Hideki Yukawa and the Meson Theory
Total Page:16
File Type:pdf, Size:1020Kb

Load more
Recommended publications
-
Meson-Exchange Forces and Medium Polarization in Finite Nuclei
—11005 MESON-EXCHANGE FORCES AND MEDIUM POLARIZATION IN FINITE NUCLEI a) 15 10 x/ r\ o 10 O W. Hengeveld MESON-EXCHANGE FORCES AND MEDIUM POLARIZATION IN FINITE NUCLEI Free University Press is an imprint of: VU BoekhandeUUHgeverij b.v. De Boelalaan 1105 1061 HV Amsterdam The Netherlands ISBN 90-8250-140-3 CIP © W. HengevekJ, Amsterdam, 1966. All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, mechanical, photocopying, recording, or otherwise, without the prior written permission of the author. VRIJE UNIVERSITEIT TE AMSTERDAM MESON-EXCHANGE FORCES AND MEDIUM POLARIZATION IN FINITE NUCLEI ACADEMISCH PROEFSCHRIFT ter verkrijging van de graad van doctor in de wiskunde en natuurwetenschappen aan de Vrije Universiteit te Amsterdam, op gezag van de rector magnificus dr. P.J.D. Drenth, hoogleraar in de faculteit der sociale wetenschappen, in het openbaar te verdedigen op donderdag 1 mei 1986 te 15.30 uur in het hoofdgebouw der universiteit. De Boelelaan 1105 door WILLEM HENGEVELD geboren te Woubrugge # Free University Press Amsterdam 1986 Promotor : prof. dr. E. Boeker Copromotor: dr. K. Allaart Referent : dr. W.H. Dickhoff DANKBETUIGING Zonder de volgende personen zou dit proefschrift niet geschreven of gedrukt zijn: Klaas Allaart worstelde de verschillende onleesbare eerste versies door. Zijn bijdrage aan de presentatie was, in alle opzichten, onmisbaar. Wim Dickhoff gaf niet alleen de grote lijn maar ook de details alle aandacht. Zijn onwrikbare geloof in de mogelijkheden van een formele benadering van kernstructuur, heeft de inhoud van dit proefschrift voor een groot deel bepaald. -
Quantum Statistics: Is There an Effective Fermion Repulsion Or Boson Attraction? W
Quantum statistics: Is there an effective fermion repulsion or boson attraction? W. J. Mullin and G. Blaylock Department of Physics, University of Massachusetts, Amherst, Massachusetts 01003 ͑Received 13 February 2003; accepted 16 May 2003͒ Physicists often claim that there is an effective repulsion between fermions, implied by the Pauli principle, and a corresponding effective attraction between bosons. We examine the origins and validity of such exchange force ideas and the areas where they are highly misleading. We propose that explanations of quantum statistics should avoid the idea of an effective force completely, and replace it with more appropriate physical insights, some of which are suggested here. © 2003 American Association of Physics Teachers. ͓DOI: 10.1119/1.1590658͔ ͒ϭ ͒ Ϫ␣ Ϫ ϩ ͒2 I. INTRODUCTION ͑x1 ,x2 ,t C͕f ͑x1 ,x2 exp͓ ͑x1 vt a Ϫ͑x ϩvtϪa͒2͔Ϫ f ͑x ,x ͒ The Pauli principle states that no two fermions can have 2 2 1 ϫ Ϫ␣ Ϫ ϩ ͒2Ϫ ϩ Ϫ ͒2 the same quantum numbers. The origin of this law is the exp͓ ͑x2 vt a ͑x1 vt a ͔͖, required antisymmetry of the multi-fermion wavefunction. ͑1͒ Most physicists have heard or read a shorthand way of ex- pressing the Pauli principle, which says something analogous where x1 and x2 are the particle coordinates, f (x1 ,x2) ϭ ͓ Ϫ ប͔ to fermions being ‘‘antisocial’’ and bosons ‘‘gregarious.’’ Of- exp imv(x1 x2)/ , C is a time-dependent factor, and the ten this intuitive approach involves the statement that there is packet width parameters ␣ and  are unequal. -
Consistent Treatment of Pion Exchange Force and Meson Versus Quark Dynamics in the N Ucleon-Nucleon Interaction
Aust. J. Phys., 1993, 46, 737-50 Consistent Treatment of Pion Exchange Force and Meson versus Quark Dynamics in the N ucleon-Nucleon Interaction G. Q. Liu A and A. W. Thomas B Department of Physics and Mathematical Physics, University of Adelaide, Adelaide, S.A. 5005, Australia. A E-mail: [email protected]. BE-mail: [email protected]. Abstract To distinguish explicit quark effects from meson exchange in the NN interaction, it is necessary to splice the long-range meson exchange forces and short-distance dynamics due to quarks. However, in most quark model studies the short-range part of the pion exchange is usually