Hideki Yukawa and the Meson Theory

Total Page:16

File Type:pdf, Size:1020Kb

Hideki Yukawa and the Meson Theory Hideki Yukawa and the meson theory Some 50 years ago, in his first research contribution, a young Japanese theoretical physicist explained the strong, short-range force between neutrons and protons as due to an exchange of "heavy quanta." Laurie M. Brown A little over 50 years ago, Hideki cist who had never even traveled Yukawa's papers at Kyoto University. Yukawa, a young Japanese theoretical abroad, but instead by one of the many (These documents have been organized physicist at the University of Osaka, Western physicists, some of them of and cataloged in the Yukawa Hall proposed a fundamental theory of nu- great reputation, who were working on Archival Library, and I am grateful to clear forces involving the exchange of the theory of nuclear forces. Further- Rokuo Kawabe and Michiji Konuma massive charged particles between neu- more, Yukawa's paper was totally ne- for translations and comments.) trons and protons. He called the ex- glected for more than two years, al- changed particles "heavy quanta" to though it was written in lucid English The problem of nuclear forces distinguish them from the light quanta and published1 in a respected journal of The meson theory was the result of a of the electromagnetic field, but now rather wide circulation. The meson powerful creative act. It incorporated they are known as pions, the lightest theory has turned out to be an impor- a number of ideas that are common- members of a large family of particles tant paradigm for the theory of elemen- called mesons. These days, the meson tary particles, as seminal as Ernest O. theory seems to be a straightforward Lawrence's cyclotron has been for its Hideki Yukawa, at right, with (from left) his father-in-law Genyo Yukawa, his mother-in- application of quantum field theory to experimental practice. In this article I law Michi and his wife Sumi at their home the nuclear forces, but it could not have will trace the intellectual trail Yukawa in Osaka in 1932. (Photos illustrating this appeared so 50 years ago. Otherwise it followed to arrive at his theory, using article courtesy Michiji Konuma; from would not have been invented by an unpublished documents that have re- reference 9, reproduced with permission of obscure, unpublished Japanese physi- cently been discovered among Sumi Yukawa.) 0031-9228 / B6 / 1200 55- 0B / $01.00 1986 American Institute ol Physics PHYSICS TODAY / DECEMBER 1986 55 Manuscript page containing Yukawa's wave equation, based on the Dirac equation, for describing the intranuclear electron field having the nucleon-exchange current as a source. Equation 1 in the manuscript corresponds to equation 3 in the this article. (The documents illustrating this article come from the Yukawa Hall Archival Library, Kyoto University, courtesy of Ziro Maki.) would rapidly escape the nucleus. An- other difficulty was that certain nuclei, those with an odd number of intranu- clear electrons, should have had mag- netic fields about a thousand times larger than that inferred from the hyperfine structure of atomic spectra. One such nucleus—nitrogen-14, with 14 protons and 7 electrons—should have had half-integral spin and obeyed Fermi-Dirac statistics, but was known to have integral spin and to obey Bose- Einstein statistics. As early as 1920, Ernest Rutherford had suggested that there might exist a neutral nuclear constituent that he called the "neutron," consisting of a proton and an electron much more tightly bound than in the hydrogen atom. James Chadwick, working in the Cavendish Laboratory in Cambridge in 1932, assumed, when he discovered the neutron, that he had found Ruther- ford's composite neutron, which had been sought at the Cavendish for a place today, but which were novel and remember the time when man's decade. Chadwick did consider the surprising 50 years ago. These are chief purpose was to hunt some possibility that his neutron was a new some of the original features proposed animals, when he did not have elementary particle, but said4 that the by Yukawa: chairs to sit in, did not have beds, idea had "little to recommend it." • The nuclear binding force is trans- did not have covers, did not have a Within a few weeks after Chadwick's mitted by the exchange of massive jacket, did not have anything, not announcement, Heisenberg wrote the charged particles (the heavy quanta). to mention that he did not have a first part of a three-part paper present- • The range of the force is inversely radio to speak into. It is hard to ing5 a theory of nuclear structure in proportional to the mass of the quan- remember that. which protons and neutrons were the tum. The physicist's view of matter before principal constituents (Bausteine) of • There are two nuclear forces, one the discovery of the neutron was that the nucleus, instead of the protons and strong and one weak, and hence two everything, including the nucleus, con- electrons (and sometimes alpha parti- coupling constants. sisted of