Introduction to Quantum Field Theory Horatiu Nastase Frontmatter More Information

Total Page:16

File Type:pdf, Size:1020Kb

Introduction to Quantum Field Theory Horatiu Nastase Frontmatter More Information Cambridge University Press 978-1-108-49399-4 — Introduction to Quantum Field Theory Horatiu Nastase Frontmatter More Information Introduction to Quantum Field Theory Quantum field theory provides a theoretical framework for understanding fields and the particles associated with them, and is the basis of particle physics and condensed matter research. This graduate-level textbook provides a comprehensive introduction to quantum field theory, giving equal emphasis to operator and path-integral formalisms. It covers modern research such as helicity spinors, BCFW construction, and generalized unitarity cuts, as well as treating advanced topics including BRST quantization, loop equations, and finite-temperature field theory. Various quantum fields are described, including scalar and fermionic fields, abelian vector fields and quantum electrodynamics (QED), and finally non-abelian vector fields and quantum chromodynamics (QCD). Applications to scattering cross-sections in QED and QCD are also described. Each chapter ends with exercises and an important concepts section, allowing students to identify the key aspects of the chapter and test their understanding. Hora¸tiu Nastase˘ is a Researcher at the Institute for Theoretical Physics at the State University of São Paulo, Brazil. To date, his career has spanned four continents. As an undergraduate he studied at the University of Bucharest and Copenhagen University. He later completed his Ph.D. at the State University of New York, Stony Brook, before moving to the Insti- tute for Advanced Study, Princeton University, New Jersey, where his collaboration with David Berenstein and Juan Maldacena defined the pp-wave correspondence. He has also held research and teaching positions at Brown University, Rhode Island and the Tokyo Institute of Technology. He has published three other books with Cambridge University Press: Introduction to the AdS/CFT Correspondence (2015), String Theory Methods for Condensed Matter Physics (2017), and Classical Field Theory (2019). © in this web service Cambridge University Press www.cambridge.org Cambridge University Press 978-1-108-49399-4 — Introduction to Quantum Field Theory Horatiu Nastase Frontmatter More Information © in this web service Cambridge University Press www.cambridge.org Cambridge University Press 978-1-108-49399-4 — Introduction to Quantum Field Theory Horatiu Nastase Frontmatter More Information Introduction to Quantum Field Theory HORA¸TIU NASTASE˘ State University of São Paulo, Brazil With material from unpublished notes by Jan Ambjorn and Jens Lyng Petersen © in this web service Cambridge University Press www.cambridge.org Cambridge University Press 978-1-108-49399-4 — Introduction to Quantum Field Theory Horatiu Nastase Frontmatter More Information University Printing House, Cambridge CB2 8BS, United Kingdom One Liberty Plaza, 20th Floor, New York, NY 10006, USA 477 Williamstown Road, Port Melbourne, VIC 3207, Australia 314–321, 3rd Floor, Plot 3, Splendor Forum, Jasola District Centre, New Delhi – 110025, India 79 Anson Road, #06–04/06, Singapore 079906 Cambridge University Press is part of the University of Cambridge. It furthers the University’s mission by disseminating knowledge in the pursuit of education, learning, and research at the highest international levels of excellence. www.cambridge.org Information on this title: www.cambridge.org/9781108493994 DOI: 10.1017/9781108624992 © Cambridge University Press 2020 This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press. First published 2020 Printed in the United Kingdom by TJ International Ltd. Padstow Cornwall A catalogue record for this publication is available from the British