energy is vital for tackling two of the most crit- ical issues the world is facing today: climate change and sustainable development. In this light, a comprehensive review is performed on the foremost renewable energy-driven polygeneration systems for freshwater production using thermal and membrane desalination. Thus, this review is designed to outline the latest developments on integrated polygeneration and desalination systems based on multi-stage flash (MSF), multi-effect distillation (MED), humidification-dehumidification (HDH), and reverse osmosis (RO) technologies. Special attention is paid to innovative approaches for modelling, design, simulation, and optimization to improve energy, exergy, and thermo-economic performance of decentralized polygeneration plants accounting for electricity, space heating and cool- ing, domestic hot water, and freshwater production, among others. Different integrated renewable Citation: Khoshgoftar Manesh, M.H.; energy-driven polygeneration and desalination systems are investigated, including those assisted Onishi, V.C. Energy, Exergy, and by solar, biomass, geothermal, ocean, wind, and hybrid renewable energy sources.
    [Show full text]
  • An Overview of Industrial Desalination Technologies ASME Industrial Demineralization (Desalination): Best Practices & Future Directions Workshop
    An Overview of Industrial Desalination Technologies ASME Industrial Demineralization (Desalination): Best Practices & Future Directions Workshop Washington, D.C. Shahid Chaudhry January 28-29, 2013 1 • The Challenge: Increasing Demand of Water & Energy Resources; Decreasing Supplies of Conventional Water & Energy Resources. Sustainable Management of Water & Energy Resources 2 • Eight Major Water Using Industries Oil & Gas Refining & Petrochemicals Power Generation Food and Beverage Pharmaceutical Microelectronics Pulp & Paper, and Mining GWI: Industrial Desalination & Water Reuse: Ultrapure water, challenging waste streams and improved efficiency, 3 Strategies: Water Conservation / Water Use Efficiency Unaccounted / Water Losses Water Recycling Desalination - Most Energy Intensive / Expensive Water? 4 • Desalination An Energy Intensive Process, An Integral Part of the Future Water Supply Portfolio Source Waters – Generally Four Types Brackish Ground Water, Surface Water, Municipal WW, Agricultural Runoff, Industrial Effluents, Sea Water, etc. Main Processes Categories: Thermal 4 - 6 kWh / m3 + Steam Heating of Contaminated Water under Vacuum Conditions to Create Pure Water Vapors) Membranes 1 - 6 kWh / m3 Energy Requirements - Function of: Plant Capacity, Feed Water Quality, Pretreatment, Desalination Process/Technology, and Level of Treatment Desalination Technology of Most Interest Today Reverse Osmosis 5 • Desalination Methods Distillation Multi-Stage Flash Distillation (MSF) Multiple-Effect Distillation (MED / ME) Vapor-Compression
    [Show full text]
  • Landfill Leachate Treatment
    MUNICIPAL APPLICATIONS Applying HTI’s Forward Osmosis Technology to Landfill Leachate Treatment Landfill Leachate is the liquid waste stream that By implementing HTI’s proprietary Forward Osmosis system in the results from water passing through a solid waste landfill or landfill leachate market, operators are able to: dump. As water, typically from rain or overspray from dust mitigation, passes through the solid waste in the landfill, it • Meet NPDES discharge requirements extracts solutes, suspended solids and heavy metals resulting • Reduce environmental impact of waste streams in a difficult to treat leachate that cannot be discharged to a • Increase landfill capacity public water way or municipal wastewater treatment plant • Reduce overall treatment costs vs. conventional treatment without treatment. • Provides a “green technology” reducing environmental impact HTI’s unique and proprietary OsMem™ Forward Osmosis (FO) membranes are used to dewater the toxic landfill leachate while meeting tough government discharge permit regula- tions, including the US NPDES requirements. The Forward Osmosis treatment process concentrates the liquid waste stream for disposal thereby allowing a much lower cost and environmentally friendly alternative to conventional treat- ment while also recovering over 90% of the water for reuse. HTI’s hybrid system consists of Forward Osmosis (FO) primary pretreatment driven by 9% Sodium Chloride osmotic draw solution, diluted by FO to 5%, then polished and re-concentrated in a closed loop by Reverse Osmosis (RO). The concentrated retentate can be treated using conven- Forward Osmosis Filtration System tional methods or can be solidified with Portland cement and returned to the landfill. The clean permeate can be discharged to a public waterway or diverted for reuse.
