Bernoulli Numbers Juan Rojas

Total Page:16

File Type:pdf, Size:1020Kb

Bernoulli Numbers Juan Rojas Bernoulli Numbers Juan Rojas Historical Context of the Bernoulli Family Although many people introduced to the name "Bernoulli" might assume that it is just one mathematician, the truth of the matter is that this was an entire family of mathematicians. This family, although originally from Antwerp, moved to Basel, Switzerland later on in their life. A family consisting of more than eight outstanding mathematicians, the Bernoulli's lived throughout the course of three generations and most of them made enormous contributions in the areas of mathematics and physics that mathematicians and physicists still use today. Of these people, the most notable three of them are Jacob Bernoulli, Johann Bernoulli, and Daniel Bernoulli. Johann Bernoulli made many major contributions to infinitesimal calculus and educated Leonhard Euler, one of the greatest mathematicians of all time. Daniel Bernoulli, the family member who worked in physics the most out of the three, is mostly remembered for his connection of mathematics and mechanics, a branch of physics. One of his most important works is the Bernoulli Principle, which is a specific example of the Conservation of Energy Law. Lastly, Jacob Bernoulli, arguably the member of the Bernoulli family who did the most contributions of mathematics, made these contributions in many different areas of mathematics. This family left a legacy unique than that of many mathematicians in that most mathematicians were prodigies whose mathematical abilities surpassed that of the rest of the family, but multiple members of the Bernoulli family proved their expertise in different areas of mathematics, therefore making them one of the most elite mathematical families of all time. The Life of Jacob Bernoulli As previously stated, Jacob Bernoulli was the most prominent of all the mathematicians of the Bernoulli family. His first name can be either written as Jacob or as Jakob. He was born in Basel, Switzerland, and chose to study theology due to the demands of his father. He also studied, however, mathematics and astronomy, even though his parents strongly discouraged him to take part in any kind of mathematics. Jacob did not listen; from 1676 to 1682, he traveled around Europe in order to study the recent discoveries of leading physicists and mathematicians at the time, such as Johannes Hudde, Robert Hooke, and Robert Boyle. Interested more in physics than mathematics at this time, Jacob moved back to Switzerland and started to teach mechanical physics at the University of Basel in 1683. Around the same time, Jacob married Judith Stupanus and together they had two children. He began to do more research around this time as well, and had several meetings with many other leading mathematicians. Due to this research, Jacob switched from mechanics to mathematics and became professor of mathematics at the University of Basel in 1687, a position he had until the end of his life. At the start of his career as a mathematics professor, he started to tutor his brother Johann Bernoulli on mathematical topics, specifically calculus. Together they studied Leibniz's paper on differential calculus, and this is how Johann obtained his love for infinitesimal calculus. Unfortunately, the friendly bond the two brothers had was quickly broken as Johann started to become increasingly better at mathematics. By 1697, the relationship was over between the two and they had become bitter rivals. A couple of years later, in 1705, Jacob Bernoulli died. To no surprise, however, Jacob Bernoulli wanted his mathematics to continue even after his death. He chose a logarithmic spiral to be his gravestone, but the stonemasons constructed an Archimedean spiral instead. Before his death, Jacob explained that the logarithmic spiral "may be used as a symbol, either of fortitude and constancy in adversity, or of the human body, which after all its changes, even after death, will be restored to its exact and perfect self." Jacob Bernoulli's Mathematical Works Jacob's first major important contribution to mathematics was a pamphlet on the parallels of logic and algebra that was published in 1685. This was followed by work on probability during the same year, and two years later, Jacob published works on geometry. This extremely important work led to the conclusion that it is possible to divide any triangle into four equivalent parts by using two perpendicular lines. It is said that in 1683 Bernoulli discovered the constant e by studying topics related to compound interest by finding the value of 2 the limit as n tends to infinity of a certain mathematical expression. Although the topic of compound interest was not as interesting as the other areas of mathematics he was involved with, the number e is used in many applications of mathematics today. In 1689 Jacob started to publish works on infinite series, and although a mathematician by