protons and electrons and was cles) of the earlier models. (See the • The weak interaction is also mediat- held together by electric and magnetic article by Arthur Miller, PHYSICS TO- ed by the exchange of the heavy quanta forces.3 In that picture, the nucleus of DAY, November 1985, page 60.) Heisen- (charged intermediate bosons). mass number A contained A positive berg did not challenge the idea that the • The heavy quanta are unstable, protons and A — Z negative electrons; neutron was composed of a proton and decaying via the weak interaction. the neutral atom had, of course, Z an electron, but by suppressing the It was a great achievement to pro- extranuclear electrons. Thus, matter electron degrees of freedom in his pose such a bold solution for the nu- was said to be made of pure electricity. nuclear Hamiltonian he was able to clear-force problem, for it was difficult Within this framework, quantum me- construct the first genuinely quantum- at that time even to grasp and to chanics was scoring impressive suc- mechanical nuclear theory. (Dmitri formulate the dimensions of the prob- cesses in explaining phenomena that Iwanenko in Leningrad, at about the lem. At a symposium held in Minne- involved the extranuclear electrons, in same time, suggested6 treating the apolis in 1977 on the subject of nuclear fields such as spectroscopy, chemistry neutron as an elementary particle in physics in the 1930s, Eugene Wigner and magnetism, but the behavior of the 2 the nucleus, but he does not seem to remarked: intranuclear electrons was quite an- have developed a detailed theory of this The disorientation in physics other matter. The mere presence of type.) So far as nuclear systematics which existed . [around 1932] is electrons in the nucleus seemed to violate important principles of physics. was concerned, Heisenberg treated the hard to imagine. We can remem- proton and the neutron as the charged ber it hardly more than we can One problem, apparently insurmount- able within the conventional frame- and neutral states of a single entity, work of quantum mechanics, was that our present-day nucleon, and he intro- Laurie Brown is professor of physics and an electron, having low mass and duced operators that changed the astronomy at Northwestern University, Evan- confined within a space as small as a charge of the nucleon, turning neu- ston, Illinois. This article is based upon a nucleus, would according to Werner trons into protons or vice versa. The paper presented at an international sympo- Heisenberg's uncertainty principle force that he introduced between the sium on the golden jubilee of the meson have a kinetic energy so large that it proton and neutron had charge-ex- theory, Kyoto, Japan, 15-17 August 1986. change character, analogous to that in 56 PHYSICS TODAY / DECEMBER 1986 + the hydrogen molecular ion H2 ; the senberg regarded the proton and the the Great Depression and a difficult force between neutrons was analogous neutron as sisters, so similar that the time in which to find a job. He to the exchange force in the hydrogen exchange currents in terms of which he therefore continued to live with his molecule, but between protons, which expressed his charge-exchange forces family in Kyoto, where his father, Heisenberg regarded as elementary were formulated in terms of raising Takuji Ogawa, was a professor of geog- particles, there was only ordinary Cou- and lowering operators adapted from raphy at the university. For three lomb repulsion. Thus in assigning the Pauli spin matrices. Those are years, together with Sinitiro Tomon- forces Heisenberg clearly differentiat- precisely the modern isospin operators, aga—his classmate, the son of a Kyoto ed the "elementary" proton from the although Heisenberg employed them philosophy professor, and a future fel- "composite" neutron. Nevertheless, without the accompanying idea of the low Nobel laureate—Yukawa worked despite its unsymmetric treatment of charge independence of nuclear forces. as an unpaid assistant in the theoreti- what we now call the nucleon doublet, Nevertheless, he insisted that electrons cal-physics research room of Professor Heisenberg's theory, especially as of both the bound and loose varieties Kajuro Tamaki. Intensely ambitious, modified during the following year by were present in the nucleus. This view he was afraid that he had arrived upon Wigner and Ettore Majorana, is cor- so characterized Heisenberg's nuclear the physics scene too late to make a model that in 1933 Wigner, listing8 fundamental contribution to quantum rectly regarded as the foundation of the 9 modern phenomenology of nuclear "three different assumptions possible theory. Much later, Yukawa wrote in structure. concerning the elementary particles" his autobiography, "As I was desperate- While Heisenberg had seized the in the nucleus, began his list: "(a) The ly trying to reach the front line, the opportunity presented by the discovery only elementary particles are the pro- new quantum physics kept moving of the neutron to formulate a pheno- ton and the electron.