Library. Library of Congress Cataloging-in-Publication Data Names: Nastase, Horatiu, 1972– author. Title: Introduction to quantum field theory / Horatiu Nastase (Universidade Estadual Paulista, Sao Paulo). Description: Cambridge, United Kingdom ; New York, NY : Cambridge University Press, 2020. | Includes bibliographical references and index. Identifiers: LCCN 2019006491| ISBN 9781108493994 (alk. paper) | ISBN 1108493998 (alk. paper) Subjects: LCSH: Quantum field theory. Classification: LCC QC174.45 .N353 2020 | DDC 530.14/3–dc23 LC record available at https://lccn.loc.gov/2019006491 ISBN 978-1-108-49399-4 Hardback Cambridge University Press has no responsibility for the persistence or accuracy of URLs for external or third-party internet websites referred to in this publication and does not guarantee that any content on such websites is, or will remain, accurate or appropriate. © in this web service Cambridge University Press www.cambridge.org Cambridge University Press 978-1-108-49399-4 — Introduction to Quantum Field Theory Horatiu Nastase Frontmatter More Information To the memory of my mother, who inspired me to become a physicist © in this web service Cambridge University Press www.cambridge.org Cambridge University Press 978-1-108-49399-4 — Introduction to Quantum Field Theory Horatiu Nastase Frontmatter More Information © in this web service Cambridge University Press www.cambridge.org Cambridge University Press 978-1-108-49399-4 — Introduction to Quantum Field Theory Horatiu Nastase Frontmatter More Information Contents Preface page xxv Acknowledgments xxvi Introduction xxvii I Quantum Fields, General Formalism, and Tree Processes 1 1 Review of Classical Field Theory: Lagrangians, Lorentz Group and its Representations, Noether Theorem 3 1.1 What is and Why Do We Need Quantum Field Theory? 3 1.2 Classical Mechanics 6 1.3 Classical Field Theory 6 1.4 Noether Theorem 8 1.5 Fields and Lorentz Representations 9 Further Reading 11 Exercises 12 2 Quantum Mechanics: Harmonic Oscillator and Quantum Mechanics in Terms of Path Integrals 13 2.1 The Harmonic Oscillator and its Canonical Quantization 13 2.2 The Feynman Path Integral in Quantum Mechanics in Phase Space 15 2.3 Gaussian Integration 18 2.4 Path Integral in Configuration Space 19 2.5 Correlation Functions 19 Further Reading 21 Exercises 22 3 Canonical Quantization of Scalar Fields 23 3.1 Quantizing Scalar Fields: Kinematics 23 3.2 Quantizing Scalar Fields: Dynamics and Time Evolution 25 3.3 Discretization 27 3.4 Fock Space and Normal Ordering for Bosons 28 3.4.1 Fock Space 28 3.4.2 Normal Ordering 29 3.4.3 Bose–Einstein Statistics 30 Further Reading 30 Exercises 31 vii © in this web service Cambridge University Press www.cambridge.org Cambridge University Press 978-1-108-49399-4 — Introduction to Quantum Field Theory Horatiu Nastase Frontmatter More Information viii Contents 4 Propagators for Free Scalar Fields 32 4.1 Relativistic Invariant Canonical Quantization 32 4.2 Canonical Quantization of the Complex Scalar Field 33 4.3 Two-Point Functions and Propagators 35 4.4 Propagators: Retarded and Feynman 37 4.4.1 Klein–Gordon Propagators 37 4.4.2 Retarded Propagator 38 4.4.3 Feynman Propagator 38 Further Reading 39 Exercises 40 5 Interaction Picture and Wick Theorem for λφ4 in Operator Formalism 41 5.1 Quantum Mechanics Pictures 41 5.1.1 Schrödinger Picture (Usual) 42 5.1.2 Heisenberg Picture 42 5.1.3 Dirac (Interaction Picture) 42 5.2 Physical Scattering Set-up and Interaction Picture 43 5.2.1 λφ4 Theory 43 5.3 Evolution Operator and the Feynman Theorem 44 5.4 Wick’s Theorem 47 Further Reading 49 Exercises 49 6 Feynman Rules for λφ4 from the Operator Formalism 50 6.1 Diagrammatic Representation of Free Four-Point Function 50 6.2 Interacting Four-Point Function: First-Order Result and its Diagrammatic Representation 51 6.3 Other Contractions and Diagrams 52 6.4 x-Space Feynman Rules