0- Statistical Quality Control Support System to Facilitate Acceptance Sampling and Control Chart Procedures

Total Page:16

File Type:pdf, Size:1020Kb

0- Statistical Quality Control Support System to Facilitate Acceptance Sampling and Control Chart Procedures 0- STATISTICAL QUALITY CONTROL SUPPORT SYSTEM TO FACILITATE ACCEPTANCE SAMPLING AND CONTROL CHART PROCEDURES/ A Thesis Presented to The Faculty of Russ College of Engineering and Technology Ohio University In Partial Fulfillment of the Requirements for the Degree Master of Science by Mohammed Nadeem August, 1'~994 Table of Contents Page No. 1.0 Introduction 1 1.1 Statement of the Purpose 5 2.0 Literature Review 6 2.1 Statistical Process Control Studies 6 2.2 Intelligent Systems · 7 2.3 Expert System Applications to Statistical Quality Control. 8 2.4 Present and Future Trend 15 3.0 Background 17 3.1 History ofthe Organization 17 3.2 Acceptance Sampling 19 3.2.1 Types of Sampling Plan 20 3.3 Military Standards 21 3.4 Statistical Process Control 22 3.4.1 Preparation Measures 23 3.5 LEVELS OBJECT 25 3.6 Need for the System 26 4.0 Development of the System 4.1 Systems Design 31 4.1.1 Selecting an Expert Systems ShelL 31 i 4.0 Development of the System (contd.) 4.1.2 Software Requirement 38 4.1.3 Hardware Requirement 39 4.2 Knowledge Acquisition and Representation 39 4.3 Acceptance Sampling 44 4.4 Statistical Process Control. 56 4.5 Testing and Maintaining the System 66 5.0 Results and Conclusions " 71 6.0Recommendations 74 6.1 Drawbacks and Limitations 75 6.2 Further Scope ofResearch 75 Bibliography 78 Appendix A: Pareto Analysis Charts 85 Appendix B: AQL Determination Sheets 93 11 List of Figures Page No. Figure 1. Cost Incurred due to Work-In-Process Inventory Rejection 29 Figure 2. Flow Chart of the Knowledge Acquisition Procedure 41 Figure 3. Acceptance Sampling Menu 47 Figure 4. Foil Menu 48 Figure 5. Paper Menu 49 Figure 6. Adhesives Menu 50 Figure 7. Inks/Coatings Menu 51 Figure 8. Menu to Enter the Lot Size 52 Figure 9. Sample Size Menu 53 Figure 10. Flow Chart ofthe Acceptance Sampling Procedure 54 Figure 11. Measurement Menu 55 Figure 12. Recommendation Menu 57 Figure 13. Flow Chart of the Control Chart Plotting and Analysis Procedure 58 Figure 14. Main Menu 59 Figure 15. Variable Selection Menu 60 Figure 16. Control Chart Measurement Menu 61 Figure 17. X-Chart Display 63 Figure 18. R-Chart Display 64 Figure 19. Control Chart Analysis I 67 Figure20. Control ChartAnalysisII 68 iii List of Tables Page No. Table 1. Total Work-In-Process Rejected 28 Table 2. Acceptable Quality Level (AQL) for Different Sampling Parameters of the In-coming Raw Material 43 Table 3. Types of Defects found in the Raw Material 45 iv 1 1.0 Introduction America has always been the pioneer in the field of quality assurance. Names like W. A. Shewart, W.E. Deming among others instantly come to mind at mere mention of the word quality. The 19th century was the era of the beginning of quality assurance in the United States. Fredrick Taylor pioneered scientific management, removing work planning from the purview of workers and foremen and placing it in the hands of industrial engineers. In the 20th century, Henry Ford introduced the moving assembly line into the manufacturing environment ofFord Motor Company that broke down complex operations so they could be performed by unskilled labor which resulted in the manufacturing of highly technical products at low cost. The field of quality control witnessed rapid progress as George Edwards and Walter Shewart, Bell System employees, led the way. Walter Shewart introduced the concept of statistical quality control and was basically involved with methods for economically controlling quality in mass production environments. George Edwards was the founding President ofthe American Society for Quality Control (ASQC). In 1950's, W. Edwards Deming, another Bell System employee, worked in Japan on the invitation of the Union of Japanese Scientists and Engineers and now Deming's methods are implemented allover the world. Other noted contributors from the US are Armand V. Feigenbaum, who introduced the concept of Total Quality Control (TQC), and Joseph Juran. When computers were introduced to the manufacturing industry, quality assurance was an obvious field yet to be exploited by automation. Translation of 2 parameters, required in automation procedures, into an operational system at any point ofthe manufacturing process is an extremely time-consuming iterative action that could be solved with the incorporation of new technologies, quality control and intelligent techniques. Today's industry is now oriented towards state-of-the-art technology, including among others automatic identification systems, computer integrated manufacturing, artificial intelligent simulation techniques, etc. With the advent of microcomputers in manufacturing applications, quality' control became an obvious task to be automated. In the past, much work has been done on automated inspection ofin­ process and finished product. Techniques such as machine vision, ultrasonic sensors, robots, robot vision, X-ray testing, etc., have been commonly used