Recommended publications
  • Meson-Exchange Forces and Medium Polarization in Finite Nuclei
    —11005 MESON-EXCHANGE FORCES AND MEDIUM POLARIZATION IN FINITE NUCLEI a) 15 10 x/ r\ o 10 O W. Hengeveld MESON-EXCHANGE FORCES AND MEDIUM POLARIZATION IN FINITE NUCLEI Free University Press is an imprint of: VU BoekhandeUUHgeverij b.v. De Boelalaan 1105 1061 HV Amsterdam The Netherlands ISBN 90-8250-140-3 CIP © W. HengevekJ, Amsterdam, 1966. All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, mechanical, photocopying, recording, or otherwise, without the prior written permission of the author. VRIJE UNIVERSITEIT TE AMSTERDAM MESON-EXCHANGE FORCES AND MEDIUM POLARIZATION IN FINITE NUCLEI ACADEMISCH PROEFSCHRIFT ter verkrijging van de graad van doctor in de wiskunde en natuurwetenschappen aan de Vrije Universiteit te Amsterdam, op gezag van de rector magnificus dr. P.J.D. Drenth, hoogleraar in de faculteit der sociale wetenschappen, in het openbaar te verdedigen op donderdag 1 mei 1986 te 15.30 uur in het hoofdgebouw der universiteit. De Boelelaan 1105 door WILLEM HENGEVELD geboren te Woubrugge # Free University Press Amsterdam 1986 Promotor : prof. dr. E. Boeker Copromotor: dr. K. Allaart Referent : dr. W.H. Dickhoff DANKBETUIGING Zonder de volgende personen zou dit proefschrift niet geschreven of gedrukt zijn: Klaas Allaart worstelde de verschillende onleesbare eerste versies door. Zijn bijdrage aan de presentatie was, in alle opzichten, onmisbaar. Wim Dickhoff gaf niet alleen de grote lijn maar ook de details alle aandacht. Zijn onwrikbare geloof in de mogelijkheden van een formele benadering van kernstructuur, heeft de inhoud van dit proefschrift voor een groot deel bepaald.
    [Show full text]
  • Quantum Statistics: Is There an Effective Fermion Repulsion Or Boson Attraction? W
    Quantum statistics: Is there an effective fermion repulsion or boson attraction? W. J. Mullin and G. Blaylock Department of Physics, University of Massachusetts, Amherst, Massachusetts 01003 ͑Received 13 February 2003; accepted 16 May 2003͒ Physicists often claim that there is an effective repulsion between fermions, implied by the Pauli principle, and a corresponding effective attraction between bosons. We examine the origins and validity of such exchange force ideas and the areas where they are highly misleading. We propose that explanations of quantum statistics should avoid the idea of an effective force completely, and replace it with more appropriate physical insights, some of which are suggested here. © 2003 American Association of Physics Teachers. ͓DOI: 10.1119/1.1590658͔ ␺ ͒ϭ ͒ Ϫ␣ Ϫ ϩ ͒2 I. INTRODUCTION ͑x1 ,x2 ,t C͕f ͑x1 ,x2 exp͓ ͑x1 vt a Ϫ␤͑x ϩvtϪa͒2͔Ϫ f ͑x ,x ͒ The Pauli principle states that no two fermions can have 2 2 1 ϫ Ϫ␣ Ϫ ϩ ͒2Ϫ␤ ϩ Ϫ ͒2 the same quantum numbers. The origin of this law is the exp͓ ͑x2 vt a ͑x1 vt a ͔͖, required antisymmetry of the multi-fermion wavefunction. ͑1͒ Most physicists have heard or read a shorthand way of ex- pressing the Pauli principle, which says something analogous where x1 and x2 are the particle coordinates, f (x1 ,x2) ϭ ͓ Ϫ ប͔ to fermions being ‘‘antisocial’’ and bosons ‘‘gregarious.’’ Of- exp imv(x1 x2)/ , C is a time-dependent factor, and the ten this intuitive approach involves the statement that there is packet width parameters ␣ and ␤ are unequal.
