College of the Holy Cross CrossWorks Mathematics Department Faculty Scholarship Mathematics 3-20-2018 Lie Sphere Geometry and Dupin Hypersurfaces Thomas E. Cecil College of the Holy Cross,
[email protected] Follow this and additional works at: https://crossworks.holycross.edu/math_fac_scholarship Part of the Applied Mathematics Commons, and the Geometry and Topology Commons Recommended Citation Cecil, Thomas E., "Lie Sphere Geometry and Dupin Hypersurfaces" (2018). Mathematics Department Faculty Scholarship. 7. https://crossworks.holycross.edu/math_fac_scholarship/7 This Article is brought to you for free and open access by the Mathematics at CrossWorks. It has been accepted for inclusion in Mathematics Department Faculty Scholarship by an authorized administrator of CrossWorks. Lie Sphere Geometry and Dupin Hypersurfaces Thomas E. Cecil∗ March 20, 2018 Abstract These notes were originally written for a short course held at the Institute of Mathematics and Statistics, University of S˜ao Paulo, S.P. Brazil, January 9–20, 2012. The notes are based on the author’s book [17], Lie Sphere Geometry With Applications to Submanifolds, Second Edition, published in 2008, and many passages are taken directly from that book. The notes have been updated from their original version to include some recent developments in the field. A hypersurface M n−1 in Euclidean space Rn is proper Dupin if the number of distinct principal curvatures is constant on M n−1, and each principal curvature function is constant along each leaf of its principal foliation. The main goal of this course is to develop the method for studying proper Dupin hypersurfaces and other submanifolds of Rn within the context of Lie sphere geometry.