over the years for industrial inspection applications. Lately expert systems have been coming into use for quality control applications. An expert system may be defined as a software that seeks to model the expertise of a human expert within a specific problem domain. As defined by Modesitt (1987), "expert systems are computer-based software systems which attain or surpass human expertise, currently in very narrow and specialized domains. " An expert system is a computer program that achieves high levels of performance on problems that normally require years of education and training for human being to solve. In an expert system, the knowledge of a human expert, including factual, judgmental and procedural knowledge is developed into a "knowledge base" for a particular problem solving domain. The knowledge base is manipulated using a control mechanism, commonly called the "inference engine", to reach conclusions or provide 3 solutions to complex problems which could ordinarily only be solved by a human expert. State-of-the-art expert systems solve problems, explain the reasoning behind the solution and can modify the knowledge base to include new information. Expert systems are part of the wider field of study known as 'artificial intelligence' (AI). AI is the field of subjects concerned with making computers behave intelligently and includes areas such as robotics, pattern recognition, neural networks, and expert systems. Basically, an artificial intelligence program is a program like any other. It is a set of procedures which the computer follows, with inputs and outputs. These programs are based upon a model of the problem they seek to solve. In conventional information systems, this model is constructed in terms of numbers. In an AI program, the model is constructed in terms nearer to a human view using symbols, such as text or pictures. The computer's view is still a model, but is simply expressed in different terms. A few characteristics of an intelligent system are: they solve complex problems they behave logically they make effective use of existing information they provide non-linear program navigation they are responsive and adaptive they are user-friendly and highly interactive Expert systems are perhaps the most common form ofthe AI system. The label 'expert system' is not applied to one single type ofsystem, or to even a class ofsystems 4 but to a whole spectrum of systems. It covers systems ranging from conventional information systems with hardly any symbolic reasoning content, to systems which entirely depend upon symbolic reasoning, and bear little resemblance to conventional information systems. Similarly, it is applied to systems ranging from those which use a very superficial symbolic model of a problem, the so-called toy domains, to those which use very sophisticated symbolic models. The use of expert systems in modem industry is not a new concept and is derivative of the advantages derived from such applications. There are numerous benefits of using expert system applications, to name a few: Expert systems save time. - Expert systems can cut costs and increase revenues. - Expert systems can preserve endangered knowledge. - Expert systems can propagate knowledge. - Expert systems can improve consistency. - Expert systems are useful in training situations. Expert systems can easily integrate with other software. - Expert system shells considerably reduce development time. 5 1.1 Statement of the Purpose In pursuit of ways to improve the efficiency of quality control procedures, a research study was conducted at the Belpre plant of International Converter, Inc. (ICI). leI is a manufacturer ofaluminum foil related products. ICI has been facing problems relating to the quality ofin-coming raw material which was in-tum affecting the quality of in-process goods and the production process on the whole. A huge quantity of raw material was scrapped during production because of inferior quality and added to the cost in terms ofinterruptions in production processes and resources already used on that particular raw material. This study was to specifically concentrate and deal with similar problems and to enhance and improve quality management at the production floor. Since the organization lacks trained quality personnel, a quality system, with the expertise of a quality engineer, best suited the needs of the organization. The major objective ofthis study was to provide a user-friendly object-oriented quality system that will automate the acceptance sampling procedures and exercise automatic process control in terms of establishing, maintaining, and interpreting control charts to counter quality-related problems at the plant. 6 2.0 Literature Review 2.1 Statistical Process Control Studies Companies in the US are moving towards adopting a number of strategies such as JIT, TQM, and automation to gain competitive advantage in an increasingly competitive environment. Among such strategies is Statistical Process Control (SPC). SPC is a technique to increase quality and decrease costs. SPC theory is based on the postulate that process performance is dynamic and fluctuates over time.