    [Show full text]
  • Consistent Treatment of Pion Exchange Force and Meson Versus Quark Dynamics in the N Ucleon-Nucleon Interaction
    Aust. J. Phys., 1993, 46, 737-50 Consistent Treatment of Pion Exchange Force and Meson versus Quark Dynamics in the N ucleon-Nucleon Interaction G. Q. Liu A and A. W. Thomas B Department of Physics and Mathematical Physics, University of Adelaide, Adelaide, S.A. 5005, Australia. A E-mail: [email protected]. BE-mail: [email protected]. Abstract To distinguish explicit quark effects from meson exchange in the NN interaction, it is necessary to splice the long-range meson exchange forces and short-distance dynamics due to quarks. However, in most quark model studies the short-range part of the pion exchange is usually treated differently, which makes it difficult to get a uniform picture of the short-range dynamics. We make a comparison between meson exchange and quark-gluon dynamics using the same pion exchange potential based on a quark-pion coupling model. The roles of vector meson exchange and gluon exchange in the NN interaction are compared by calculating NN phase parameters. It is shown that, with this consistent one-pion exchange force, the vector meson exchange gives a better fit to the data. This suggests that non-perturbative mechanisms responsible for meson exchange may need more careful handling to supplement the usual one-gluon exchange mechanism in describing the NN interaction. 1. Introduction The extent to which the constituent quark model can be used to describe the NN interaction is still under debate. This is manifested by the various quark-based models that provide different pictures for the short-range NN force (for recent reviews see MyhreI' and Wroldsen 1988; Shimizu 1989).
    [Show full text]
  • The Growth of Scientific Communities in Japan^
    The Growth of Scientific Communities in Japan^ Mitsutomo Yuasa** 1. Introdution The first university in Japan on the European system was Tokyo Imperial University, established in 1877. Twenty years later, Kyoto Imperial University was founded in 1897. Among the graduates from the latter university can be found two post World War II Nobel Prize winners in physics, namely, Hideki Yukawa (in 1949), and Shinichiro Tomonaga (in 1965). We may say that Japan attained her scientific maturity nearly a century after the arrival of Commodore Perry in 1853 for the purpose of opening her ports. Incidentally, two scientists in the U.S.A. were awarded the Nobel Prize before 1920, namely, A. A. Michelson (physics in 1907), and T. W. Richard (chemistry in 1914). On this point, Japan lagged about fifty years behind the U.S.A. Japanese scientists began to achieve international recognition in the 1890's. This period conincides with the dates of the establishment of the Cabinet System, the promulgation of the Constitution of the Japanese Empire and the opening of the Imperial Diet, 1885, 1889, and 1890 respectively. Shibasaburo Kitazato (1852-1931), discovered the serum treatment for tetanus in 1890, Jiro ICitao (1853- 1907), made public his theories on the movement of atomospheric currents and typhoons in 1887, and Hantaro Nagaoka (1865-1950), published his research on the distortion of magnetism in 1889, and his idea on the structure of the atom in 1903. These three representative scientists were all closely related to Tokyo Imperial University, as graduates and latter, as professors. But we cannot forget to men tion that the main studies of Kitazato and Kitao were made, not in Japan, but in Germany, under the guidance of great scientists of that country, R.
    [Show full text]
  • Phys 487 Discussion 4 – Symmetrization and the Exchange
    Phys 487 Discussion 4 – Symmetrization and the Exchange Force It is considered a postulate (another axiom!) of quantum mechanics that the wavefunction for n identical particles must be either symmetric (S,+) or antisymmetric (A,–) under the exchange of any two particles: ! ! ! ! (r ,r ) (r ,r ) if particle 1 and particle 2 are indistinguishable. ψ 2 1 = ±ψ 1 2 Problem 1 : Fermi, Bose, and Pauli There is one more part to the postulate, which we mentioned at the ver end of last semester. ! ! ! ! • 2-Fermion wavefunctions are Antisymmetric under exchange → ψ (r ,r ) = –ψ (r ,r ) . !2 !1 !1 !2 • 2-Boson wavefunctions are Symmetric under exchange (r ,r ) (r ,r ) . → ψ 2 1 = +ψ 1 2 where • a Fermion is a particle with half-integer spin (e.g. electrons, protons, neutrons) • a Boson is a particle with integer spin (e.g. photons, many nuclei) (a) What if we have a system composed of one of each, e.g. a spin-1 deuterium nucleus (boson) and a spin-½ electron (fermion)? What is the symmetry of that under exchange? (Hint: No calculations required, and you will laugh when you realize the answer.) (b) Show that it is impossible for two fermions to occupy exactly the same state: show that you cannot build a ! ! wavefunction (r ,r ) with the necessary symmetry properties when particle 1 and particle 2 have the exact ψ 1 2 same individual wavefunctions. FYI: This result is the Pauli Exclusion Principle. It is an immediate consequence of the anti-symmetrization requirement on the wavefunctions of indistinguishable fermions, and is essential for understanding the periodic table – i.e.