for λφ4 53 6.5 p-Space Feynman Rules and Vacuum Bubbles 54 6.5.1 Canceling of the Vacuum Bubbles in Numerator vs. Denominator in Feynman Theorem 55 Further Reading 57 Exercises 57 7 The Driven (Forced) Harmonic Oscillator 59 7.1 Set-up 59 7.2 Sloppy Treatment 60 7.3 Correct Treatment: Harmonic Phase Space 64 Further Reading 66 Exercises 67 8 Euclidean Formulation and Finite-Temperature Field Theory 68 8.1 Phase-Space and Configuration-Space Path Integrals and Boundary Conditions 68 © in this web service Cambridge University Press www.cambridge.org Cambridge University Press 978-1-108-49399-4 — Introduction to Quantum Field Theory Horatiu Nastase Frontmatter More Information ix Contents 8.2 Wick Rotation to Euclidean Time and Connection with Statistical Mechanics Partition Function 70 8.3 Quantum-Mechanical Statistical Partition Function and Correlation Functions 72 8.4 Example: Driven Harmonic Oscillator 73 Further Reading 75 Exercises 75 9 The Feynman Path Integral for a Scalar Field 77 9.1 Euclidean Formulation 77 9.2 Perturbation Theory 78 9.3 Dyson Formula for Perturbation Theory 79 9.4 Solution of the Free Field Theory 80 9.5 Wick’s Theorem 81 Further Reading 82 Exercises 82 10 Wick’s Theorem for Path Integrals and Feynman Rules Part I 83 10.1 Examples 83 10.2 Wick’s Theorem: Second Form 86 10.3 Feynman Rules in x Space 87 Further Reading 89 Exercises 89 11 Feynman Rules in x Space and p Space 91 11.1 Proof of the Feynman Rules 91 11.2 Statistical Weight Factor (Symmetry Factor) 92 11.3 Feynman Rules in p Space 93 11.4 Most General Bosonic Field Theory 95 Further Reading 97 Exercises 97 12 Quantization of the Dirac Field and Fermionic Path Integral 98 12.1 The Dirac Equation 98 12.2 Weyl Spinors 100 12.3 Solutions of the Free Dirac Equation 101 12.4 Quantization of the Dirac Field 103 12.5 The Fermionic
Recommended publications
  • Perturbative Algebraic Quantum Field Theory at Finite Temperature
    Perturbative Algebraic Quantum Field Theory at Finite Temperature Dissertation zur Erlangung des Doktorgrades des Fachbereichs Physik der Universität Hamburg vorgelegt von Falk Lindner aus Zittau Hamburg 2013 Gutachter der Dissertation: Prof. Dr. K. Fredenhagen Prof. Dr. D. Bahns Gutachter der Disputation: Prof. Dr. K. Fredenhagen Prof. Dr. J. Louis Datum der Disputation: 01. 07. 2013 Vorsitzende des Prüfungsausschusses: Prof. Dr. C. Hagner Vorsitzender des Promotionsausschusses: Prof. Dr. P. Hauschildt Dekan der Fakultät für Mathematik, Informatik und Naturwissenschaften: Prof. Dr. H. Graener Zusammenfassung Der algebraische Zugang zur perturbativen Quantenfeldtheorie in der Minkowskiraum- zeit wird vorgestellt, wobei ein Schwerpunkt auf die inhärente Zustandsunabhängig- keit des Formalismus gelegt wird. Des Weiteren wird der Zustandsraum der pertur- bativen QFT eingehend untersucht. Die Dynamik wechselwirkender Theorien wird durch ein neues Verfahren konstruiert, das die Gültigkeit des Zeitschichtaxioms in der kausalen Störungstheorie systematisch ausnutzt. Dies beleuchtet einen bisher un- bekannten Zusammenhang zwischen dem statistischen Zugang der Quantenmechanik und der perturbativen Quantenfeldtheorie. Die entwickelten Methoden werden zur ex- pliziten Konstruktion von KMS- und Vakuumzuständen des wechselwirkenden, mas- siven Klein-Gordon Feldes benutzt und damit mögliche Infrarotdivergenzen der Theo- rie, also insbesondere der wechselwirkenden Wightman- und zeitgeordneten Funktio- nen des wechselwirkenden Feldes ausgeschlossen. Abstract We present the algebraic approach to perturbative quantum field theory for the real scalar field in Minkowski spacetime. In this work we put a special emphasis on the in- herent state-independence of the framework and provide a detailed analysis of the state space. The dynamics of the interacting system is constructed in a novel way by virtue of the time-slice axiom in causal perturbation theory.
