<<

Introduction to Series . Lecture 15. Spectral Analysis 1. : Facts and examples.

2. Spectral distribution . 3. Wold’s decomposition.

1 Spectral Analysis

Idea: decompose a stationary {Xt} into a combination of sinusoids, with random (and uncorrelated) coefficients. Just as in , where we decompose (deterministic) functions into combinations of sinusoids. This is referred to as ‘spectral analysis’ or analysis in the ‘ domain,’ in contrast to the approach we have considered so far. The approach considers regression on sinusoids; the time domain approach considers regression on past values of the time series.

2 A periodic time series

Consider

Xt = A sin(2πνt)+ B cos(2πνt) = C sin(2πνt + φ), where A, B are uncorrelated, zero, σ2 = 1, and C2 = A2 + B2, tan φ = B/A. Then

µt = E[Xt] = 0 γ(t, t + h) = cos(2πνh).

So {Xt} is stationary.

3 An aside: Some trigonometric identities

sin θ tan θ = , cos θ sin2 θ + cos2 θ = 1, sin(a + b) = sin a cos b + cos a sin b, cos(a + b) = cos a cos b − sin a sin b.

4 A periodic time series

For Xt = A sin(2πνt)+ B cos(2πνt), with uncorrelated A, B (mean 0, variance σ2), γ(h)= σ2 cos(2πνh). The of the sum of two uncorrelated time series is the sum of their . Thus, the autocovariance of a sum of random sinusoids is a sum of sinusoids with the corresponding :

k Xt = (Aj sin(2πνj t)+ Bj cos(2πνj t)) , j=1 X k 2 γ(h)= σj cos(2πνj h), j=1 X 2 where Aj,Bj are uncorrelated, mean zero, and Var(Aj )= Var(Bj)= σj .

5 A periodic time series

k k 2 Xt = (Aj sin(2πνj t)+ Bj cos(2πνj t)) , γ(h)= σj cos(2πνj h). j=1 j=1 X X Thus, we can represent γ(h) using a . The coefficients are the of the sinusoidal components. The spectral density is the continuous analog: the of γ.

(The analogous spectral representation of a Xt involves a integral—a sum of discrete components at a finite number of frequencies is a special case. We won’t consider this representation in this course.)

6 Spectral density

If a time series {Xt} has autocovariance γ satisfying ∞ h=−∞ |γ(h)| < ∞, then we define its spectral density as P ∞ f(ν)= γ(h)e−2πiνh h=X−∞ for −∞ <ν< ∞.

7 Spectral density: Some facts

∞ −2πiνh 1. We have h=−∞ γ(h)e < ∞. This is because |eiθ| = | cos θ + i sin θ| = (cos2 θ + sin2 θ)1/2 = 1, P and because of the absolute summability of γ.

2. f is periodic, with period 1. This is true since e−2πiνh is a of ν with period 1. Thus, we can restrict the domain of f to −1/2 ≤ ν ≤ 1/2. (The text does this.)

8 Spectral density: Some facts

3. f is even (that is, f(ν)= f(−ν)). To see this, write

−1 ∞ f(ν)= γ(h)e−2πiνh + γ(0) + γ(h)e−2πiνh, h=X−∞ hX=1 −1 ∞ f(−ν)= γ(h)e−2πiν(−h) + γ(0) + γ(h)e−2πiν(−h), h=X−∞ hX=1 ∞ −1 = γ(−h)e−2πiνh + γ(0) + γ(−h)e−2πiνh hX=1 h=X−∞ = f(ν).

4. f(ν) ≥ 0.

9 Spectral density: Some facts

1/2 5. γ(h)= e2πiνhf(ν) dν. Z−1/2 1/2 1/2 ∞ e2πiνhf(ν) dν = e−2πiν(j−h)γ(j) dν −1/2 −1/2 j=−∞ Z Z X ∞ 1/2 = γ(j) e−2πiν(j−h) dν j=−∞ −1/2 X Z γ(j) = γ(h)+ eπi(j−h) − e−πi(j−h) 2πi(j − h) jX6=h   γ(j) sin(π(j − h)) = γ(h)+ = γ(h). π(j − h) jX6=h

10 Example: White

2 For {Wt}, we have seen that γ(0) = σw and γ(h) = 0 for h 6= 0. Thus,

∞ f(ν)= γ(h)e−2πiνh h=X−∞ 2 = γ(0) = σw. That is, the spectral density is constant across all frequencies: each frequency in the contributes equally to the variance. This is the origin of the name white noise: it is like white , which is a uniform mixture of all frequencies in the visible spectrum.

11 Example: AR(1)

2 |h| 2 For Xt = φ1Xt−1 + Wt, we have seen that γ(h)= σwφ1 /(1 − φ1). Thus, ∞ 2 ∞ −2πiνh σw |h| −2πiνh f(ν)= γ(h)e = 2 φ1 e 1 − φ1 h=X−∞ h=X−∞ σ2 ∞ = w 1+ φh e−2πiνh + e2πiνh 1 − φ2 1 1 h=1 ! X  σ2 φ e−2πiν φ e2πiν = w 1+ 1 + 1 1 − φ2 1 − φ e−2πiν 1 − φ e2πiν 1  1 1  2 −2πiν 2πiν σw 1 − φ1e φ1e = 2 −2πiν 2πiν (1 − φ1) (1 − φ1e )(1 − φ1e ) 2 σw = 2 . 1 − 2φ1 cos(2πν)+ φ1

12 Examples

2 White noise: {Wt}, γ(0) = σw and γ(h) = 0 for h 6= 0. 2 f(ν)= γ(0) = σw. 2 |h| 2 AR(1): Xt = φ1Xt−1 + Wt, γ(h)= σwφ1 /(1 − φ1). 2 σw f(ν)= 2 . 1−2φ1 cos(2πν)+φ1

If φ1 > 0 (positive ), spectrum is dominated by low frequency components—smooth in the time domain.

If φ1 < 0 (negative autocorrelation), spectrum is dominated by high frequency components—rough in the time domain.

13 Example: AR(1)

Spectral density of AR(1): X = +0.9 X + W t t−1 t 100

90

80

70

60 )

ν 50 f(

40

30

20

10

0 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 ν

14 Example: AR(1)

Spectral density of AR(1): X = −0.9 X + W t t−1 t 100

90

80

70

60 )

ν 50 f(

40

30

20

10

0 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 ν

15