Recommended publications
  • Anatomic Modeling Using 3D Printing: Quality Assurance and Optimization
    Leng et al. 3D Printing in Medicine (2017) 3:6 DOI 10.1186/s41205-017-0014-3 RESEARCH Open Access Anatomic modeling using 3D printing: quality assurance and optimization Shuai Leng1*, Kiaran McGee1, Jonathan Morris1, Amy Alexander1, Joel Kuhlmann2, Thomas Vrieze1, Cynthia H. McCollough1 and Jane Matsumoto1 Abstract Background: The purpose of this study is to provide a framework for the development of a quality assurance (QA) program for use in medical 3D printing applications. An interdisciplinary QA team was built with expertise from all aspects of 3D printing. A systematic QA approach was established to assess the accuracy and precision of each step during the 3D printing process, including: image data acquisition, segmentation and processing, and 3D printing and cleaning. Validation of printed models was performed by qualitative inspection and quantitative measurement. The latter wasachievedbyscanningtheprintedmodelwithahighresolution CT scanner to obtain images of the printed model, which were registered to the original patient images and the distance between them was calculated on a point-by-point basis. Results: A phantom-based QA process, with two QA phantoms, was also developed. The phantoms went through the same 3D printing process as that of the patient models to generate printed QA models. Physical measurement, fit tests, and image based measurements were performed to compare the printed 3D model to the original QA phantom, with its known size and shape, providing an end-to-end assessment of errors involved in the complete 3D printing process. Measured differences between the printed model and the original QA phantom ranged from -0.32 mm to 0.13 mm for the line pair pattern.
    [Show full text]
  • GNU/Linux AI & Alife HOWTO
    GNU/Linux AI & Alife HOWTO GNU/Linux AI & Alife HOWTO Table of Contents GNU/Linux AI & Alife HOWTO......................................................................................................................1 by John Eikenberry..................................................................................................................................1 1. Introduction..........................................................................................................................................1 2. Symbolic Systems (GOFAI)................................................................................................................1 3. Connectionism.....................................................................................................................................1 4. Evolutionary Computing......................................................................................................................1 5. Alife & Complex Systems...................................................................................................................1 6. Agents & Robotics...............................................................................................................................1 7. Statistical & Machine Learning...........................................................................................................2 8. Missing & Dead...................................................................................................................................2 1. Introduction.........................................................................................................................................2
    [Show full text]
  • Iso 2859-1:1999(E)
    INTERNATIONAL ISO STANDARD 2859-1 Second edition 1999-11-15 Sampling procedures for inspection by attributes — Part 1: Sampling schemes indexed by acceptance quality limit (AQL) for lot-by-lot inspection Règles d'échantillonnage pour les contrôles par attributs — Partie 1: Procédures d'échantillonnage pour les contrôles lot par lot, indexés d'après le niveau de qualité acceptable (NQA) --`,,```,,,,````-`-`,,`,,`,`,,`--- A Reference number ISO 2859-1:1999(E) Copyright International Organization for Standardization Provided by IHS under license with ISO No reproduction or networking permitted without license from IHS Not for Resale ISO 2859-1:1999(E) Contents 1 Scope ........................................................................................................................................................................1 2 Normative references ..............................................................................................................................................2 3 Terms, definitions and symbols.............................................................................................................................2 4 Expression of nonconformity.................................................................................................................................7 5 Acceptance quality limit (AQL)...............................................................................................................................8 6 Submission of product for sampling.....................................................................................................................8
    [Show full text]
  • Construction Quality Control/Quality Assurance Plan Bozeman Landfill LFG/SVE/AI and Treatment System City of Bozeman Landfill;
    Construction Quality Control/Quality Assurance Plan Bozeman Landfill LFG/SVE/AI and Treatment System City of Bozeman Landfill; Bozeman, MT #114-560487 July 10, 2015 PRESENTED TO PRESENTED BY City of Bozeman Tetra Tech, Inc. P +1-406-443-5210 PO Box 1230 303 Irene Street F +1-406-449-3729 Bozeman, MT 59711-1230 Helena, MT 59601 tetratech.com Prepared by: Mary Bell July 10, 2015 Reviewed by: Larry Cawlfield, P.E., P.H. July 10, 2015 Engineer/Hydrologist Authorized by: Larry Cawlfield, P.E., P.H. July 10, 2015 Engineer/Hydrologist Construction Quality Control/Quality Assurance Plan LFG/SVE/AI and Treatment System TABLE OF CONTENTS 1.0 INTRODUCTION ..................................................................................................................................................1 1.1 CQCQAP Organization ..................................................................................................................................1 2.0 PROJECT QA/QC ORGANIZATION ...................................................................................................................2 2.1 Responsibilities and Authorities of Key Personnel ........................................................................................2 2.1.1 Engineer of Record ...............................................................................................................................2 2.1.2 QA On-Site Supervisor .........................................................................................................................3 2.1.3 QC
    [Show full text]
  • X-Machines for Agent-Based Modeling FLAME Perspectives CHAPMAN & HALL/CRC COMPUTER and INFORMATION SCIENCE SERIES
    X-Machines for Agent-Based Modeling FLAME Perspectives CHAPMAN & HALL/CRC COMPUTER and INFORMATION SCIENCE SERIES Series Editor: Sartaj Sahni PUBLISHED TITLES ADVERSARIAL REASONING: COMPUTATIONAL APPROACHES TO READING THE OPPONENT’S MIND Alexander Kott and William M. McEneaney COMPUTER-AIDED GRAPHING AND SIMULATION TOOLS FOR AUTOCAD USERS P. A. Simionescu DELAUNAY MESH GENERATION Siu-Wing Cheng, Tamal Krishna Dey, and Jonathan Richard Shewchuk DISTRIBUTED SENSOR NETWORKS, SECOND EDITION S. Sitharama Iyengar and Richard R. Brooks DISTRIBUTED SYSTEMS: AN ALGORITHMIC APPROACH, SECOND EDITION Sukumar Ghosh ENERGY-AWARE MEMORY MANAGEMENT FOR EMBEDDED MULTIMEDIA SYSTEMS: A COMPUTER-AIDED DESIGN APPROACH Florin Balasa and Dhiraj K. Pradhan ENERGY EFFICIENT HARDWARE-SOFTWARE CO-SYNTHESIS USING RECONFIGURABLE HARDWARE Jingzhao Ou and Viktor K. Prasanna FROM ACTION SYSTEMS TO DISTRIBUTED SYSTEMS: THE REFINEMENT APPROACH Luigia Petre and Emil Sekerinski FUNDAMENTALS OF NATURAL COMPUTING: BASIC CONCEPTS, ALGORITHMS, AND APPLICATIONS Leandro Nunes de Castro HANDBOOK OF ALGORITHMS FOR WIRELESS NETWORKING AND MOBILE COMPUTING Azzedine Boukerche HANDBOOK OF APPROXIMATION ALGORITHMS AND METAHEURISTICS Teofilo F. Gonzalez HANDBOOK OF BIOINSPIRED ALGORITHMS AND APPLICATIONS Stephan Olariu and Albert Y. Zomaya HANDBOOK OF COMPUTATIONAL MOLECULAR BIOLOGY Srinivas Aluru HANDBOOK OF DATA STRUCTURES AND APPLICATIONS Dinesh P. Mehta and Sartaj Sahni PUBLISHED TITLES CONTINUED HANDBOOK OF DYNAMIC SYSTEM MODELING Paul A. Fishwick HANDBOOK OF ENERGY-AWARE AND GREEN COMPUTING Ishfaq Ahmad and Sanjay Ranka HANDBOOK OF GRAPH THEORY, COMBINATORIAL OPTIMIZATION, AND ALGORITHMS Krishnaiyan “KT” Thulasiraman, Subramanian Arumugam, Andreas Brandstädt, and Takao Nishizeki HANDBOOK OF PARALLEL COMPUTING: MODELS, ALGORITHMS AND APPLICATIONS Sanguthevar Rajasekaran and John Reif HANDBOOK OF REAL-TIME AND EMBEDDED SYSTEMS Insup Lee, Joseph Y-T.