    [Show full text]
  • String Theory Methods for Condensed Matter Physics Horatiu Nastase Frontmatter More Information
    Cambridge University Press 978-1-107-18038-3 — String Theory Methods for Condensed Matter Physics Horatiu Nastase Frontmatter More Information String Theory Methods for Condensed Matter Physics The discovery of a duality between Anti–de Sitter spaces (AdS) and Conformal Field The- ories (CFT) has led to major advances in our understanding of quantum field theory and quantum gravity. String theory methods and AdS/CFT correspondence maps provide new ways to think about difficult condensed matter problems. String theory methods based on the AdS/CFT correspondence allow us to transform problems so they have weak interac- tions and can be solved more easily. They can also help map problems to different descrip- tions, for instance, mapping the description of a fluid using the Navier-Stokes equations to the description of an event horizon of a black hole using Einstein’s equations. This text- book covers the applications of string theory methods and the mathematics of AdS/CFT to areas of condensed matter physics. Bridging the gap between string theory and condensed matter, this is a valuable textbook for students and researchers in both fields. Hora¸tiu Nastase˘ is a Researcher at the Institute for Theoretical Physics at the State University of São Paulo, Brazil. To date, his career has spanned four continents. As an undergraduate he studied at the University of Bucharest and Copenhagen University. He later completed his Ph.D. at the State University of New York, Stony Brook, before moving to the Institute for Advanced Study, Princeton, where his collaboration with David Berenstein and Juan Maldacena defined the pp-wave correspondence.
    [Show full text]
  • Regularization and Renormalization of Non-Perturbative Quantum Electrodynamics Via the Dyson-Schwinger Equations
    University of Adelaide School of Chemistry and Physics Doctor of Philosophy Regularization and Renormalization of Non-Perturbative Quantum Electrodynamics via the Dyson-Schwinger Equations by Tom Sizer Supervisors: Professor A. G. Williams and Dr A. Kızılers¨u March 2014 Contents 1 Introduction 1 1.1 Introduction................................... 1 1.2 Dyson-SchwingerEquations . .. .. 2 1.3 Renormalization................................. 4 1.4 Dynamical Chiral Symmetry Breaking . 5 1.5 ChapterOutline................................. 5 1.6 Notation..................................... 7 2 Canonical QED 9 2.1 Canonically Quantized QED . 9 2.2 FeynmanRules ................................. 12 2.3 Analysis of Divergences & Weinberg’s Theorem . 14 2.4 ElectronPropagatorandSelf-Energy . 17 2.5 PhotonPropagatorandPolarizationTensor . 18 2.6 ProperVertex.................................. 20 2.7 Ward-TakahashiIdentity . 21 2.8 Skeleton Expansion and Dyson-Schwinger Equations . 22 2.9 Renormalization................................. 25 2.10 RenormalizedPerturbationTheory . 27 2.11 Outline Proof of Renormalizability of QED . 28 3 Functional QED 31 3.1 FullGreen’sFunctions ............................. 31 3.2 GeneratingFunctionals............................. 33 3.3 AbstractDyson-SchwingerEquations . 34 3.4 Connected and One-Particle Irreducible Green’s Functions . 35 3.5 Euclidean Field Theory . 39 3.6 QEDviaFunctionalIntegrals . 40 3.7 Regularization.................................. 42 3.7.1 Cutoff Regularization . 42 3.7.2 Pauli-Villars Regularization . 42 i 3.7.3 Lattice Regularization . 43 3.7.4 Dimensional Regularization . 44 3.8 RenormalizationoftheDSEs ......................... 45 3.9 RenormalizationGroup............................. 49 3.10BrokenScaleInvariance ............................ 53 4 The Choice of Vertex 55 4.1 Unrenormalized Quenched Formalism . 55 4.2 RainbowQED.................................. 57 4.2.1 Self-Energy Derivations . 58 4.2.2 Analytic Approximations . 60 4.2.3 Numerical Solutions . 62 4.3 Rainbow QED with a 4-Fermion Interaction .