    [Show full text]
  • Osmotic Power Plant High Efficiency Renewable Energy System D.Govarthan, R.Kathiresan, K.Eswaramoorthy*
    South Asian Journal of Engineering and Technology Vol.2, No.22 (2016) 112–117 ISSN No: 2454-9614 Osmotic Power Plant High Efficiency Renewable Energy System D.Govarthan, R.Kathiresan, K.Eswaramoorthy* Department of EEE, SASURIE College of Engineering, Vijayamangalam, Tiruppur, Tamilnadu, India. *Corresponding Author: K. Eswaramoorthy E-mail: [email protected] Received: 13/11/2015, Revised: 18/12/2015 and Accepted: 16/04/2016 Abstract The need of new energy sources has led to a number of alternatives. One of those alternatives is energy created by transportation of solutions, osmotic energy or salinity gradient energy. In the osmotic process two solutions with different salt-concentrations are involved (often freshwater and salt-water). A semi permeable membrane, which is an organic filter, separates the solutions. The membrane only lets small molecules like water- molecules pass. The water aspires to decrease the salt-concentration on the membrane side that contains more salt. The water therefore streams through the membrane and creates a pressure on the other side. This pressure can be utilized in order to gain energy, by using a turbine and a generator. 1. Introduction 1.1 Osmosis Principle Diffusion of molecules through a semi permeable membrane from a place of higher concentration to a place of lower concentration until the concentration on both sides is equal. Osmosis is a process by which water moves through a membrane which blocks other particles, which is used to purify water. For osmotic power it works in reverse, with osmosis drawing fresh water through the membrane to mix with salty water, thereby increasing its pressure which can be harnessed to drive electricity turbines.
    [Show full text]
  • Forward Osmosis
    1 Forward Osmosis The Brine Solution is separated from a Synthetic Solution by a Advantages (+) Disadvantages (-) Semipermeable Membrane that allows only for water molecules to pass. The difference in concentration (Salts -red molecules << Draw Species - Internal Concentration green molecules) creates a water flux to the Synthetic Solution. The Treating >70,000 ppm diluted Synthetic Solution is driven to a regeneration step where the Polarization Draw Species are driven back into the process and the water is taken as product. ↓Energy Reverse Salt Flux 1) Introduction Choosing the right 2) Process Function Reversible Fouling 3) Advantages and Disadvantages Draw Solution 4) Process Industry Applications Choosing the right ↓↓Chemicals 1) Introduction membrane Forward Osmosis (FO) is an osmotic membrane ↑ Rejection of Boron process with a semipermeable membrane that & TrOCs - unlike Reverse Osmosis (RO) doesn’t use applied pressure in order to achieve separation Energy Consumption; 29. 91 KWh/m3 = 0.46 of water from dissolved solutes like ions, KWh/m3 Electrical + 29.45 KWh/m3 Thermal molecules and larger particles. That means a lot less of energy for the process in comparison Applications to RO. In general FO uses thermal and 1) Treatment of >70,000 ppm saline solution electrical energy. Thermal energy can be (Brine) substituted with low grade waste heat which 2) Oil & Gas Wastewater can be found everywhere in most industrial or 3) Heavy Metal Wastewater (Mining & nearby areas. Metallurgy) 4) ↑ Organic WW (e.g. Landfill Leachate) 2 Energy Forward Osmosis = Thermal (Waste Heat) + Electrical (<< Electrical Applied Pressure) Fig.1, Waste heat potential per industrial sector in the EU (%), Preliminary assessment of waste heat potential in major European industries (2107) 2) Process Function Fig.2, Simplified schematic of the FO process FO uses the difference of osmotic pressure (Δπ) between the feed solution (concentration C1) and a synthetic draw solution (DS), which we prepare with C2 > C1 → π2 > π1 → Δπ = π2 - π1.
    [Show full text]
  • Osmotically-Induced Cleaning of Fouled Reverse Osmosis Membranes in Desalination
    Osmotically-induced Cleaning of Fouled Reverse Osmosis Membranes in Desalination The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. Citation Labban, Omar et al. "Osmotically-induced Cleaning of Fouled Reverse Osmosis Membranes in Desalination." The International Desalination Association World Congress on Desalination and Water Reuse 2019, October 2019, Dubai, UAE. As Published https://wc.idadesal.org/wp-content/uploads/2019/10/IDA-WC19- Tuesday-2.pdf Publisher International Desalination Association Version Author's final manuscript Citable link https://hdl.handle.net/1721.1/123205 Terms of Use Creative Commons Attribution-Noncommercial-Share Alike Detailed Terms http://creativecommons.org/licenses/by-nc-sa/4.0/ OSMOTICALLY-INDUCED CLEANING OF FOULED REVERSE OSMOSIS MEMBRANES IN DESALINATION Authors: Omar Labban1, a, Grace Goon2, a, Zi Hao Foo3, Xuanhe Zhao1, b, John H. Lienhard V1, *, b 1Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge MA, United States 2Department of Aeronautics and Astronautics, Massachusetts Institute of Technology, Cambridge MA, United States 3School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore. *Corresponding author ([email protected]). aJoint first authors. bJoint senior authors. Presenter: Omar Labban, Ph.D. Candidate in Mechanical Engineering Graduate Research Assistant – Massachusetts Institute of Technology – United States ABSTRACT To counteract the effects of fouling, desalination plant operators ultimately resort to chemical cleaning, which incurs system downtime, risk of membrane damage, and the generation of chemical waste. Driven by these limitations, chemical-free cleaning has emerged as a potential alternative. Recent works have demonstrated the viability of osmotically-induced cleaning (OIC), where a membrane effectively undergoes osmotic backwashing.
    [Show full text]