    [Show full text]
  • Examples of Quality Control and Quality Assurance During Construction
    Examples of Quality Control and Quality Assurance During Construction Prepared by the Construction Practices Subcommittee Of APWA’s UPROW Committee Introduction The UPROW Committee requested that the Construction Practices Subcommittee research and evaluate the existing available documents related to Quality Assurance and Quality Control (QA/QC) during construction. The request initiated from the report Recommendations to Establish a New Professional / Educational / Technical Committee for Utility and Public Right-of-Way Issues, prepared by the Utility and Right-of-Way Task Force, and dated April 13, 1998. The following report documents the process that the subcommittee followed in gathering, assessing, evaluating and reporting the data and the results. Data Collection The Subcommittee chair requested that each member search for examples of specifications, guidelines, manuals, programs or other written information, which outlined methods or requirements of QA/QC during construction. The members of the subcommittee were located in various regions across the entire country, from governmental (local, state and federal), industrial, commercial and private consulting backgrounds. A total of nine documents were received and reviewed. While the number of documents was not expansive, it was the opinion of the subcommittee that the sources of these documents have extensive background in construction quality control and therefore these documents cover the topic adequately. It is likely that other agencies have very good examples of standards but the subcommittee was unable to obtain other documents in their search. Analysis and Evaluation Prior to review the documents, members of the subcommittee developed a list of criteria to allow a subjective evaluation of the sample documents. These criteria included the following factors: · Quality Control Organization Items considered: The classifications of the employees included within the structure of the organization.
    [Show full text]
  • Methods and Philosophy of Statistical Process Control
    5Methods and Philosophy of Statistical Process Control CHAPTER OUTLINE 5.1 INTRODUCTION 5.4 THE REST OF THE MAGNIFICENT 5.2 CHANCE AND ASSIGNABLE CAUSES SEVEN OF QUALITY VARIATION 5.5 IMPLEMENTING SPC IN A 5.3 STATISTICAL BASIS OF THE CONTROL QUALITY IMPROVEMENT CHART PROGRAM 5.3.1 Basic Principles 5.6 AN APPLICATION OF SPC 5.3.2 Choice of Control Limits 5.7 APPLICATIONS OF STATISTICAL PROCESS CONTROL AND QUALITY 5.3.3 Sample Size and Sampling IMPROVEMENT TOOLS IN Frequency TRANSACTIONAL AND SERVICE 5.3.4 Rational Subgroups BUSINESSES 5.3.5 Analysis of Patterns on Control Charts Supplemental Material for Chapter 5 5.3.6 Discussion of Sensitizing S5.1 A SIMPLE ALTERNATIVE TO RUNS Rules for Control Charts RULES ON THEx CHART 5.3.7 Phase I and Phase II Control Chart Application The supplemental material is on the textbook Website www.wiley.com/college/montgomery. CHAPTER OVERVIEW AND LEARNING OBJECTIVES This chapter has three objectives. The first is to present the basic statistical control process (SPC) problem-solving tools, called the magnificent seven, and to illustrate how these tools form a cohesive, practical framework for quality improvement. These tools form an impor- tant basic approach to both reducing variability and monitoring the performance of a process, and are widely used in both the analyze and control steps of DMAIC. The second objective is to describe the statistical basis of the Shewhart control chart. The reader will see how decisions 179 180 Chapter 5 ■ Methods and Philosophy of Statistical Process Control about sample size, sampling interval, and placement of control limits affect the performance of a control chart.