the name of Mengoli discovered that the infinite series 1/n diverges 40 years earlier, Jacob believed that he had discovered the result through his work. Bernoulli was also able to show that 1/n squared converged to a finite limit less than 2 as n tended to infinity. Many years later, Leonhard Euler, a pupil of Johann Bernoulli, was able to find the sum of that series. Jacob also started to work on the exponential series after his discovery of the number e. In 1960 Jacob made a huge contribution in the area of differential equations. He discovered that determining the isochrone is the same thing as solving a first-order differential equation, and the isochrone is equivalent to a curve of constant descent, and it is the trajectory that a particle will take to descend because of gravity no matter where the starting point is. Bernoulli solved this differential equation in 1696, and it is now called the Bernoulli differential equation. This had a major impact because a differential equation could be shaped into the format of the Bernoulli differential equation, and therefore the differential equation then becomes trivial to solve after the transformation. Jacob also studied the curves of the parabola, epicycloids, and the logarithmic spiral around 1692. Eight years after his death, in 1713, Jacob's Ars Conjectandi was published. This was arguably Jacob's most original piece of work. This work has very significant ideas in probability theory. In this work, Jacob discussed the works of other mathematicians in the field of probability, such as Leibniz, Prestet, and van Schooten. Aside from probability, Jacob also explains a very prominent concept in mathematics that helps describe many infinite power series: the Bernoulli Numbers. Bernoulli Numbers and Their Applications Although Jacob's work Ars Conjectandi focuses mainly on probability, he also talks about the Bernoulli numbers. These are considered by many to be very mysterious, and are found in many various places of mathematics, such as number theory, analysis, and differential topology. These numbers help greatly in the Euler-Maclaurin summation formula, in which the numbers help mathematicians compute series that converge slowly. These numbers appear in number theory, and more specifically Fermat's Theory, and the first recorded people to use these numbers include Abraham De Moivre and Leonhard Euler. Another important application of the Bernoulli Numbers is that they help in showing the series expansion in trigonometric and hyperbolic functions, and the proof portrayed below will show how the Bernoulli Numbers can be used to find the series expansion for tan(x). 3 The Generating Function for Bernoulli Numbers In order to completely understand the process to determine the power series for tan(x), a person must first understand how the Bernoulli generating function came to be. The math that is used to show the generation function will not be covered in great detail, and therefore this is more of a simplified version whose purpose is to show the main methods used. The process started with Pierre de Fermat, who wanted to compute the sums for the following form: n X p sp(n) = k k=1 From here, the mathematician Johann Faulhaber found simplified formulas for these sums for p less than 18. Some examples of these are as follows: s0(n) = n n(n − 1) s (n) = 1 2 n(n − 1)(2n − 1) s (n) = 2 6 n2(n − 1)2 s (n) = 3 4 n(n − 1)(2n − 1)(3n2 − 3n − 1) s (n) = 4 30 n2(2n2 − 2n − 1)(n − 1)2 s (n) = 5 12 This is the information that Jacob Bernoulli had when starting his work on Bernoulli Numbers. From some of Haulhaber's formulas, Bernoulli discovered that these polynomials had a specific pattern. They followed the form 1 1 p s (n) = np+1 − np + np−1 + 0np−2 + ::: p p + 1 2 12 He found that the coefficients of each term are independent of p and more specifically these numbers are the Bernoulli Numbers. By this he found the formula: p X Bk p! np+1−k k! (p + 1 − k)! k=0 Where Bk are the Bernoulli Numbers Ironically, the next person to continue in finding this generating equation was Leonhard Euler, the pupil of Johann Bernoulli, the major rival of Jacob Bernoulli. Euler decided to try to form a Taylor series expansion where the derivative part of the function would be the Bernoulli Numbers. 4 1 1 X xk X xk f(x) = f (k)(0) f(x) = B k! k k! k=0 k=0 From here, Euler used the Cauchy product method by multiplying the infinite series for f(x) with the expo- nential infinite series. The Cauchy product is a method for convoluting infinite series together. 1 ! 1 ! X xk X xk f(x)ex = B k k! k! k=0 k=0 1 k ! X X xi xk−i f(x)ex = B i i! (k − i)! k=0 i=0 1 k ! X X Bi f(x)ex = xk i!(k − i)! k=0 i=0 1 k ! X X k xk f(x)ex = B i i k! k=0 i=0 If we then let ck be denoted by: k k−1 X k X k c := B = B + B = k + B k i i i i k k i=0 i=0 th The previous step can be done because the k term in the series is simply Bk and the rest can by denoted x just as k, giving the explanation as to why ck = k + Bk.