treated differently, which makes it difficult to get a uniform picture of the short-range dynamics. We make a comparison between meson exchange and quark-gluon dynamics using the same pion exchange potential based on a quark-pion coupling model. The roles of vector meson exchange and gluon exchange in the NN interaction are compared by calculating NN phase parameters. It is shown that, with this consistent one-pion exchange force, the vector meson exchange gives a better fit to the data. This suggests that non-perturbative mechanisms responsible for meson exchange may need more careful handling to supplement the usual one-gluon exchange mechanism in describing the NN interaction. 1. Introduction The extent to which the constituent quark model can be used to describe the NN interaction is still under debate. This is manifested by the various quark-based models that provide different pictures for the short-range NN force (for recent reviews see MyhreI' and Wroldsen 1988; Shimizu 1989). -
The Growth of Scientific Communities in Japan^
The Growth of Scientific Communities in Japan^ Mitsutomo Yuasa** 1. Introdution The first university in Japan on the European system was Tokyo Imperial University, established in 1877. Twenty years later, Kyoto Imperial University was founded in 1897. Among the graduates from the latter university can be found two post World War II Nobel Prize winners in physics, namely, Hideki Yukawa (in 1949), and Shinichiro Tomonaga (in 1965). We may say that Japan attained her scientific maturity nearly a century after the arrival of Commodore Perry in 1853 for the purpose of opening her ports. Incidentally, two scientists in the U.S.A. were awarded the Nobel Prize before 1920, namely, A. A. Michelson (physics in 1907), and T. W. Richard (chemistry in 1914). On this point, Japan lagged about fifty years behind the U.S.A. Japanese scientists began to achieve international recognition in the 1890's. This period conincides with the dates of the establishment of the Cabinet System, the promulgation of the Constitution of the Japanese Empire and the opening of the Imperial Diet, 1885, 1889, and 1890 respectively. Shibasaburo Kitazato (1852-1931), discovered the serum treatment for tetanus in 1890, Jiro ICitao (1853- 1907), made public his theories on the movement of atomospheric currents and typhoons in 1887, and Hantaro Nagaoka (1865-1950), published his research on the distortion of magnetism in 1889, and his idea on the structure of the atom in 1903. These three representative scientists were all closely related to Tokyo Imperial University, as graduates and latter, as professors. But we cannot forget to men tion that the main studies of Kitazato and Kitao were made, not in Japan, but in Germany, under the guidance of great scientists of that country, R. -
Phys 487 Discussion 4 – Symmetrization and the Exchange
Phys 487 Discussion 4 – Symmetrization and the Exchange Force It is considered a postulate (another axiom!) of quantum mechanics that the wavefunction for n identical particles must be either symmetric (S,+) or antisymmetric (A,–) under the exchange of any two particles: ! ! ! ! (r ,r ) (r ,r ) if particle 1 and particle 2 are indistinguishable. ψ 2 1 = ±ψ 1 2 Problem 1 : Fermi, Bose, and Pauli There is one more part to the postulate, which we mentioned at the ver end of last semester. ! ! ! ! • 2-Fermion wavefunctions are Antisymmetric under exchange → ψ (r ,r ) = –ψ (r ,r ) . !2 !1 !1 !2 • 2-Boson wavefunctions are Symmetric under exchange (r ,r ) (r ,r ) . → ψ 2 1 = +ψ 1 2 where • a Fermion is a particle with half-integer spin (e.g. electrons, protons, neutrons) • a Boson is a particle with integer spin (e.g. photons, many nuclei) (a) What if we have a system composed of one of each, e.g. a spin-1 deuterium nucleus (boson) and a spin-½ electron (fermion)? What is the symmetry of that under exchange? (Hint: No calculations required, and you will laugh when you realize the answer.) (b) Show that it is impossible for two fermions to occupy exactly the same state: show that you cannot build a ! ! wavefunction (r ,r ) with the necessary symmetry properties when particle 1 and particle 2 have the exact ψ 1 2 same individual wavefunctions. FYI: This result is the Pauli Exclusion Principle. It is an immediate consequence of the anti-symmetrization requirement on the wavefunctions of indistinguishable fermions, and is essential for understanding the periodic table – i.e. -