    [Show full text]
  • D Quality and Reliability Engineering 4 0 0 4 4 3 70 30 20 0
    B.E Semester: VII Mechanical Engineering Subject Name: Quality and Reliability Engineering A. Course Objective To present a problem oriented in depth knowledge of Quality and Reliability Engineering. To address the underlying concepts, methods and application of Quality and Reliability Engineering. B. Teaching / Examination Scheme Teaching Scheme Total Evaluation Scheme Total SUBJECT Credit PR. / L T P Total THEORY IE CIA VIVO Marks CODE NAME Hrs Hrs Hrs Hrs Hrs Marks Marks Marks Marks Quality and ME706- Reliability 4 0 0 4 4 3 70 30 20 0 120 D Engineering C. Detailed Syllabus 1. Introduction: Quality – Concept, Different Definitions and Dimensions, Inspection, Quality Control, Quality Assurance and Quality Management, Quality as Wining Strategy, Views of different Quality Gurus. 2. Total Quality Management TQM: Introduction, Definitions and Principles of Operation, Tools and Techniques, such as, Quality Circles, 5 S Practice, Total Quality Control (TQC), Total Employee Involvement (TEI), Problem Solving Process, Quality Function Deployment (QFD), Failure Mode and Effect analysis (FMEA), Fault Tree Analysis (FTA), Kizen, Poka-Yoke, QC Tools, PDCA Cycle, Quality Improvement Tools, TQM Implementation and Limitations. 3. Introduction to Design of Experiments: Introduction, Methods, Taguchi approach, Achieving robust design, Steps in experimental design 4. Just –in –Time and Quality Management: Introduction to JIT production system, KANBAN system, JIT and Quality Production. 5. Introduction to Total Productive Maintenance (TPM): Introduction, Content, Methods and Advantages 6. Introduction to ISO 9000, ISO 14000 and QS 9000: Basic Concepts, Scope, Implementation, Benefits, Implantation Barriers 7. Contemporary Trends: Concurrent Engineering, Lean Manufacturing, Agile Manufacturing, World Class Manufacturing, Cost of Quality (COQ) system, Bench Marking, Business Process Re-engineering, Six Sigma - Basic Concept, Principle, Methodology, Implementation, Scope, Advantages and Limitation of all as applicable.
    [Show full text]
  • The Evolution of Lisp
    1 The Evolution of Lisp Guy L. Steele Jr. Richard P. Gabriel Thinking Machines Corporation Lucid, Inc. 245 First Street 707 Laurel Street Cambridge, Massachusetts 02142 Menlo Park, California 94025 Phone: (617) 234-2860 Phone: (415) 329-8400 FAX: (617) 243-4444 FAX: (415) 329-8480 E-mail: [email protected] E-mail: [email protected] Abstract Lisp is the world’s greatest programming language—or so its proponents think. The structure of Lisp makes it easy to extend the language or even to implement entirely new dialects without starting from scratch. Overall, the evolution of Lisp has been guided more by institutional rivalry, one-upsmanship, and the glee born of technical cleverness that is characteristic of the “hacker culture” than by sober assessments of technical requirements. Nevertheless this process has eventually produced both an industrial- strength programming language, messy but powerful, and a technically pure dialect, small but powerful, that is suitable for use by programming-language theoreticians. We pick up where McCarthy’s paper in the first HOPL conference left off. We trace the development chronologically from the era of the PDP-6, through the heyday of Interlisp and MacLisp, past the ascension and decline of special purpose Lisp machines, to the present era of standardization activities. We then examine the technical evolution of a few representative language features, including both some notable successes and some notable failures, that illuminate design issues that distinguish Lisp from other programming languages. We also discuss the use of Lisp as a laboratory for designing other programming languages. We conclude with some reflections on the forces that have driven the evolution of Lisp.