    [Show full text]
  • 5.1 Two-Particle Systems
    5.1 Two-Particle Systems We encountered a two-particle system in dealing with the addition of angular momentum. Let's treat such systems in a more formal way. The w.f. for a two-particle system must depend on the spatial coordinates of both particles as @Ψ well as t: Ψ(r1; r2; t), satisfying i~ @t = HΨ, ~2 2 ~2 2 where H = + V (r1; r2; t), −2m1r1 − 2m2r2 and d3r d3r Ψ(r ; r ; t) 2 = 1. 1 2 j 1 2 j R Iff V is independent of time, then we can separate the time and spatial variables, obtaining Ψ(r1; r2; t) = (r1; r2) exp( iEt=~), − where E is the total energy of the system. Let us now make a very fundamental assumption: that each particle occupies a one-particle e.s. [Note that this is often a poor approximation for the true many-body w.f.] The joint e.f. can then be written as the product of two one-particle e.f.'s: (r1; r2) = a(r1) b(r2). Suppose furthermore that the two particles are indistinguishable. Then, the above w.f. is not really adequate since you can't actually tell whether it's particle 1 in state a or particle 2. This indeterminacy is correctly reflected if we replace the above w.f. by (r ; r ) = a(r ) (r ) (r ) a(r ). 1 2 1 b 2 b 1 2 The `plus-or-minus' sign reflects that there are two distinct ways to accomplish this. Thus we are naturally led to consider two kinds of identical particles, which we have come to call `bosons' (+) and `fermions' ( ).
    [Show full text]
  • The Twenty-First Century Paradigm and the Role of Information Technology
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Springer - Publisher Connector Chapter 2 The Twenty-First Century Paradigm and the Role of Information Technology In Chap. 1 , we considered demand by roughly classifying it into two types: “diffusive demand” and “creative demand.” The “paradigm of the twentieth century and before” was characterized by diffu- sive demand. The paradigm was constituted by a material desire to satisfy needs for food, clothing, and shelter, as well as transportation, and social mobility. Many of the industries that came into being in the nineteenth and twentieth centuries were intended to satisfy such desires. I describe those material desires as diffusive demand leading to a “saturation of man-made objects .” It follows that new demand in the twenty-fi rst century will be generated by a new paradigm. Thus, in this chapter fi rst describes what the paradigms of the twenty-fi rst century are and then refl ects on the role played by the knowledge explosion, one of those paradigms, and the role played by information technology, which looks as if it came into being to solve problems created by the knowledge explosion. Exploding Knowledge, Limited Earth, and Aging Society What are the paradigms of the twenty-fi rst century? I believe there are three, which I classify as “exploding knowledge ,” “limited earth,” and “aging society” (Fig. 2.1 ). These three paradigms do not represent anything that is either good or bad for humanity. Each constitutes a basic framework containing both light and shadow. For instance, there has been an explosive increase in knowledge .