Recommended publications
  • The Bernoulli Edition the Collected Scientific Papers of the Mathematicians and Physicists of the Bernoulli Family
    Bernoulli2005.qxd 24.01.2006 16:34 Seite 1 The Bernoulli Edition The Collected Scientific Papers of the Mathematicians and Physicists of the Bernoulli Family Edited on behalf of the Naturforschende Gesellschaft in Basel and the Otto Spiess-Stiftung, with support of the Schweizerischer Nationalfonds and the Verein zur Förderung der Bernoulli-Edition Bernoulli2005.qxd 24.01.2006 16:34 Seite 2 The Scientific Legacy Èthe Bernoullis' contributions to the theory of oscillations, especially Daniel's discovery of of the Bernoullis the main theorems on stationary modes. Johann II considered, but rejected, a theory of Modern science is predominantly based on the transversal wave optics; Jacob II came discoveries in the fields of mathematics and the tantalizingly close to formulating the natural sciences in the 17th and 18th centuries. equations for the vibrating plate – an Eight members of the Bernoulli family as well as important topic of the time the Bernoulli disciple Jacob Hermann made Èthe important steps Daniel Bernoulli took significant contributions to this development in toward a theory of errors. His efforts to the areas of mathematics, physics, engineering improve the apparatus for measuring the and medicine. Some of their most influential inclination of the Earth's magnetic field led achievements may be listed as follows: him to the first systematic evaluation of ÈJacob Bernoulli's pioneering work in proba- experimental errors bility theory, which included the discovery of ÈDaniel's achievements in medicine, including the Law of Large Numbers, the basic theorem the first computation of the work done by the underlying all statistical analysis human heart.
    [Show full text]
  • The Bernoulli Family
    Mathematical Discoveries of the Bernoulli Brothers Caroline Ellis Union University MAT 498 November 30, 2001 Bernoulli Family Tree Nikolaus (1623-1708) Jakob I Nikolaus I Johann I (1654-1705) (1662-1716) (1667-1748) Nikolaus II Nikolaus III Daniel I Johann II (1687-1759) (1695-1726) (1700-1782) (1710-1790) This Swiss family produced eight mathematicians in three generations. We will focus on some of the mathematical discoveries of Jakob l and his brother Johann l. Some History Nikolaus Bernoulli wanted Jakob to be a Protestant pastor and Johann to be a doctor. They obeyed their father and earned degrees in theology and medicine, respectively. But… Some History, cont. Jakob and Johann taught themselves the “new math” – calculus – from Leibniz‟s notes and papers. They started to have contact with Leibniz, and are now known as his most important students. http://www-history.mcs.st-andrews.ac.uk/history/PictDisplay/Leibniz.html Jakob Bernoulli (1654-1705) learned about mathematics and astronomy studied Descarte‟s La Géometrie, John Wallis‟s Arithmetica Infinitorum, and Isaac Barrow‟s Lectiones Geometricae convinced Leibniz to change the name of the new math from calculus sunmatorius to calculus integralis http://www-history.mcs.st-andrews.ac.uk/history/PictDisplay/Bernoulli_Jakob.html Johann Bernoulli (1667-1748) studied mathematics and physics gave calculus lessons to Marquis de L‟Hôpital Johann‟s greatest student was Euler won the Paris Academy‟s biennial prize competition three times – 1727, 1730, and 1734 http://www-history.mcs.st-andrews.ac.uk/history/PictDisplay/Bernoulli_Johann.html Jakob vs. Johann Johann Bernoulli had greater intuitive power and descriptive ability Jakob had a deeper intellect but took longer to arrive at a solution Famous Problems the catenary (hanging chain) the brachistocrone (shortest time) the divergence of the harmonic series (1/n) The Catenary: Hanging Chain Jakob Bernoulli Galileo guessed that proposed this problem this curve was a in the May 1690 edition parabola, but he never of Acta Eruditorum.