    [Show full text]
  • Simulating Quantum Field Theory with A
    Simulating quantum field theory with a quantum computer PoS(LATTICE2018)024 John Preskill∗ Institute for Quantum Information and Matter Walter Burke Institute for Theoretical Physics California Institute of Technology, Pasadena CA 91125, USA E-mail: [email protected] Forthcoming exascale digital computers will further advance our knowledge of quantum chromo- dynamics, but formidable challenges will remain. In particular, Euclidean Monte Carlo methods are not well suited for studying real-time evolution in hadronic collisions, or the properties of hadronic matter at nonzero temperature and chemical potential. Digital computers may never be able to achieve accurate simulations of such phenomena in QCD and other strongly-coupled field theories; quantum computers will do so eventually, though I’m not sure when. Progress toward quantum simulation of quantum field theory will require the collaborative efforts of quantumists and field theorists, and though the physics payoff may still be far away, it’s worthwhile to get started now. Today’s research can hasten the arrival of a new era in which quantum simulation fuels rapid progress in fundamental physics. The 36th Annual International Symposium on Lattice Field Theory - LATTICE2018 22-28 July, 2018 Michigan State University, East Lansing, Michigan, USA. ∗Speaker. c Copyright owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0). https://pos.sissa.it/ Simulating quantum field theory with a quantum computer John Preskill 1. Introduction My talk at Lattice 2018 had two main parts. In the first part I commented on the near-term prospects for useful applications of quantum computing.
    [Show full text]
  • Lectures on D-Branes, Gauge Theories and Calabi-Yau
    UPR-1086-T Lectures on D-branes, Gauge Theories and Calabi-Yau Singularities Yang-Hui He Department of Physics and Math/Physics RG University of Pennsylvania Philadelphia, PA 19104–6396, USA Abstract These lectures, given at the Chinese Academy of Sciences for the BeiJing/HangZhou International Summer School in Mathematical Physics, are intended to introduce, to the beginning student in string theory and mathematical physics, aspects of the rich and beautiful subject of D-brane gauge theories constructed from local Calabi-Yau spaces. arXiv:hep-th/0408142v1 18 Aug 2004 Topics such as orbifolds, toric singularities, del Pezzo surfaces as well as chaotic duality will be covered. ∗[email protected] Contents 1 Introduction 2 2 Minute Waltz on the String 5 2.1 The D3-brane in R1,9 ............................... 6 2.2 D3-branesonCalabi-Yauthreefolds . ...... 7 3 The Simplest Case: S = C3 8 4 Orbifolds and Quivers 10 4.1 ProjectiontoDaughterTheories. ..... 10 4.2 Quivers ...................................... 12 4.3 TheMcKayCorrespondence . 12 4.4 McKay, Dimension 2 and N =2......................... 15 4.5 N = 1 Theories and C3 Orbifolds ........................ 15 4.6 Quivers, Modular Invariants, Path Algebras? . ......... 17 4.7 MoreGames.................................... 17 5 Gauge Theories, Moduli Spaces andSymplectic Quotients 19 5.1 QuiverGaugeTheory............................... 20 5.2 An Illustrative Example: The Conifold . ...... 21 5.3 ToricSingularities.. .. .. ... 22 5.3.1 A Lightning Review on Toric Varieties . ... 23 5.3.2 Witten’s Gauged Linear Sigma Model (GLSM) . .. 23 5.4 TheForwardAlgorithm ............................. 24 5.4.1 Forward Algorithm for Abelian Orbifolds . ..... 25 5.5 TheInverseAlgorithm ............................. 28 5.6 Applications of Inverse Algorithm . ...... 29 5.6.1 delPezzoSurfaces ...........................