5.1 Two-Particle Systems
5.1 Two-Particle Systems We encountered a two-particle system in dealing with the addition of angular momentum. Let's treat such systems in a more formal way. The w.f. for a two-particle system must depend on the spatial coordinates of both particles as @Ψ well as t: Ψ(r1; r2; t), satisfying i~ @t = HΨ, ~2 2 ~2 2 where H = + V (r1; r2; t), −2m1r1 − 2m2r2 and d3r d3r Ψ(r ; r ; t) 2 = 1. 1 2 j 1 2 j R Iff V is independent of time, then we can separate the time and spatial variables, obtaining Ψ(r1; r2; t) = (r1; r2) exp( iEt=~), − where E is the total energy of the system. Let us now make a very fundamental assumption: that each particle occupies a one-particle e.s. [Note that this is often a poor approximation for the true many-body w.f.] The joint e.f. can then be written as the product of two one-particle e.f.'s: (r1; r2) = a(r1) b(r2). Suppose furthermore that the two particles are indistinguishable. Then, the above w.f. is not really adequate since you can't actually tell whether it's particle 1 in state a or particle 2. This indeterminacy is correctly reflected if we replace the above w.f. by (r ; r ) = a(r ) (r ) (r ) a(r ). 1 2 1 b 2 b 1 2 The `plus-or-minus' sign reflects that there are two distinct ways to accomplish this. Thus we are naturally led to consider two kinds of identical particles, which we have come to call `bosons' (+) and `fermions' ( ). -
The Twenty-First Century Paradigm and the Role of Information Technology
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Springer - Publisher Connector Chapter 2 The Twenty-First Century Paradigm and the Role of Information Technology In Chap. 1 , we considered demand by roughly classifying it into two types: “diffusive demand” and “creative demand.” The “paradigm of the twentieth century and before” was characterized by diffu- sive demand. The paradigm was constituted by a material desire to satisfy needs for food, clothing, and shelter, as well as transportation, and social mobility. Many of the industries that came into being in the nineteenth and twentieth centuries were intended to satisfy such desires. I describe those material desires as diffusive demand leading to a “saturation of man-made objects .” It follows that new demand in the twenty-fi rst century will be generated by a new paradigm. Thus, in this chapter fi rst describes what the paradigms of the twenty-fi rst century are and then refl ects on the role played by the knowledge explosion, one of those paradigms, and the role played by information technology, which looks as if it came into being to solve problems created by the knowledge explosion. Exploding Knowledge, Limited Earth, and Aging Society What are the paradigms of the twenty-fi rst century? I believe there are three, which I classify as “exploding knowledge ,” “limited earth,” and “aging society” (Fig. 2.1 ). These three paradigms do not represent anything that is either good or bad for humanity. Each constitutes a basic framework containing both light and shadow. For instance, there has been an explosive increase in knowledge . -
Pauli's Principle in Probe Microscopy
Chapter 1 Pauli's Principle in Probe Microscopy SP Jarvisy, AM Sweetmany, L Kantorovichz, E McGlynn], and P Moriartyy It appears to be one of the few places in physics where there is a rule which can be stated very simply, but for which no one has found a simple and easy explanation. The explanation is deep down in relativistic quantum mechanics. This probably means that we do not have a complete understanding of the fundamental principle involved.RP Feynman, The Feynman Lectures on Physics, Vol III, Chapter 4 (1964) Abstract Exceptionally clear images of intramolecular structure can be attained in dynamic force microscopy through the combination of a passivated