    [Show full text]
  • Newton.Indd | Sander Pinkse Boekproductie | 16-11-12 / 14:45 | Pag
    omslag Newton.indd | Sander Pinkse Boekproductie | 16-11-12 / 14:45 | Pag. 1 e Dutch Republic proved ‘A new light on several to be extremely receptive to major gures involved in the groundbreaking ideas of Newton Isaac Newton (–). the reception of Newton’s Dutch scholars such as Willem work.’ and the Netherlands Jacob ’s Gravesande and Petrus Prof. Bert Theunissen, Newton the Netherlands and van Musschenbroek played a Utrecht University crucial role in the adaption and How Isaac Newton was Fashioned dissemination of Newton’s work, ‘is book provides an in the Dutch Republic not only in the Netherlands important contribution to but also in the rest of Europe. EDITED BY ERIC JORINK In the course of the eighteenth the study of the European AND AD MAAS century, Newton’s ideas (in Enlightenment with new dierent guises and interpre- insights in the circulation tations) became a veritable hype in Dutch society. In Newton of knowledge.’ and the Netherlands Newton’s Prof. Frans van Lunteren, sudden success is analyzed in Leiden University great depth and put into a new perspective. Ad Maas is curator at the Museum Boerhaave, Leiden, the Netherlands. Eric Jorink is researcher at the Huygens Institute for Netherlands History (Royal Dutch Academy of Arts and Sciences). / www.lup.nl LUP Newton and the Netherlands.indd | Sander Pinkse Boekproductie | 16-11-12 / 16:47 | Pag. 1 Newton and the Netherlands Newton and the Netherlands.indd | Sander Pinkse Boekproductie | 16-11-12 / 16:47 | Pag. 2 Newton and the Netherlands.indd | Sander Pinkse Boekproductie | 16-11-12 / 16:47 | Pag.
    [Show full text]
  • 0.999… = 1 an Infinitesimal Explanation Bryan Dawson
    0 1 2 0.9999999999999999 0.999… = 1 An Infinitesimal Explanation Bryan Dawson know the proofs, but I still don’t What exactly does that mean? Just as real num- believe it.” Those words were uttered bers have decimal expansions, with one digit for each to me by a very good undergraduate integer power of 10, so do hyperreal numbers. But the mathematics major regarding hyperreals contain “infinite integers,” so there are digits This fact is possibly the most-argued- representing not just (the 237th digit past “Iabout result of arithmetic, one that can evoke great the decimal point) and (the 12,598th digit), passion. But why? but also (the Yth digit past the decimal point), According to Robert Ely [2] (see also Tall and where is a negative infinite hyperreal integer. Vinner [4]), the answer for some students lies in their We have four 0s followed by a 1 in intuition about the infinitely small: While they may the fifth decimal place, and also where understand that the difference between and 1 is represents zeros, followed by a 1 in the Yth less than any positive real number, they still perceive a decimal place. (Since we’ll see later that not all infinite nonzero but infinitely small difference—an infinitesimal hyperreal integers are equal, a more precise, but also difference—between the two. And it’s not just uglier, notation would be students; most professional mathematicians have not or formally studied infinitesimals and their larger setting, the hyperreal numbers, and as a result sometimes Confused? Perhaps a little background information wonder .