    [Show full text]
  • Pauli's Principle in Probe Microscopy
    Chapter 1 Pauli's Principle in Probe Microscopy SP Jarvisy, AM Sweetmany, L Kantorovichz, E McGlynn], and P Moriartyy It appears to be one of the few places in physics where there is a rule which can be stated very simply, but for which no one has found a simple and easy explanation. The explanation is deep down in relativistic quantum mechanics. This probably means that we do not have a complete understanding of the fundamental principle involved.RP Feynman, The Feynman Lectures on Physics, Vol III, Chapter 4 (1964) Abstract Exceptionally clear images of intramolecular structure can be attained in dynamic force microscopy through the combination of a passivated tip apex and operation in what has become known as the \Pauli exclusion regime" of the tip-sample interaction. We discuss, from an experimentalist's perspective, a number of aspects of the exclusion principle which underpin this ability to achieve submolecular resolution. Our particular focus is on the origins, history, and interpretation of Pauli's principle in the context of interatomic and intermolecular interactions. Keywords: dynamic force microscopy;non-contact atomic force microscopy; NC-AFM; Pauli exclusion principle; submolecular resolution; intramolecular; single molecule imaging From Imaging and Manipulation of Adsorbates using Dynamic Force Microscopy, Vol V of Advances in Atom and Single Molecule Machines, Springer-Verlag; http://www.springer.com/ series/10425. To be published late 2014. ySchool of Physics and Astronomy, University of Nottingham, Nottingham NG7 2RD, UK z Department of Physics, Kings College London, The Strand, London WC2R 2LS, UK ] School of Physical Sciences, Dublin City University, Glasnevin, Dublin 9, Ireland arXiv:1408.1026v1 [cond-mat.mes-hall] 5 Aug 2014 1 2 SP Jarvis, AM Sweetman, L Kantorovich, E McGlynn, and P Moriarty 1.1 Intramolecular resolution via Pauli exclusion In 2009 the results of a pioneering dynamic force microscopy (DFM1) experiment by Leo Gross and co-workers at IBM Z¨urich were published[1] and revolutionised the field of scanning probe microscopy.
    [Show full text]
  • Appendix E Nobel Prizes in Nuclear Science
    Nuclear Science—A Guide to the Nuclear Science Wall Chart ©2018 Contemporary Physics Education Project (CPEP) Appendix E Nobel Prizes in Nuclear Science Many Nobel Prizes have been awarded for nuclear research and instrumentation. The field has spun off: particle physics, nuclear astrophysics, nuclear power reactors, nuclear medicine, and nuclear weapons. Understanding how the nucleus works and applying that knowledge to technology has been one of the most significant accomplishments of twentieth century scientific research. Each prize was awarded for physics unless otherwise noted. Name(s) Discovery Year Henri Becquerel, Pierre Discovered spontaneous radioactivity 1903 Curie, and Marie Curie Ernest Rutherford Work on the disintegration of the elements and 1908 chemistry of radioactive elements (chem) Marie Curie Discovery of radium and polonium 1911 (chem) Frederick Soddy Work on chemistry of radioactive substances 1921 including the origin and nature of radioactive (chem) isotopes Francis Aston Discovery of isotopes in many non-radioactive 1922 elements, also enunciated the whole-number rule of (chem) atomic masses Charles Wilson Development of the cloud chamber for detecting 1927 charged particles Harold Urey Discovery of heavy hydrogen (deuterium) 1934 (chem) Frederic Joliot and Synthesis of several new radioactive elements 1935 Irene Joliot-Curie (chem) James Chadwick Discovery of the neutron 1935 Carl David Anderson Discovery of the positron 1936 Enrico Fermi New radioactive elements produced by neutron 1938 irradiation Ernest Lawrence
    [Show full text]
  • Geometric Approaches to Quantum Field Theory
    GEOMETRIC APPROACHES TO QUANTUM FIELD THEORY A thesis submitted to The University of Manchester for the degree of Doctor of Philosophy in the Faculty of Science and Engineering 2020 Kieran T. O. Finn School of Physics and Astronomy Supervised by Professor Apostolos Pilaftsis BLANK PAGE 2 Contents Abstract 7 Declaration 9 Copyright 11 Acknowledgements 13 Publications by the Author 15 1 Introduction 19 1.1 Unit Independence . 20 1.2 Reparametrisation Invariance in Quantum Field Theories . 24 1.3 Example: Complex Scalar Field . 25 1.4 Outline . 31 1.5 Conventions . 34 2 Field Space Covariance 35 2.1 Riemannian Geometry . 35 2.1.1 Manifolds . 35 2.1.2 Tensors . 36 2.1.3 Connections and the Covariant Derivative . 37 2.1.4 Distances on the Manifold . 38 2.1.5 Curvature of a Manifold . 39 2.1.6 Local Normal Coordinates and the Vielbein Formalism 41 2.1.7 Submanifolds and Induced Metrics . 42 2.1.8 The Geodesic Equation . 42 2.1.9 Isometries . 43 2.2 The Field Space . 44 2.2.1 Interpretation of the Field Space . 48 3 2.3 The Configuration Space . 50 2.4 Parametrisation Dependence of Standard Approaches to Quan- tum Field Theory . 52 2.4.1 Feynman Diagrams . 53 2.4.2 The Effective Action . 56 2.5 Covariant Approaches to Quantum Field Theory . 59 2.5.1 Covariant Feynman Diagrams . 59 2.5.2 The Vilkovisky–DeWitt Effective Action . 62 2.6 Example: Complex Scalar Field . 66 3 Frame Covariance in Quantum Gravity 69 3.1 The Cosmological Frame Problem .