    [Show full text]
  • Quantum Mechanics of Topological Solitons
    Imperial College London Department of Physics Quantum mechanics of topological solitons David J. Weir September 2011 Supervised by Arttu Rajantie Submitted in part fulfilment of the requirements for the degree of Doctor of Philosophy in Physics of Imperial College London and the Diploma of Imperial College London 1 Declaration I herewith certify that all material in this dissertation which is not my own work has been properly acknowledged. David J. Weir 3 Abstract Topological solitons { are of broad interest in physics. They are objects with localised energy and stability ensured by their topological properties. It is possible to create them during phase transitions which break some sym- metry in a frustrated system. They are ubiquitous in condensed matter, ranging from monopole excitations in spin ices to vortices in superconduc- tors. In such situations, their behaviour has been extensively studied. Less well understood and yet equally interesting are the symmetry-breaking phase transitions that could produce topological defects is the early universe. Grand unified theories generically admit the creation of cosmic strings and monopoles, amongst other objects. There is no reason to expect that the behaviour of such objects should be classical or, indeed, supersymmetric, so to fully understand the behaviour of these theories it is necessary to study the quantum properties of the associated topological defects. Unfortunately, the standard analytical tools for studying quantum field theory { including perturbation theory { do not work so well when applied to topological defects. Motivated by this realisation, this thesis presents numerical techniques for the study of topological solitons in quantum field theory. Calculations are carried out nonperturbatively within the framework of lattice Monte Carlo simulations.
    [Show full text]
  • Quantum Field Theory: Where We Are 3
    Quantum Field Theory: Where We Are Klaus Fredenhagen1, Karl-Henning Rehren2, and Erhard Seiler3 1 II. Institut f¨ur Theoretische Physik, Universit¨at Hamburg, 22761 Hamburg, Germany [email protected] 2 Institut f¨ur Theoretische Physik, Universit¨at G¨ottingen, 37077 G¨ottingen, Germany [email protected] 3 Max-Planck-Institut f¨ur Physik, 80805 M¨unchen, Germany [email protected] Summary. We comment on the present status, the concepts and their limitations, and the successes and open problems of the various approaches to a relativistic quantum theory of elementary particles, with a hindsight to questions concerning quantum gravity and string theory. arXiv:hep-th/0603155v1 20 Mar 2006 1 Introduction Quantum field theory aims at a synthesis of quantum physics with the prin- ciples of classical field theory, in particular the principle of locality. Its main Contribution to: An Assessment of Current Paradigms in the Physics of Fun- damental Phenomena, to be published by Springer Verlag (2006). 2 Klaus Fredenhagen, Karl-Henning Rehren, and Erhard Seiler realm is the theory of elementary particles where it led to a far reaching under- standing of the structure of physics at subatomic scales with an often amaz- ingly good agreement between theoretical predictions and experiments. Typ- ical observables in QFT are current densities or energy flow densities which correspond to what is measured in particle physics detectors. The original aim of QFT was to compute expectation values and correlation functions of the observables, and to derive scattering cross sections in high-energy physics. In the course of development, QFT has widened its scope, notably towards the inclusion of gravitational interactions.