tip apex and operation in what has become known as the \Pauli exclusion regime" of the tip-sample interaction. We discuss, from an experimentalist's perspective, a number of aspects of the exclusion principle which underpin this ability to achieve submolecular resolution. Our particular focus is on the origins, history, and interpretation of Pauli's principle in the context of interatomic and intermolecular interactions. Keywords: dynamic force microscopy;non-contact atomic force microscopy; NC-AFM; Pauli exclusion principle; submolecular resolution; intramolecular; single molecule imaging From Imaging and Manipulation of Adsorbates using Dynamic Force Microscopy, Vol V of Advances in Atom and Single Molecule Machines, Springer-Verlag; http://www.springer.com/ series/10425. To be published late 2014. ySchool of Physics and Astronomy, University of Nottingham, Nottingham NG7 2RD, UK z Department of Physics, Kings College London, The Strand, London WC2R 2LS, UK ] School of Physical Sciences, Dublin City University, Glasnevin, Dublin 9, Ireland arXiv:1408.1026v1 [cond-mat.mes-hall] 5 Aug 2014 1 2 SP Jarvis, AM Sweetman, L Kantorovich, E McGlynn, and P Moriarty 1.1 Intramolecular resolution via Pauli exclusion In 2009 the results of a pioneering dynamic force microscopy (DFM1) experiment by Leo Gross and co-workers at IBM Z¨urich were published[1] and revolutionised the field of scanning probe microscopy. -
Appendix E Nobel Prizes in Nuclear Science
Nuclear Science—A Guide to the Nuclear Science Wall Chart ©2018 Contemporary Physics Education Project (CPEP) Appendix E Nobel Prizes in Nuclear Science Many Nobel Prizes have been awarded for nuclear research and instrumentation. The field has spun off: particle physics, nuclear astrophysics, nuclear power reactors, nuclear medicine, and nuclear weapons. Understanding how the nucleus works and applying that knowledge to technology has been one of the most significant accomplishments of twentieth century scientific research. Each prize was awarded for physics unless otherwise noted. Name(s) Discovery Year Henri Becquerel, Pierre Discovered spontaneous radioactivity 1903 Curie, and Marie Curie Ernest Rutherford Work on the disintegration of the elements and 1908 chemistry of radioactive elements (chem) Marie Curie Discovery of radium and polonium 1911 (chem) Frederick Soddy Work on chemistry of radioactive substances 1921 including the origin and nature of radioactive (chem) isotopes Francis Aston Discovery of isotopes in many non-radioactive 1922 elements, also enunciated the whole-number rule of (chem) atomic masses Charles Wilson Development of the cloud chamber for detecting 1927 charged particles Harold Urey Discovery of heavy hydrogen (deuterium) 1934 (chem) Frederic Joliot and Synthesis of several new radioactive elements 1935 Irene Joliot-Curie (chem) James Chadwick Discovery of the neutron 1935 Carl David Anderson Discovery of the positron 1936 Enrico Fermi New radioactive elements produced by neutron 1938 irradiation Ernest Lawrence -
Geometric Approaches to Quantum Field Theory
GEOMETRIC APPROACHES TO QUANTUM FIELD THEORY A thesis submitted to The University of Manchester for the degree of Doctor of Philosophy in the Faculty of Science and Engineering 2020 Kieran T. O. Finn School of Physics and Astronomy Supervised by Professor Apostolos Pilaftsis BLANK PAGE 2 Contents Abstract 7 Declaration 9 Copyright 11 Acknowledgements 13 Publications by the Author 15 1 Introduction 19 1.1 Unit Independence . 20 1.2 Reparametrisation Invariance in Quantum Field Theories . 24 1.3 Example: Complex Scalar Field . 25 1.4 Outline . 31 1.5 Conventions . 34 2 Field Space Covariance 35 2.1 Riemannian Geometry . 35 2.1.1 Manifolds . 35 2.1.2 Tensors . 36 2.1.3 Connections and the Covariant Derivative . 37 2.1.4 Distances on the Manifold . 38 2.1.5 Curvature of a Manifold . 39 2.1.6 Local Normal Coordinates and the Vielbein Formalism 41 2.1.7 Submanifolds and Induced Metrics . 42 2.1.8 The Geodesic Equation . 42 2.1.9 Isometries . 43 2.2 The Field Space . 44 2.2.1 Interpretation of the Field Space . 48 3 2.3 The Configuration Space . 50 2.4 Parametrisation Dependence of Standard Approaches to Quan- tum Field Theory . 52 2.4.1 Feynman Diagrams . 53 2.4.2 The Effective Action . 56 2.5 Covariant Approaches to Quantum Field Theory . 59 2.5.1 Covariant Feynman Diagrams . 59 2.5.2 The Vilkovisky–DeWitt Effective Action . 62 2.6 Example: Complex Scalar Field . 66 3 Frame Covariance in Quantum Gravity 69 3.1 The Cosmological Frame Problem . -