    [Show full text]
  • Understanding Student Use of Differentials in Physics Integration Problems
    PHYSICAL REVIEW SPECIAL TOPICS - PHYSICS EDUCATION RESEARCH 9, 020108 (2013) Understanding student use of differentials in physics integration problems Dehui Hu and N. Sanjay Rebello* Department of Physics, 116 Cardwell Hall, Kansas State University, Manhattan, Kansas 66506-2601, USA (Received 22 January 2013; published 26 July 2013) This study focuses on students’ use of the mathematical concept of differentials in physics problem solving. For instance, in electrostatics, students need to set up an integral to find the electric field due to a charged bar, an activity that involves the application of mathematical differentials (e.g., dr, dq). In this paper we aim to explore students’ reasoning about the differential concept in physics problems. We conducted group teaching or learning interviews with 13 engineering students enrolled in a second- semester calculus-based physics course. We amalgamated two frameworks—the resources framework and the conceptual metaphor framework—to analyze students’ reasoning about differential concept. Categorizing the mathematical resources involved in students’ mathematical thinking in physics provides us deeper insights into how students use mathematics in physics. Identifying the conceptual metaphors in students’ discourse illustrates the role of concrete experiential notions in students’ construction of mathematical reasoning. These two frameworks serve different purposes, and we illustrate how they can be pieced together to provide a better understanding of students’ mathematical thinking in physics. DOI: 10.1103/PhysRevSTPER.9.020108 PACS numbers: 01.40.Àd mathematical symbols [3]. For instance, mathematicians I. INTRODUCTION often use x; y asR variables and the integrals are often written Mathematical integration is widely used in many intro- in the form fðxÞdx, whereas in physics the variables ductory and upper-division physics courses.
    [Show full text]
  • Leonhard Euler: His Life, the Man, and His Works∗
    SIAM REVIEW c 2008 Walter Gautschi Vol. 50, No. 1, pp. 3–33 Leonhard Euler: His Life, the Man, and His Works∗ Walter Gautschi† Abstract. On the occasion of the 300th anniversary (on April 15, 2007) of Euler’s birth, an attempt is made to bring Euler’s genius to the attention of a broad segment of the educated public. The three stations of his life—Basel, St. Petersburg, andBerlin—are sketchedandthe principal works identified in more or less chronological order. To convey a flavor of his work andits impact on modernscience, a few of Euler’s memorable contributions are selected anddiscussedinmore detail. Remarks on Euler’s personality, intellect, andcraftsmanship roundout the presentation. Key words. LeonhardEuler, sketch of Euler’s life, works, andpersonality AMS subject classification. 01A50 DOI. 10.1137/070702710 Seh ich die Werke der Meister an, So sehe ich, was sie getan; Betracht ich meine Siebensachen, Seh ich, was ich h¨att sollen machen. –Goethe, Weimar 1814/1815 1. Introduction. It is a virtually impossible task to do justice, in a short span of time and space, to the great genius of Leonhard Euler. All we can do, in this lecture, is to bring across some glimpses of Euler’s incredibly voluminous and diverse work, which today fills 74 massive volumes of the Opera omnia (with two more to come). Nine additional volumes of correspondence are planned and have already appeared in part, and about seven volumes of notebooks and diaries still await editing! We begin in section 2 with a brief outline of Euler’s life, going through the three stations of his life: Basel, St.
    [Show full text]
  • Calculus Terminology
    AP Calculus BC Calculus Terminology Absolute Convergence Asymptote Continued Sum Absolute Maximum Average Rate of Change Continuous Function Absolute Minimum Average Value of a Function Continuously Differentiable Function Absolutely Convergent Axis of Rotation Converge Acceleration Boundary Value Problem Converge Absolutely Alternating Series Bounded Function Converge Conditionally Alternating Series Remainder Bounded Sequence Convergence Tests Alternating Series Test Bounds of Integration Convergent Sequence Analytic Methods Calculus Convergent Series Annulus Cartesian Form Critical Number Antiderivative of a Function Cavalieri’s Principle Critical Point Approximation by Differentials Center of Mass Formula Critical Value Arc Length of a Curve Centroid Curly d Area below a Curve Chain Rule Curve Area between Curves Comparison Test Curve Sketching Area of an Ellipse Concave Cusp Area of a Parabolic Segment Concave Down Cylindrical Shell Method Area under a Curve Concave Up Decreasing Function Area Using Parametric Equations Conditional Convergence Definite Integral Area Using Polar Coordinates Constant Term Definite Integral Rules Degenerate Divergent Series Function Operations Del Operator e Fundamental Theorem of Calculus Deleted Neighborhood Ellipsoid GLB Derivative End Behavior Global Maximum Derivative of a Power Series Essential Discontinuity Global Minimum Derivative Rules Explicit Differentiation Golden Spiral Difference Quotient Explicit Function Graphic Methods Differentiable Exponential Decay Greatest Lower Bound Differential