    [Show full text]
  • N = 1 Dualities and the Dynamics of Brane Anti-Brane Systems
    N = 1 dualities and the dynamics of brane anti-brane systems David Berenstein School of Natural Sciences Institute for Advanced Study Work w. M. Douglas. hep-th 0207027 1 Introduction One of the most striking results in the modern study of N = 1 supersymmetric gauge theory was Seiberg’s discovery of an IR duality between two QCD-like theories, both with Nf flavors of quarks (fundamental chiral superfields), but with different gauge groups. This discovery connects two quantum theories which at the classical level have no resemblance to each other. The two theories are • SU(Nc) supersymmetric gauge theory with Nf flavours Qi, Q˜i, and no superpotential. • SU(NF − Nc) supersymmetric gauge theory with Nf flavours qi, q˜i, meson fields Mij which are singlets of the gauge group, and superpotential Mijqiq˜j 2 A popular way to study N = 1 supersymmetric gauge theories is to realize them geometrically in string theory, as suspended brane constructions, D- branes wrapping cycles in Calabi-Yau manifolds, orbifolds, and otherwise. • Hanany-Witten • S. Elitzur, A. Giveon and D. Kutasov • B. Feng, A. Hanany and Y. H. He (toric duality ?) • F. Cachazo, B. Fiol, K. A. Intriligator, S. Katz and C. Vafa They do not explain in a satisfying manner the superpotential data that is necessary to make the dualities work. The objective of this talk is to show how to overcome this obstacle so that one can derive the (classical) superpotential of the dual theory from first principles. 3 Outline • Field theories realized by IIb holomorphic branes on CY. • Central charge and gauge couplings.
    [Show full text]
  • Marginal and Relevant Deformations of N= 4 Field Theories and Non
    Preprint typeset in JHEP style. - HYPER VERSION ILL-(TH)-00-04 Marginal and Relevant Deformations of N=4 Field Theories and Non-Commutative Moduli Spaces of Vacua David Berenstein,∗Vishnu Jejjala,†and Robert G. Leigh‡ Department of Physics University of Illinois at Urbana-Champaign Urbana, IL 61801 Abstract: We study marginal and relevant supersymmetric deformations of the N = 4 super-Yang-Mills theory in four dimensions. Our primary innovation is the interpretation of the moduli spaces of vacua of these theories as non-commutative spaces. The construction of these spaces relies on the representation theory of the related quantum algebras, which are obtained from F -term constraints. These field theories are dual to superstring theories propagating on deformations of the AdS S5 5× geometry. We study D-branes propagating in these vacua and introduce the ap- propriate notion of algebraic geometry for non-commutative spaces. The resulting moduli spaces of D-branes have several novel features. In particular, they may be interpreted as symmetric products of non-commutative spaces. We show how mir- ror symmetry between these deformed geometries and orbifold theories follows from arXiv:hep-th/0005087v1 9 May 2000 T-duality. Many features of the dual closed string theory may be identified within the non-commutative algebra. In particular, we make progress towards understand- ing the K-theory necessary for backgrounds where the Neveu-Schwarz antisymmetric tensor of the string is turned on, and we shed light on some aspects of discrete anomalies based on the non-commutative geometry. Keywords: D-branes, AdS/CFT, non-commutative geometry, K-theory.
    [Show full text]
  • David Berenstein, UCSB DPF 2015 Meeting Based on D.B., Eric Dziankowski, R
    Spinning the fuzzy sphere David Berenstein, UCSB DPF 2015 meeting Based on D.B., Eric Dziankowski, R. Lashof Regas arXiv:1506.01722 This talk is not about this fuzzy sphere. Outline • Where the problem comes from and why it is interesting. • Ansatz for spinning fuzzy sphere and its consistency • Phase diagrams Holography Some large N field theories are equivalent to theories of quantum gravity in higher dimensions. Many solutions of such field theories have geometric interpretations, even at finite N Part of the goal is to find more examples of such solutions. SO(3) sector of BMN matrix model 1 1 3 H = Tr(P 2 + P 2 + P 2)+ Tr (Xj + i✏ XmXn)2 2 1 2 3 2 0 jmn 1 j=1 X @ A Has SO(3) symmetry with generator J = L = Tr(XP YP ) Z Y − X And a U(N) gauge invariance. Arises from • BMN matrix model (B,Maldacena, Nastase 2002) • Mass deformed N=4 SYM (Vafa, Witten; Polchinski, Strassler, …) • Equivariant Sphere reductions of Yang Mills on sphere (Kim, Klose, Plefka, 2003) Model is chaotic Yang Mills (on a box, with translationally invariant configurations) is chaotic. Basenyan, Matinyan, Savvidy, Shepelyanskii, Chirikov (early 80’) Chaos in BFSS matrix theory: Aref’eva, Medvedev, Rytchkov, Volovich (1998) Chaos in BFSS/BMN: Asplund, D.B., Trancanelli, Dzienkowski (2011,2012), Asano, Kawai, Yoshida (2015) The solutions with H =0aregivenbyfuzzyspheres.Thesearesolutionsoftheequations [Xi,Xj]=i✏ijkXk (6) The solutions to these equations are characterized by direct sums of the adjoint matrices for irreducible representations of su(2). For these solutions we have P1,P2,P3 =0andthusare classically gauge invariant according to (2).