    [Show full text]
  • International Standard Iso 28598-1:2017(E)
    This preview is downloaded from www.sis.se. Buy the entire standard via https://www.sis.se/std-922612 INTERNATIONAL ISO STANDARD 28598-1 First edition 2017-10 Acceptance sampling procedures based on the allocation of priorities principle (APP) — Part 1: Guidelines for the APP approach Règles d'échantillonnage pour acceptation fondées sur le principe d'attribution de priorités (APP) — Partie 1: Lignes directrices relatives à l'approche APP Reference number ISO 28598-1:2017(E) © ISO 2017 This preview is downloaded from www.sis.se. Buy the entire standard via https://www.sis.se/std-922612 ISO 28598-1:2017(E) COPYRIGHT PROTECTED DOCUMENT © ISO 2017, Published in Switzerland All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized otherwise in any form orthe by requester. any means, electronic or mechanical, including photocopying, or posting on the internet or an intranet, without prior written permission. Permission can be requested from either ISO at the address below or ISO’s member body in the country of Ch. de Blandonnet 8 • CP 401 ISOCH-1214 copyright Vernier, office Geneva, Switzerland Tel. +41 22 749 01 11 Fax +41 22 749 09 47 www.iso.org [email protected] ii © ISO 2017 – All rights reserved This preview is downloaded from www.sis.se. Buy the entire standard via https://www.sis.se/std-922612 ISO 28598-1:2017(E) Contents Page Foreword ..........................................................................................................................................................................................................................................v
    [Show full text]
  • Quality Assurance: Best Practices in Clinical SAS® Programming
    NESUG 2012 Management, Administration and Support Quality Assurance: Best Practices in Clinical SAS® Programming Parag Shiralkar eClinical Solutions, a Division of Eliassen Group Abstract SAS® programmers working on clinical reporting projects are often under constant pressure of meeting tight timelines, producing best quality SAS® code and of meeting needs of customers. As per regulatory guidelines, a typical clinical report or dataset generation using SAS® software is considered as software development. Moreover, since statistical reporting and clinical programming is a part of clinical trial processes, such processes are required to follow strict quality assurance guidelines. While SAS® programmers completely focus on getting best quality deliverable out in a timely manner, quality assurance needs often get lesser priorities or may get unclearly understood by clinical SAS® programming staff. Most of the quality assurance practices are often focused on ‘process adherence’. Statistical programmers using SAS® software and working on clinical reporting tasks need to maintain adequate documentation for the processes they follow. Quality control strategy should be planned prevalently before starting any programming work. Adherence to standard operating procedures, maintenance of necessary audit trails, and necessary and sufficient documentation are key aspects of quality. This paper elaborates on best quality assurance practices which statistical programmers working in pharmaceutical industry are recommended to follow. These quality practices
    [Show full text]
  • Construction Quality Assurance Plan
    Assets I Engineering I Environment I Noise I Spatial I Waste Construction Quality Assurance Plan Pilbara Regional Waste Management Facility- Cell 1 Development and Associated Works shire of Ashburton reef to range Prepared for Shire of Ashburton February 2019 Project Number: TW17053 Construction Quality Assurance Plan Pi Ibara Regional Waste Management Facility - Cell 1 Development and Associated Works Shire of Ashburton talis delivering solutions DOCUMENT CONTROL 1 Version Description Date Author Reviewer J L ------------ ------------------ -- Oa Internal Review 15/01/19 cs LM la Released to Client 11/02/19 LM LM+EP Approval for Release Copyright of this document or any part of this document remains with Tatis Consultants Pty Ltd and cannot be used, transferred or reproduced in any manner or form without prior written consent from Tatis Consultants Pty Ltd. 1W17053 - CQA Plan.la February 2019 I Page i Construction Quality Assurance Plan Pi Ibara Regional Waste Management Facility - Cell 1 Development and Associated Works Shire of Ashburton talis Table of Contents 1 Introduction ......................................................................................................................... 1 2 Definitions ........................................................................................................................... 2 2.1 Material Definitions ................................................................................................................ 2 3 Roles of Participants ............................................................................................................
    [Show full text]