Nobel Lectures™ 2001-2005
World Scientific Connecting Great Minds 逾10 0 种 诺贝尔奖得主著作 及 诺贝尔奖相关图书 我们非常荣幸得以出版超过100种诺贝尔奖得主著作 以及诺贝尔奖相关图书。 我们自1980年代开始与诺贝尔奖得主合作出版高品质 畅销书。一些得主担任我们的编辑顾问、丛书编辑, 并于我们期刊发表综述文章与学术论文。 世界科技与帝国理工学院出版社还邀得其中多位作了公 开演讲。 Philip W Anderson Sir Derek H R Barton Aage Niels Bohr Subrahmanyan Chandrasekhar Murray Gell-Mann Georges Charpak Nicolaas Bloembergen Baruch S Blumberg Hans A Bethe Aaron J Ciechanover Claude Steven Chu Cohen-Tannoudji Leon N Cooper Pierre-Gilles de Gennes Niels K Jerne Richard Feynman Kenichi Fukui Lawrence R Klein Herbert Kroemer Vitaly L Ginzburg David Gross H Gobind Khorana Rita Levi-Montalcini Harry M Markowitz Karl Alex Müller Sir Nevill F Mott Ben Roy Mottelson 诺贝尔奖相关图书 THE PERIODIC TABLE AND A MISSED NOBEL PRIZES THAT CHANGED MEDICINE NOBEL PRIZE edited by Gilbert Thompson (Imperial College London) by Ulf Lagerkvist & edited by Erling Norrby (The Royal Swedish Academy of Sciences) This book brings together in one volume fifteen Nobel Prize- winning discoveries that have had the greatest impact upon medical science and the practice of medicine during the 20th “This is a fascinating account of how century and up to the present time. Its overall aim is to groundbreaking scientists think and enlighten, entertain and stimulate. work. This is the insider’s view of the process and demands made on the Contents: The Discovery of Insulin (Robert Tattersall) • The experts of the Nobel Foundation who Discovery of the Cure for Pernicious Anaemia, Vitamin B12 assess the originality and significance (A Victor Hoffbrand) • The Discovery of -
Abstract Investigation of the Magnetostatics Of
ABSTRACT INVESTIGATION OF THE MAGNETOSTATICS OF EXCHANGE-COUPLED NANO- DOTS USING THE MAGNETO-OPTIC KERR EFFECT TECHNIQUE by Sarah C. Hernandez The effect of inter-dot exchange coupling on the magnetization reversal processes in nano- dots has been investigated on Permalloy dot arrays with dot diameters of 300 nm and thickness of 40 nm. The dots are exchange coupled via 50 nm long Permalloy bridges of width ranging from zero to 60 nm. Chains of five co-linear coupled dots form the unit cell of the array structure. Magneto-optical Kerr effect hysteresis loops are reported with comparison to simulations. With field applied along the coupling direction, nucleation is suppressed by the interdot exchange coupling resulting in highly correlated magnetization patterns. When the field is applied perpendicular-to-the-coupling direction, the exchange interaction has little effect and magnetic reversal is almost identical to arrays of isolated dots. As a result of rotating the applied magnetic field relative to the sample’s coupling direction, unusual hysteresis loops were observed, which could be explained by a combination of the x and y-component of the magnetization. Investigation of Magnetostatics of Exchange-Coupled Nano-dots using the Magneto-optic Kerr Effect Technique A Thesis Submitted to the Faculty of Miami University In partial fulfillment of the requirements for the degree of Masters of Science Department of Physics by Sarah C. Hernandez Oxford, Ohio Miami University 2009 Advisor______________________ (Michael J. Pechan) Reader______________________ (Khalid Eid) Reader______________________ (Samir Bali) © 2009 Sarah C. Hernandez Table of Contents 1 Introduction ........................................................................................................................... 1 1.1 Motivation ....................................................................................................................... 1 1.2 Purpose ...........................................................................................................................