    [Show full text]
  • D-Branes at Singularities, Compactification, and Hypercharge
    Published by Institute of Physics Publishing for SISSA Received: November 20, 2006 Revised: January 8, 2007 Accepted: January 9, 2007 Published: January 31, 2007 D-branes at singularities, compactification, and hypercharge JHEP01(2007)107 Matthew Buican,a Dmitry Malyshev,a∗ David R. Morrison,bc Herman Verlindea and Martijn Wijnholtad aDepartment of Physics, Princeton University, Princeton, NJ 08544, U.S.A. bCenter for Geometry and Theoretical Physics, Duke University, Durham, NC 27708, U.S.A. cDepartments of Physics and Mathematics, Univ. of California, Santa Barbara, CA 93106, U.S.A. dMax-Planck-Institut f¨ur Gravitationsphysik, Albert-Einstein-Institut, Potsdam, Germany E-mail: [email protected], [email protected], [email protected], [email protected], [email protected] Abstract: We report on progress towards the construction of SM-like gauge theories on the world-volume of D-branes at a Calabi-Yau singularity. In particular, we work out the topological conditions on the embedding of the singularity inside a compact CY threefold, that select hypercharge as the only light U(1) gauge factor. We apply this insight to the proposed open string realization of the SM of hep-th/0508089, based on a D3-brane at a dP8 singularity, and present a geometric construction of a compact Calabi-Yau threefold with all the required topological properties. Keywords: Intersecting branes models, Superstring Vacua, D-branes. ∗On leave from ITEP Russia, Moscow, B Cheremushkinskaya, 25 °c SISSA 2007 http://jhep.sissa.it/archive/papers/jhep012007107 /jhep012007107.pdf Contents 1. Introduction 1 2. General strategy 2 2.1 D-branes at a CY singularity 3 2.2 Symmetry breaking towards the SSM 6 2.3 Summary 6 3.
    [Show full text]
  • Matrix Description of M-Theory on T 6
    HU-EP-97/44 hep-th/9707259 July 31, 1997 Matrix Description of M-theory on T 6 Ilka Brunner and Andreas Karch Humboldt-Universit¨at zu Berlin Institut f¨ur Physik Invalidenstraße 110 D-10115 Berlin, Germany Email: [email protected] [email protected] Abstract We give some evidence that the worldvolume theory of the M-theory KK 6-brane is governed by a non-critical membrane theory. We use this theory to give a matrix description of M- theory on T 6. 1. Introduction Recently there has been much excitement about a new approach to capture the non-perturbative aspects of supersting theory: matrix theory ([17]). “Matrix theory is a nonperturbative Hamiltonian formalism for the theory formerly known as string theory/M theory” ([31]). Nevertheless this nice new theory has a serious flaw: it is formulated in the infinite mo- mentum frame (IMF), sometimes called lightcone gauge. Thus in addition to not being manifestly covariant the theory becomes background dependent. That means for every new background (e.g. for various compactifications) one needs a different Hamiltonian, ergo a new theory. Since we are mostly interested in compactifications down to four dimensions (after all, this is the real world) it is a very interesting problem to find the matrix description of M-theory compactifications. Since matrix theory is non-local, the compactified theory has ’more’ degrees of freedom than the theory describing flat space. Very early it has been realised that compactifications of M-theory on tori can be realised by substituting the original 0+1 dimensional quantum mechanics by d+1 dimensional SYM with 16 supercharges ([17,20]).
    [Show full text]