    [Show full text]
  • Nobel Lectures™ 2001-2005
    World Scientific Connecting Great Minds 逾10 0 种 诺贝尔奖得主著作 及 诺贝尔奖相关图书 我们非常荣幸得以出版超过100种诺贝尔奖得主著作 以及诺贝尔奖相关图书。 我们自1980年代开始与诺贝尔奖得主合作出版高品质 畅销书。一些得主担任我们的编辑顾问、丛书编辑, 并于我们期刊发表综述文章与学术论文。 世界科技与帝国理工学院出版社还邀得其中多位作了公 开演讲。 Philip W Anderson Sir Derek H R Barton Aage Niels Bohr Subrahmanyan Chandrasekhar Murray Gell-Mann Georges Charpak Nicolaas Bloembergen Baruch S Blumberg Hans A Bethe Aaron J Ciechanover Claude Steven Chu Cohen-Tannoudji Leon N Cooper Pierre-Gilles de Gennes Niels K Jerne Richard Feynman Kenichi Fukui Lawrence R Klein Herbert Kroemer Vitaly L Ginzburg David Gross H Gobind Khorana Rita Levi-Montalcini Harry M Markowitz Karl Alex Müller Sir Nevill F Mott Ben Roy Mottelson 诺贝尔奖相关图书 THE PERIODIC TABLE AND A MISSED NOBEL PRIZES THAT CHANGED MEDICINE NOBEL PRIZE edited by Gilbert Thompson (Imperial College London) by Ulf Lagerkvist & edited by Erling Norrby (The Royal Swedish Academy of Sciences) This book brings together in one volume fifteen Nobel Prize- winning discoveries that have had the greatest impact upon medical science and the practice of medicine during the 20th “This is a fascinating account of how century and up to the present time. Its overall aim is to groundbreaking scientists think and enlighten, entertain and stimulate. work. This is the insider’s view of the process and demands made on the Contents: The Discovery of Insulin (Robert Tattersall) • The experts of the Nobel Foundation who Discovery of the Cure for Pernicious Anaemia, Vitamin B12 assess the originality and significance (A Victor Hoffbrand) • The Discovery of
    [Show full text]
  • Abstract Investigation of the Magnetostatics Of
    ABSTRACT INVESTIGATION OF THE MAGNETOSTATICS OF EXCHANGE-COUPLED NANO- DOTS USING THE MAGNETO-OPTIC KERR EFFECT TECHNIQUE by Sarah C. Hernandez The effect of inter-dot exchange coupling on the magnetization reversal processes in nano- dots has been investigated on Permalloy dot arrays with dot diameters of 300 nm and thickness of 40 nm. The dots are exchange coupled via 50 nm long Permalloy bridges of width ranging from zero to 60 nm. Chains of five co-linear coupled dots form the unit cell of the array structure. Magneto-optical Kerr effect hysteresis loops are reported with comparison to simulations. With field applied along the coupling direction, nucleation is suppressed by the interdot exchange coupling resulting in highly correlated magnetization patterns. When the field is applied perpendicular-to-the-coupling direction, the exchange interaction has little effect and magnetic reversal is almost identical to arrays of isolated dots. As a result of rotating the applied magnetic field relative to the sample’s coupling direction, unusual hysteresis loops were observed, which could be explained by a combination of the x and y-component of the magnetization. Investigation of Magnetostatics of Exchange-Coupled Nano-dots using the Magneto-optic Kerr Effect Technique A Thesis Submitted to the Faculty of Miami University In partial fulfillment of the requirements for the degree of Masters of Science Department of Physics by Sarah C. Hernandez Oxford, Ohio Miami University 2009 Advisor______________________ (Michael J. Pechan) Reader______________________ (Khalid Eid) Reader______________________ (Samir Bali) © 2009 Sarah C. Hernandez Table of Contents 1 Introduction ........................................................................................................................... 1 1.1 Motivation ....................................................................................................................... 1 1.2 Purpose ...........................................................................................................................
    [Show full text]