    [Show full text]
  • The Bernoullis and the Harmonic Series
    The Bernoullis and The Harmonic Series By Candice Cprek, Jamie Unseld, and Stephanie Wendschlag An Exciting Time in Math l The late 1600s and early 1700s was an exciting time period for mathematics. l The subject flourished during this period. l Math challenges were held among philosophers. l The fundamentals of Calculus were created. l Several geniuses made their mark on mathematics. Gottfried Wilhelm Leibniz (1646-1716) l Described as a universal l At age 15 he entered genius by mastering several the University of different areas of study. Leipzig, flying through l A child prodigy who studied under his father, a professor his studies at such a of moral philosophy. pace that he completed l Taught himself Latin and his doctoral dissertation Greek at a young age, while at Altdorf by 20. studying the array of books on his father’s shelves. Gottfried Wilhelm Leibniz l He then began work for the Elector of Mainz, a small state when Germany divided, where he handled legal maters. l In his spare time he designed a calculating machine that would multiply by repeated, rapid additions and divide by rapid subtractions. l 1672-sent form Germany to Paris as a high level diplomat. Gottfried Wilhelm Leibniz l At this time his math training was limited to classical training and he needed a crash course in the current trends and directions it was taking to again master another area. l When in Paris he met the Dutch scientist named Christiaan Huygens. Christiaan Huygens l He had done extensive work on mathematical curves such as the “cycloid”.
    [Show full text]
  • Infinitesimal Calculus
    Infinitesimal Calculus Δy ΔxΔy and “cannot stand” Δx • Derivative of the sum/difference of two functions (x + Δx) ± (y + Δy) = (x + y) + Δx + Δy ∴ we have a change of Δx + Δy. • Derivative of the product of two functions (x + Δx)(y + Δy) = xy + Δxy + xΔy + ΔxΔy ∴ we have a change of Δxy + xΔy. • Derivative of the product of three functions (x + Δx)(y + Δy)(z + Δz) = xyz + Δxyz + xΔyz + xyΔz + xΔyΔz + ΔxΔyz + xΔyΔz + ΔxΔyΔ ∴ we have a change of Δxyz + xΔyz + xyΔz. • Derivative of the quotient of three functions x Let u = . Then by the product rule above, yu = x yields y uΔy + yΔu = Δx. Substituting for u its value, we have xΔy Δxy − xΔy + yΔu = Δx. Finding the value of Δu , we have y y2 • Derivative of a power function (and the “chain rule”) Let y = x m . ∴ y = x ⋅ x ⋅ x ⋅...⋅ x (m times). By a generalization of the product rule, Δy = (xm−1Δx)(x m−1Δx)(x m−1Δx)...⋅ (xm −1Δx) m times. ∴ we have Δy = mx m−1Δx. • Derivative of the logarithmic function Let y = xn , n being constant. Then log y = nlog x. Differentiating y = xn , we have dy dy dy y y dy = nxn−1dx, or n = = = , since xn−1 = . Again, whatever n−1 y dx x dx dx x x x the differentials of log x and log y are, we have d(log y) = n ⋅ d(log x), or d(log y) n = . Placing these values of n equal to each other, we obtain d(log x) dy d(log y) y dy = .
    [Show full text]
  • A Study on University Education of Medieval European Mathematicians 1K
    International Journal of Pure and Applied Mathematics Volume 116 No. 22 2017, 265-273 ISSN: 1311-8080 (printed version); ISSN: 1314-3395 (on-line version) url: http://www.ijpam.eu Special Issue ijpam.eu A Study on University Education of Medieval European Mathematicians 1K. Rejikumar and 2C.M. Indukala 1Deptment of Mathematics, N.S.S. College, Pandalam, Kerala, India. [email protected] 2University of Kerala, Palayam, Thiruvananthapuram, Kerala, India. [email protected] Abstract Higher educational institutions in a country play an important role in the cultural transformation of people. Its role in the coordination and strengthening of new knowledge and its proper dissemination in the community is an important factor in the development of any country. In this paper we compare the importance of role played by higher educational institutions in the development of Kerala School of Mathematics and European School of Mathematics. Key Words:Kerala school of mathematics, european school of mathematics, institutions of higher learning. 265 International Journal of Pure and Applied Mathematics Special Issue 1. Introduction The word university is originated from the Latin word “Universitas”, means the whole, the world or the universe. Before Universities were established, the main centers for education were monastic schools. Because of the increasing necessity for acquisition of knowledge, there happened the migration of cathedral schools to large cities. At the early stage Universities were consisted of a group of individuals assembled at some available spaces such as church or homes. Gradually Universities were established in secluded buildings and teachers were granted remuneration [1]. This paper deals with a cursory overview on the education details of eminent European scholars who made significant contributions in mathematics and other fields of interest during the period from 1300 to 1700.
    [Show full text]
  • Leonhard Euler - Wikipedia, the Free Encyclopedia Page 1 of 14
    Leonhard Euler - Wikipedia, the free encyclopedia Page 1 of 14 Leonhard Euler From Wikipedia, the free encyclopedia Leonhard Euler ( German pronunciation: [l]; English Leonhard Euler approximation, "Oiler" [1] 15 April 1707 – 18 September 1783) was a pioneering Swiss mathematician and physicist. He made important discoveries in fields as diverse as infinitesimal calculus and graph theory. He also introduced much of the modern mathematical terminology and notation, particularly for mathematical analysis, such as the notion of a mathematical function.[2] He is also renowned for his work in mechanics, fluid dynamics, optics, and astronomy. Euler spent most of his adult life in St. Petersburg, Russia, and in Berlin, Prussia. He is considered to be the preeminent mathematician of the 18th century, and one of the greatest of all time. He is also one of the most prolific mathematicians ever; his collected works fill 60–80 quarto volumes. [3] A statement attributed to Pierre-Simon Laplace expresses Euler's influence on mathematics: "Read Euler, read Euler, he is our teacher in all things," which has also been translated as "Read Portrait by Emanuel Handmann 1756(?) Euler, read Euler, he is the master of us all." [4] Born 15 April 1707 Euler was featured on the sixth series of the Swiss 10- Basel, Switzerland franc banknote and on numerous Swiss, German, and Died Russian postage stamps. The asteroid 2002 Euler was 18 September 1783 (aged 76) named in his honor. He is also commemorated by the [OS: 7 September 1783] Lutheran Church on their Calendar of Saints on 24 St. Petersburg, Russia May – he was a devout Christian (and believer in Residence Prussia, Russia biblical inerrancy) who wrote apologetics and argued Switzerland [5] forcefully against the prominent atheists of his time.
    [Show full text]
  • Calculation and Controversy
    calculation and controversy The young Newton owed his greatest intellectual debt to the French mathematician and natural philosopher, René Descartes. He was influ- enced by both English and Continental commentators on Descartes’ work. Problems derived from the writings of the Oxford mathematician, John Wallis, also featured strongly in Newton’s development as a mathe- matician capable of handling infinite series and the complexities of calcula- tions involving curved lines. The ‘Waste Book’ that Newton used for much of his mathematical working in the 1660s demonstrates how quickly his talents surpassed those of most of his contemporaries. Nevertheless, the evolution of Newton’s thought was only possible through consideration of what his immediate predecessors had already achieved. Once Newton had become a public figure, however, he became increasingly concerned to ensure proper recognition for his own ideas. In the quarrels that resulted with mathematicians like Gottfried Wilhelm Leibniz (1646–1716) or Johann Bernoulli (1667–1748), Newton supervised his disciples in the reconstruction of the historical record of his discoveries. One of those followers was William Jones, tutor to the future Earl of Macclesfield, who acquired or copied many letters and papers relating to Newton’s early career. These formed the heart of the Macclesfield Collection, which has recently been purchased by Cambridge University Library. 31 rené descartes, Geometria ed. and trans. frans van schooten 2 parts (Amsterdam, 1659–61) 4o: -2 4, a-3t4, g-3g4; π2, -2 4, a-f4 Trinity* * College, Cambridge,* shelfmark* nq 16/203 Newton acquired this book ‘a little before Christmas’ 1664, having read an earlier edition of Descartes’ Geometry by van Schooten earlier in the year.
    [Show full text]